
Consensus based synchronization of clocks to
diminish the effect of clock drifts in

microgrids

Miguel Parada Contzen ∗

∗ Electric and Electronics Engineering Department, Universidad del
Bío-Bío, Chile (e-mail: mparada@ubiobio.cl).

Abstract: Inverter based microgrids implemented with more than one Grid Forming source
can suffer of, so called, clock drifts when inaccurate time measurement is present. Considering
that the main cause of this problem is the, slightly, different value of the time register at each
clock, the synchronization approach seems like a natural choice even when additional hardware
for the implementation of the sources might be required. We explore several alternatives for
improving synchronization, understood as the clocks sharing the same value for their respective
time register. This leads to propose a consensus based algorithm for synchronization with
relatively low communication and computation requirements. The analysis is complemented
with simulation examples to show the main characteristic of the different algorithms.

Keywords: Clock synchronization, Clock drifts, Synchronization, Micro-grids, Consensus

1. INTRODUCTION

For the control of microgrids, typically a three level hierar-
chy is proposed e.g. Bidram and Davoudi (2012); Guerrero
et al. (2013); Palizban and Kauhaniemi (2015). At the
secondary level, global control objectives are studied and
the proposed solutions relay greatly on the distributed im-
plementation of the Grid Forming (Rocabert et al. (2012))
power sources at the primary level. However, it has been
reported that the differences between the speeds at which
the local clocks are ticking impacts on the performance of
the entire system, for example (Zambroni de Souza and
Castilla, 2019, Ch. 6.6.3) or Kolluri et al. (2017); Castilla
et al. (2018).
In this scenario, some publication propose secondary con-
trollers focusing on diminishing the effect of the so called
clock drifts on the control objectives. For example, in
Schiffer et al. (2015, 2016) is observed, and experimentally
validated, that the traditional droop controllers used to
achieve active power sharing are robust to clock drifts.
More recently, Kolluri et al. (2018); Martí et al. (2018);
Castilla et al. (2019) also use secondary control mecha-
nisms to overcome the impact of clock drifts.
Other references address the issue through time synchro-
nization protocols based on, for example, Global Posi-
tioning System (GPS) signals Golsorkhi et al. (2017);
Youssef et al. (2018) or Network Time Protocol (NTP)
Lu et al. (2017). Accepting that accurate time measure-
ment requires specialized hardware, particularly a dedi-
cated additional processor which would probably increase
the implementation costs, the strategy to synchronize the
clocks of Grid Forming sources can be further exploited.
The history of time synchronization is lengthly, see for
example Gersho and Karafin (1966). The application of
leader-follower ideas for synchronization in wireless sensors

networks (WSN), a very similar problem to that of inverter
based microgrids, is well documented. A good summary
of technologies can be found in Maróti et al. (2004).
Furthermore, consensus based protocols for this kind of
applications and other wireless based hardware are also
available in Rentel and Kunz (2005, 2008); Maggs et al.
(2012). Similarly, the papers Schenato and Gamba (2007);
Schenato and Florentin (2009) propose a distributed con-
sensus synchronization protocol in wireless sensor network
that relates greatly to the cases studied here.
In this paper we explore different strategies in order to im-
prove the synchronization of distributed clocks, to advance
towards algorithms that can be applied to improve the
performance of microgrids based on grid forming sources.
In the following Section we introduce formally the problem
of time synchronization in distributed clocks. Section 3
explains how clocks can be independently calibrated to
improve their performance. This idea is then exploited
in Section 4 to define a dynamical calibration protocol
based on external signals as would be, for example, a GPS
synchronization pulse. The following Section modifies this
algorithm in order to synchronize the clocks not to an ex-
ternal signal, but with a "leader" clock within the network.
Finally, this idea is generalized to propose a consensus-
like synchronization algorithm that does not need external
signals, is robust against communication failures, and can
be distributively implemented.

2. DIGITAL CLOCKS IMPLEMENTATION -
PROBLEM STATEMENT

We are interested in a set of N independent proces-
sors with different clock implementations in a set V =
{1, 2, . . . N}. Each digital clock is based on an interrup-
tion triggered operative systems (OS) and any integrated
circuit with the ability of interrupting the main processor

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 13163



unit at every clock tick. For simplicity we assume that all
the clocks in V work at the same nominal frequency f > 0,
typically in [MHz], with a period T = 1/f in [µs]. This
describes a discrete time process, that we assume occurs on
a regular basis over a real or reference time measurement
that we will use to compare all other clocks to.
In the i-th processor, ideally the ki-th tick would be
followed T time units later by the (ki+1)-th tick. However,
because of hardware limitations or other external causes,
this is not precisely the case. Indeed the interval between
ticks can be described by approximately the nominal
period, but considering an error εi ∈ R such that |εi| � 1.
This parameter depends on several factors and we assume
that its exact value cannot be found. In this way, (1+εi)T
time units pass before the next tick, even though the clock
only acknowledge T time units. This problem becomes
important as different clocks may be characterized by
different εi 6= εj , and therefore the time measurement
carried out by each clock differs, not only, from real or
reference time, but also from the measurement of other
neighbor clocks.
The physical ticks of the i-th clock can be denoted by a
discrete variable ki ∈ N0. If the register of time is recorded
in a variable τi(ki) ≥ 0, we can write for every i ∈ V a
software realization of the clock as

τi(ki) = τi(ki − 1) + T . (1)
Real or reference time observed at each tick is denoted by

t(ki) = t(ki − 1) + (1 + εi)T . (2)
Note that τi(ki) is a discrete time variable that takes a new
value at each tick and remain constant in between ticks.
Variable t(ki), on the contrary, is a continuous variable
that is observed at each tick, but its independent of them.
From here, because (1) and (2) are algebraic progressions,
it is easy to verify that,

