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Abstract: A state-constrained adaptive control synthesis is presented in this paper for multi-
input multi-output Euler-Lagrange nonlinear systems associated with structured uncertainties.
The controller is synthesized in two steps: (i) an approximated system is constructed to
approximate model uncertainties (ii) a novel nonlinear error transformation based control law
is designed to ensure the desired reference command tracking. A neural network is used in the
approximated system to approximate the model uncertainties, and the weights of the neural
network are updated using a stable weight update rule. The proposed controller ensures that
the closed-loop states of the system will remain bounded by the user-defined constraints and
the steady-state errors will converge asymptotically to a predefined domain. The proposed
formulation also gives the flexibility to impose independent constraints on system states and
leads to an easily on-board implementable closed-form control solution. The effectiveness of the

control design is demonstrated by extensive computer simulations.
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1. INTRODUCTION

Euler-Lagrange (EL) systems are considered as a very
important class of nonlinear systems as they represent a
wide class of practical systems (Zhao et al., 2018). These
systems are often associated with constraints in the form of
saturation, performance, or safety requirement. Therefore,
to handle constraints on EL systems, various solutions
have been proposed in the literature (Tee et al., 2012;
Zhang et al., 2018; Li and Li, 2017; He and Dong, 2018;
Sun et al., 2018; Zhao et al., 2018; Sachan and Padhi, 2019)

The use of barrier Lyapunov function (BLF) in the context
of backstepping control design philosophy is one of the
ways to enforce system constraints. Utilizing BLF, sev-
eral output-constrained controllers are proposed for EL
systems, for instance, refer the work carried out by Tee
et al. (2012); Zhang et al. (2018); Li and Li (2017); He and
Dong (2018) and the references therein. State-constrained
control solutions can also be derived using BLF based
control design. A state-constrained backstepping control
law is proposed by He et al. (2016) using BLF and Moore-
Penrose inverse. Other BLF based control solutions are
proposed by Sun et al. (2018); Zhao et al. (2018), where
constraints are imposed on the norm of states. Since con-
straints cannot be imposed on each component of the
system states, this limits the control applications. Ad-
ditionally, since backstepping philosophy is used in the
core of above control formulations, these control solutions
suffer from several other limitations, such as, a complex
intermediate stability term and its time derivatives are
required for control implementation, which may be dif-
ficult to obtain for large dimensional systems. Moreover,
before implementation, an offline feasibility analysis is also
required for these controllers.

Copyright lies with the authors

To mitigate the above limitations, a new robust adaptive
control formulation is proposed in this paper for EL sys-
tems. The controller is synthesized in two steps. In the first
step, a neural network (NN) based novel approximated
system dynamics is constructed to approximate the model
uncertainties. The weights of the NN are updated by a Lya-
punov stable weight update learning rule. Since structured
uncertainties are considered in this work, the basis func-
tions for the NN are selected by the combination of system
states. In the second step, the approximated system is
transformed using a newly proposed error transformation
and a controller is designed to ensure the asymptotic
stability of the closed-loop system. It should be noted that
using this error transformation, the limitations of back-
stepping control design are avoided. It is proven that the
closed-loop states of the system will remain bounded by
the imposed state constraints and asymptotically converge
to a user-defined bounded region. The performance and
effectiveness of the proposed controller are demonstrated
by computer simulations.

It can be mentioned here that using a similar type of
error transformation, controllers are designed by Sachan
and Padhi (2018); Sachan and Padhi (2019). However,
only output constraints can be imposed using these con-
trollers. Furthermore, several other error transformation
based adaptive control methods are available in the lit-
erature (Bechlioulis and Rovithakis, 2008; Wang et al.,
2016; Liu et al., 2017; Arabi et al., 2019). However, using
these controllers, only closed-loop error of the system can
be enforced within the prescribed bounds. Therefore, the
major difference between the proposed and existing error
transformations is that the proposed transformation can
enforce state constraints, whereas the existing transforma-
tions cannot handle state constraints.
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The major contributions and salient features of the
proposed control design can be summarized as follows:
(i) states will remain bounded by the user-defined con-
straints; (ii) the errors of the system converge asymptot-
ically to a predefined domain; (iii) the formulation of the
controller is simple and reduce to output-constrained con-
trol and dynamic inversion control by just changing the na-
ture of the control gain matrices; (iv) unlike backstepping
design, the proposed control law results in a simple closed-
form solution, which is easy for onboard implementations
and does not require any feasibility analysis.

Notations: In this paper, vectors are represented by z
(small and bold) and their i** components are denoted by
z;. The matrices are represented by Z (capital and bold).
The symbol for exponential is represented by e.

2. PROBLEM FORMULATION
Consider the dynamics of EL systems as follows

T1 =T

&2 = f(z) + G(z)u + d(z) (1)
where the kinematic and dynamics state variables 7 and
xy are defined as &y £ [r11, 212, ..., mln]T € R", and
xo = [T21, Too, ..., xgn]T € 1", respectively. The system
output and control input are represented by y = @1

and u € R, respectively. Total states are denoted by

T = [a:f, :BﬂT and assumed to be measurable. The term

d(x) represents the additive structured uncertainties. The
component of vector function f(x) € R", and matrix
G(x) € R™*" are the known part of system dynamics and
assumed to be smooth and continuous. Moreover, G(x) is
assumed to be invertible for all time.

The objective of the proposed control design is to ensure
that the output error (y; — y;*),Vi converges asymptoti-
cally to a user defined set €2,, where Q, C (—p;, p;). The
controller should also ensure the boundedness of all closed-
loop signals without violation of imposed state constraints
in presence of structured uncertainties d(x), where the
imposed constraints on the components of kinematic xq
and dynamic x2 states are defined as k; < x1; < ®; and

gi < xg; < Zi, respectively where ¢ = 1,2,...,n.

It should be mentioned that the reference output y* and
its derivatives are assumed to be smooth and bounded, viz.
dpi < yi* < dpi and ddi < y: < ddm VZ7 where dpﬂ dpw ddﬂ
dq, are constants. Moreover, the bounds on y* and y* are
assumed to be bounded by the imposed state bounds, i.e.,
K, < de <y < dp,, < F; and Ql < ddi <y <da, <G,
respectively Vi.

To approximate model uncertainties, a separate NN is
used in each dynamic state channel to approximate model
uncertainties. The uncertainties of each channel can be
defined as d(z) = [di(x),...,dn(x)]". The structure of
the model uncertainties is assumed as d;(z) = w7 ¢;(x),
where w; represent ideal weights and ¢;(x) represents
known basis functions. The output of the NN corresponds
to d;(x) is calculated as d;(x) = Wwr ¢;(x), where w; are
the approximated weights of the NN. The basis function
¢i(x) is constructed from system states and weights of

NN are updated by a weight update rule (given in (12)).
Noticed that since structured uncertainties are assumed,
the NN approximation error is zero.

3. ADAPTIVE CONTROL FORMULATION

The proposed control formulation is inspired by model-
following neuro-adaptive control formulation, developed
by Padhi et al. (2007). The controller is synthesized in
two steps. In the first steps, the model uncertainties are
estimated using the approximated system dynamics and
in the second step, an asymptotically stable controller is
design using the online estimation of uncertainties. The
synthesis of overall controller along with approximated
system is explained in the following subsections.

8.1 Approximated System Dynamics

A novel approximated system dynamics to approximate
model uncertainties is constructed as

Ta, =Tasy

Ea, = f(2) + G(x)u+ d(z) + Kp,ea + Ka, éa (2)
where x4, and x4, are the state variables for the approx-
imated system. The error variables e, and é, are defined
as €q = T1 — Tq, and €5 = T2 — XT4,. The matrices Kq,
and K, are symmetric and diagonal, defined as

. <a;abf“ezn>] @)

bp1 (0‘% - éal) bpn (0-7274 - ézn) (4)

=) i)
,01 a1 Pn an

where, bq, and b, are positive constants. The variables o;

and p; are user defined constants, serve as the bounds on

steady-state error of the overall system. The term d(zx)
is the approximation of model uncertainties, obtained as

di(x) = wT ¢i(x), Vi.

. b
K4, =diag [(U% _dléz 7o
a1

K, =diag [

3.2 Approximation of Model Uncertainties

The approximation error is defined as

€q = X1 — Tq, (5)
The double time derivative of the error in (5) is
€ = T2 — Tq, (6)
By substituting @2 and &4, from (1) and (2), &, is
éo =d(x) —d(x) — Ky eq — Ka_éq (7

Since Kp, and Kg4, are diagonal matrices, the it" compo-
nent of error dynamics (7) can be expressed as

. by (02— ¢2)ea, by ca,
"a» :dz _di L 7 a; i i Qg 8
€ i (ZE) (x) (pg _ egi) (O_ZQ _ egl) ( )
where, initial conditions e,(0) = 0 and ¢é,(0) = 0.

Using the structures of d;(x) = wT ¢;(x) and d;(x) =
Wl ¢;(x), following is obtained
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by (02— 2 ) ear b,
b, = W] ¢i(x) — i — 9)
A o) -a)
where, w} is defined as w} = wT — @7T

To analyze the stability of the error dynamics (9), the

following BLF is selected
b,. ba. 02 bd o? ol w;
Li — pira; 1 7 i [ )
2 (ﬁ 2, \oz—a) ",

where, 6; > 0 is known as learnlng rate constant. All
other terms are already defined in (3) and (4). The time
derivative of the BLF is obtained as

L‘ — Di Qi ~Qq —aq i a/L.a’L 7 (10>
Collet)  (e-e)

Using (9), the derivative of the Lyapunov function in (10)
is modified as

2
> 7bd7éﬂ., ~ ¢Z(m)bdléa7 w;
Li= <(J§—ég_)> er;.r( (02 —é2) a 91) D

By selecting weight learning rule as

o — ba,0ifa; Pi ()

s T e et 12
(o7 - 2, "
the Lyapunov derivative in (11) is obtained as
by, € ’
€a,
Li=—| %" 13
(o) "

which means L; < 0. This implies that L;(t) < Lo, Vt,
where Lg is the value of L; at ¢ = 0. Furthermore, in the
selected BLF, each term is positive definite and hence, the
following is true for individual term

bp,bdv p2
@ tlog ? S LO
2 ((pZQ - 631‘)

By taking the exponential on both sides and followed by
algebra, (14) can be written as

eal < piV/1—e (15)

where e represents exponentlal. Since Lg is always positive

(14)

—(2Lo/(bp;ba, )

except at equilibrium point zero, the term e~ (2Lo/(bo;ba;))
is bounded in the domain (0,1). Therefore, the errors e,
will remain bounded as |e,,| < p;, Vi. Similar analysis can
be performed for é,, and the bounds on é,, can be shown
as |éq,| < oy, Vi.

Since L; < 0, the closed-loop signals e,,, €,4,, and w; are
bounded. Moreover, since the basis functions ¢;(x) are
bounded in nature, by analyzing (9), €., is also bounded.
Therefore, all closed-loop signals are bounded and stable
in the sense of Lyapunov.

We can further analyze the nature of é,, by calculating
the time derivative of L; in (13) as

— by, éa,

LT
(02 —¢2)°

[bd €a; (0'2—6 )+2bde ea}

Since each term of L; is bounded, using Barbalat’s Lemma
(Sachan and Padhi, 2018), L; — 0, i.e., é,, — 0 as t — oo.

The above analysis can be summarized in the form of
following theorem

Theorem 1. Consider the systems (1) and (2) and if

the model uncertainties are approximated as d;(x) =
'LZ: ¢i(x) and the weight update rule is chosen as w; =
bd 0; ea ¢i(x)

2_
(ai eai)

i) The error e,, and its derivative é,, will remain
bounded in compact sets €1, and (), respectively,
where Q, C (—pi, pi) and Q, C (—0y,0;)

ii) The error derivative will be asymptotically stable, i.e.,
€q, — 0 ast — oo.

, then following properties hold

After the estimation the model uncertainties, the next step
is to design an asymptotically stable controller for the
approximated system, which is presented as follows.

3.8 Tracking Control Design

The tracking error between approximated system (2) and
reference output y* is defined as

er =Ty, — Y~ (16)
The time derivatives of (16) can be calculated as
Er =, — i (17)

By substituting @4, from (2), (17) can be written as

= f(2) + Gu +d(z) + Kp,ea + Ka,éa — §"(18)
To stabilize the error dynamics (18), a closed-form adap-
prer Kd'r'ér

tive control law is proposed as
o -1
u = [G(x)] ( Kanbo — d(@) + i > (19)

—f(z) -
_Kpaea
where, G(x) is known and assumed to be invertible.
The matrices Kg, and Kjp, are symmetric and diagonal
matrices. The matrix Kg, is defined as

Ky, = dlag [kdrla kdr27 cey kdrn] (20)
where the i*" component of matrix K, is
YiCd; Vi) Cd;
kar, = TN (Qe /Cel) (27)
(@ -e) (¢ -e)
) ) 1, if0<é, <,
with,  5iér) = {0, if ¢, <é, <0
where constant c¢g, > 0, V. Constants C and § represent
upper and lower bounds on error é,., obtalned as
Z:Z_Ed — 0 (21)
¢, =dg, — ¢, — 0 (22)

Se,
where, ¢, and CZ_ are imposed state constraints on dynamic

states zo;, known constant o; is defined in (3), and dg, and
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d,, are the known bounds on the derivative of reference
signal. The matrix K, is defined as

Ky, =diag[kpr,, kpryy-- s Kpr,) (23)

where, the i*" component of matrix is given as

[ ﬁicpi + (1 - Bi)ﬁgicm ( 1 )
" (Ezqz - 621) Eii (ﬁgi - 672"1) kdri
1, ifo< er;, < Re,

With, Bi(em) = {O if — k. <e. <0

where cp, > 0,Vi are constants. The constants ke, and k.,
are upper and lower bounds on e,,, calculated as

Fe, =FRi — dp, — pi

(24)
(25)

where, ®; and k; are imposed state constraints on kine-
matic states z1;, known constant p; is defined in (4), and

dp, and d, are the bounds on reference signal.

Ee, =d, — K; — pi

Note that, in the expressions of proposed controller gain
. = \? _ N2
matrices kqy, and kp,,, terms (ge, / Céi) and (5, / Fe,)

are added to prevent a very sharp change in the control
histories around equilibrium point.

Further, by substituting the control expression (19) in
(18), the closed-loop error dynamics is obtained as
ér = —Kpre, — Kgré, (26)
Since the matrices Kpre, and Kg,.€é, are diagonal in
nature, the i*" component of closed-loop error dynamic
can be written as
Er; = _kPT’ieT’i — karér, (27)
To analyze the stability of (27), the following asymmetric
logarithm BLF (Sachan and Padhi, 2018) is chosen

I =2
L Cp; X Heq‘,
= | (e )|

ZQ
+ Cd; yilog | = g
2 (€. -e)
i 2 2
Cd; (1 B 'Yi) §G7 gcz
+ 9 3 (28)

——log
. (¢ -e)

where all variables used in (28) are already defined. The
time derivative of (28) can be obtained as

V_C /BieTiéT'i (1 _Bz)ﬁglerlérl
' " (Eiq - 6%1) Eiq‘, (ﬁ?ﬁq, - 672“7)
2 . .
Vit by, (1 =) ¢ ériér,

“+cq

@-a) 2(e-a)

Using the definitions of kp,, and kg4, from (23) and (20),
V; is expressed as

‘./i = kf‘pri kdri Er; éri + kdri éri er1 (29)
By substituting the value of &, from (27), following
simplified expression of V; is obtained

Vi=—k3, e (30)
Since V; < 0, the asymptotic stability of the error dy-
namics in (26) cannot be concluded. However, V; = 0
only when é,, = 0,Vi for all time, which implies that

ér, = 0,V¥i . By using (27), when é,, = é,, = 0, one
can conclude that e,, = 0,Vi (provided e,, € (—&,,,Fe,)
and é,, € (—gé‘ ,Zéi) satisfy, which is proven next). Thus,
the equilibrium point is the only invariant set and hence,
using LaSalle’s Theorem (Sachan and Padhi, 2018), the
asymptotic stability of the closed loop error dynamics can
be concluded. Furthermore, as V; < 0, it can be concluded

that all closed-loop signals will remain bounded. Moreover,

the upper bound on selected Lyapunov is obtained as
Vi <V, Vt, which is (from (28))

[ —2
Cpi . "{el'
2 ”%Q@—aﬂl

_|_ 7611 ﬁzi
2 | m P\ -a)
i —2
ca, N
+ % yilog S Ce.
2 (@ -e)
Ja-we ¢
+ Cd,; - 2¢; lOg 2é; < VE)
2 < (¢ -e)
where Vj is the value of Lyapunov function at ¢ = 0.

Since the left hand side terms are positive definite, the
individual term is upper bounded by Vj (can be followed
from Sachan and Padhi (2018)). Furthermore, by solving
and taking the exponent on both sides, the following
inequality is obtained after simplification (similar to the
procedure followed after (14))

—Ke, < e€p, < Fe, (31)
Similar analysis can be carried out for é,, and the bounds
can be obtained as —géj < ép < Ze Thus, the error
er, will remain bounded in a compact set €2, and its
derivative é,, will remain bounded in a compact set ()¢,

where Q, C (—@ei,ﬁei), Q¢ C (—géi,féi) Vi.

The above analysis can be summarized as follows.
Theorem 2. Consider the systems (2) under the controller
(19), and if the initial conditions are chosen as e, (0) € Q,,
ér,(0) € Q¢, then following properties hold

i) The closed-loop error dynamics is asymptotically
stable, i.e., e,, = 0ast— oo

ii) The error e,, and its derivative é,, will remain
bounded in compact sets €, and ., respectively

where Q, C (7ﬁei7ﬁe7¢)a Q¢ C (*Qéi,zéi) Vi.
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Remark 1: In the current formulation, the output-constrained reference signals, without loss of generality, are assumed

control can be achieved by selecting nonzero diagonal ele-
ments of the matrix Kg, as positive constants. Similarly,
the proposed formulation is reduced to dynamic inversion
formulation by selecting nonzero diagonal elements of the
matrices Ky, Kq, as positive constants.

In Theorems 1 and 2, it is shown that all closed loop
signal will be bounded in both steps of the control design.
However, the behavior of the overall closed-loop actual
system is not analyzed yet. Thus, the closed-loop response
of the actual system is analyzed in the following theorem.

Theorem 3. Consider the actual systems (1) under the
controller (19) with the weight update learning rule in
(12), and if the initial conditions are chosen as e, (0) €

(—Ee, Fe,), €r,(0) € (—géA,Zéi) Vi, then following prop-
erties hold

i) The overall error (e; =y; —y}) will asymptotically
converge to a user-defined compact set €,, where
Q, € (—pi, pi) and p; > 0 is a user-defined constant.

ii) Closed-loop states of the system will remain bounded
as k; < 21, <FK; and ¢, <@g, < (;, V>0,V

Proof.

i) The overall error of the actual system is defined
as €; = x1, — y;. By adding and subtracting z,,,
the error e; is modified as e, = e, + e,,. From
Theorem 1, e,, € £, and from Theorem 2, e,, is
asymptotically stable, i.e., e,, — 0 as t — co. Thus,
e; will asymptotically converge to the compact set 2.

ii) From Theorem 1 and 2, the errors e,, and e,, are
shown to be bounded as —k, < e, < K, and

< p;, Vi, respectively. Thus, following is true

‘6111'
—Ke, — Pi < e, +eq; < Ke, + pi (32)
By substituting e,, = %q,, —y;, €q; = 1, — Tq,, and
bounds of ¥, (32) is modified as
—Ko, — pi+d, <z, <Fe, +pi+dy, (33)

Using the definitions of &; and k; from (24) and (25),
inequality (33) can be expressed as

(34)
Similarly from the bounds on é,, and é,,, the same

analysis can be performed and the bounds on x5, can
be obtained as

Ei < ZC]_i <El

¢, < g, < ¢, (35)

Thus, the closed-loop states of the actual system will
remain bounded by the imposed state constraints.
This completes the proof.

4. SIMULATION RESULTS

To demonstrate the capability of the proposed control
design, consider the following nonlinear system as

i1 = fi(zr, m2) + (1+27) ur +ug + dy (36

o= fa(wr,2) + (14 43) ug + da (37

where, fi(z1,22) = T1@9 + 23 + ¢1 and fao(wy,22) =
Tols + co, and ¢ € R, co € R are constants. The

as zero. The outputs of the system are selected as y; = x;
and yo = x5. Since the proposed state-constrained (SC)
control formulation can be easily converted into output-
constrained (OC) control, the results are presented for
both scenarios. In simulations, the asymmetric lower and
upper constraints on the system output (331 and atg) are
chosen as —0.2 and 0.56, respectively. Similarly, the lower
and upper constraints on dynamic states (&7 and o)
are chosen as —0.7 and 1, respectively. The constraints
on eq,, €4, are chosen as +0.05, which means that the
overall system error will asymptotically converge to the
compact set §,, where Q, € (—0.05,0.05). The model
parametric uncertainties are assumed as dy = 11.8%9%1 +
12541 and dy = —13z9 + 11.52% + 21.743. Since the
model uncertainties are structured in nature and the basis
functions ¢; and ¢ are chosen as ¢y = [i9@1, 1|7 and
¢ = [w2, 22, @37, respectively.

The initial conditions for the simulations are selected as
x1(0) = 0.51, 1(0) = 0.6, x2(0) = 0.45, and @2(0) = 0.65.
Moreover, for weight update, w;(0), Vi are chosen as zero.
The learning rate 6; is selected as 10 and all other constant
controller gains are taken as unity. The constants ¢; and
¢y in the system dynamics (36) and (37) are chosen as
c1 = 0.2 and ¢co = 0.4, respectively.

0.6 I T
Constraint bounds| ]|
0.5 Desired signal
’E\ - — —y: OC Control
7 04 = = =y,: OC Control
.E ——y;: SC Control
g 0.3 1y SC Control
QO
02
o
2 01
%
2
£ 0
£
£-0.1
M
-0.2
-0.3 -
0 2 4 6 8 10

Time (sec)

Fig. 1. Kinematic state histories obtained using output and
state constrained adaptive control.

1k Constraint bounds| |
= = =g;: OC Control
— — =1: OC Control
3 ——— ;2 SC Control [
5 05 92: SC Control
°
5}
z
Q
=
@
2
£
s
S -
>
(=]
0 2 4 6 8 10

Time (sec)

Fig. 2. Dynamic state histories obtained using output and
state constrained adaptive control.

The kinematic and dynamic state trajectories of the sys-
tem are shown in Figs 1 and 2, respectively where both the
OC controller and SC controller prevent the violation of
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L\ ez
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Fig. 3. Control histories obtained using output and state
constrained adaptive control.

SC Control

——=d|]
dy
-—=d,

OC Control

Time (sec)

Fig. 4. Uncertainty learning history obtained using output
and state constrained adaptive control.

imposed constraints. Moreover, the desired reference signal
tracking is ensured by both controllers, which is shown
in Theorem 3. Additionally, it can be observed that the
transients are negligible during uncertainty learning. This
happens due to the constraint on the states of the learning
error dynamics in (7). The control history are presented
in Fig 3, where all profiles are smooth and continuous.
The uncertainty learning trajectories are shown in Fig 4,
which shows that the unknown model uncertainties are
approximated well using neural network.

5. CONCLUSION

A robust adaptive state-constrained control technique has
been proposed in this paper for practically relevant Euler-
Lagrange systems. The control technique has been for-
mulated using an asymptotically stable nonlinear error
dynamics, which enforces the user-defined constraints on
the system states. A neural network based adaptive law
has been used for the estimation of system modeling uncer-
tainties. The stability of the closed-loop system has been
shown through the Lyapunov stability theory. It has been
pointed out that the proposed controller can overcome
several limitations of the existing BLF based backstepping
control designs and leads to an easily implementable con-
trol solution. The effectiveness of the control design has
been demonstrated through extensive simulations. This
work can be further upgraded by considering unstructured
model uncertainties.

REFERENCES

Arabi, E., Yucelen, T., Gruenwald, B.C., Fravolini, M.,
Balakrishnan, S., and Nguyen, N.T. (2019). A neuroad-
aptive architecture for model reference control of uncer-
tain dynamical systems with performance guarantees.
Systems & Control Letters, 125, 37 — 44.

Bechlioulis, C.P. and Rovithakis, G.A. (2008). Robust
adaptive control of feedback linearizable MIMO nonlin-
ear systems with prescribed performance. IEEE Trans-
actions on Automatic Control, 53(9), 2090-2099.

He, W., Chen, Y., and Yin, Z. (2016). Adaptive neural
network control of an uncertain robot with full-state
constraints. IEEE transactions on cybernetics, 46(3),
620-629. doi:10.1109/TCYB.2015.2411285.

He, W. and Dong, Y. (2018). Adaptive fuzzy neural
network control for a constrained robot using impedance
learning. IEFEFE transactions on neural networks and
learning systems, 29(4), 1174-1186.

Li, D.P. and Li, D.J. (2017). Adaptive neural tracking
control for an uncertain state constrained robotic ma-
nipulator with unknown time-varying delays. IEEE
Transactions on Systems, Man, and Cybernetics: Sys-
tems, (99), 1-10. doi:10.1109/TSMC.2017.2703921.

Liu, X., Wang, H., Gao, C., and Chen, M. (2017). Adap-
tive fuzzy funnel control for a class of strict feedback
nonlinear systems. Neurocomputing, 241, 71 — 80.

Padhi, R., Unnikrishnan, N., and Balakrishnan, S. (2007).
Model-following neuro-adaptive control design for non-
square, non-affine nonlinear systems. IET Control The-
ory & Applications, 1(6), 1650-1661.

Sachan, K. and Padhi, R. (2018). Barrier Lyapunov
function based output-constrained control of nonlinear
Euler-Lagrange systems. In 15th International Con-
ference on Control, Automation, Robotics and Vision
(ICARCYV), 686-691.

Sachan, K. and Padhi, R. (2019). Output-Constrained Ro-
bust Adaptive Control for Uncertain Nonlinear MIMO
Systems with Unknown Control Directions. IEFE Con-
trol Systems Letters, 3(4), 823-828.

Sun, W., Su, S., Xia, J., and Nguyen, V. (2018). Adaptive
fuzzy tracking control of flexible-joint robots with full-
state constraints. IEEFE Transactions on Systems, Man,
and Cybernetics: Systems, 1-9.

Tee, K.P., Ge, S.S., Yan, R., and Li, H. (2012). Adaptive
control for robot manipulators under ellipsoidal task
space constraints. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 1167-1172.

Wang, W., Wang, D., Peng, Z., and Li, T. (2016). Pre-
scribed performance consensus of uncertain nonlinear
strict-feedback systems with unknown control direc-
tions. IEEE Transactions on Systems, Man, and Cy-
bernetics: Systems, 46(9), 1279-1286.

Zhang, S., Dong, Y., Ouyang, Y., Yin, Z., and Peng, K.
(2018). Adaptive neural control for robotic manipula-
tors with output constraints and uncertainties. IFEFE
transactions on neural networks and learning systems,
(99), 1-11. doi:10.1109/tnnls.2018.2803827.

Zhao, K., Song, Y., Ma, T., and He, L. (2018). Prescribed
performance control of uncertain Euler-Lagrange sys-
tems subject to full-state constraints. IEEFE transactions
on neural networks and learning systems, 29(8), 3478—
3489.

5597