τi(ki) = Tki + τi,0 and t(ki) = (1 + εi)Tki + ti,0.
The free term τi,0 = τi(0) corresponds to the initial
value of the measured time register. We can safely assume
that this term is zero. On the other hand, ti,0 = t(0)
corresponds to the instant in which the i-th clock starts
running in the real time frame. If it is positive, then the
measurement process starts after real time.
Solving the second equation for ki and replacing in the first
one, we obtain a linear relationship between measured time
τi(ki) and sampled real time t(ki):

τi(ki) = 1
(1 + εi)

t(ki) + τ̂i,0 (3)

where τ̂i,0 := τi,0 − 1
1+εi

ti,0 is an unknown offset and
mi := 1/(1 + εi) the clock’s skew. In the ideal case, when
εi = 0, the skew of (3) is one and the offset depends on
the initial value of the clock and the instant in which the
measurement process starts. Note that

mi = 1 + 1
1 + εi

− 1 = 1 + −εi
1 + εi

≈ 1.

Therefore the quantity ∆mi := mi − 1 = −εi/(1 + εi)
describes the skew deviation of the corresponding clock
with respect to the ideal value. If ∆mi > 0, then the i-th
measurement is faster than real time.

Example 1. Consider N = 10 clocks working at a nomi-
nal frequency of f = 1.7[MHz]. For simulations purposes
we assume that the parameters of these clocks are exactly
known and they are such that εi ∈ [−0.1778, 0.2222]. For
the first 50[µs] since the reference time started, Figure 1
a) shows the evolution of the measured time by each clock.
Note that the deviation of the measurements is evident,
although the initial value of the clocks was relatively close
to zero. �

3. STATIC A PRIORI CALIBRATION

As with any measurement instrument, a calibration pro-
cess can be carried out on the clocks to obtain more precise
values. If we have the ability to compare the measured
values with respect to a reference instrument, we can
estimate the value of the clocks’ skews in order to have
a more accurate update process.
Indeed consider that we can measure the skews of the
different clocks with respect to the reference and charac-
terize them through scalars ε̂i ≈ εi. Instead of using the
algorithm described in equation (1), we can update the
register of time through the following software realization:

τi(ki) = τi(ki − 1) + (1 + ε̂i)T . (4)
From here, we have that τi(ki) = (1 + ε̂i)Tki + τi,0. As the
physical clock is not modified, only its software realization,
the ticks of the clock occur at the same rate. Therefore,
expression (2) for real time sampled at every tick remains
the same. Combining both we obtain,

τi(ki) = 1 + ε̂i
1 + εi

t(ki) + (1 + ε̂i)τ̂i,0.

The skew of this clock with respect to real time differs
from the uncontrolled case through the factor 1 + ε̂i:

m̂i := 1 + ε̂i
1 + εi

= 1 + ε̂i − εi
1 + εi

= 1 + ∆m̂i.

If |ε̂i − εi|/|εi| < 1, then we have that the skew deviation
|∆m̂i| = |ε̂i − εi|/|1 + εi| < |εi|/|1 + εi| = |∆mi| and
this realization of the clock is more accurate with respect
to real time than the uncontrolled case in the previous
section.
Of course, as quantity εi is unknown, we cannot verify this
relationship explicitly. However, when εi = ε̂i + δi, where
δi ≈ 0 is a measurement error given by the resolution of
the reference instrument, we have that

lim
δi→0

|ε̂i − εi|
|εi|

= lim
δi→0

|δi|
|ε̂i + δi|

= 0 < 1.

Implying that a good approximation ε̂i ≈ εi will indeed
result on a more precise clock. Note however, that the
effect of the initial conditions of the clocks are not taking
into account by this procedure, resulting in systematic
measurements errors with respect to real time.

Example 2. For the same clocks as in the Example 1,
an estimation of the ticks period error is considered. A
simulation in the exact same initial conditions is shown
in Fig. 1 b). Note that the skew of the different clocks is
clearly closer to real time, although they are different as
longer running time would show. The different values of
the clocks are then mainly explained by their different ini-
tial conditions, which imply different offsets of the virtual
clocks with respect to reference time. �

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13164



real time [µ s]
0 10 20 30 40 50

m
ae

su
re

d 
tim

e 
τ

i [
µ

 s
]

0

10

20

30

40

50

real time [µ s]
0 10 20 30 40 50

real time
1st clock
2nd clock
3rd clock
4th clock
5th clock
6th clock
7th clock
8th clock
9th clock
10th clock

a) b)

Fig. 1. a) Uncontrolled digital clocks in Example 1. b) Calibrated digital clocks in Example 2.

4. EXTERNAL CLOCK DYNAMIC CALIBRATION

Other strategy to synchronize different clocks is to rely on
an external signal that periodically sends a reference time
update to the different clocks. Synchronization though
Global Positioning System (GPS) is perhaps the easiest
possibility, e.g. Golsorkhi et al. (2017); Youssef et al.
(2018).
In this case, we assume that the external calibration signal
τg ∈ R+ might be slightly behind real time, but it has the
same skew. That is,

τg = t−∆τg,
with ∆τg > 0. Every Tg real time units, an external
signal might be available for the clock at its li-th tick
with a probability Pi{τ̂g(li)} > 0. For example, a GPS
synchronization signal occurs every 30[s], the time delay
is around ∆τg ≈ 100[ns], and the probability of catch-
ing the synchronization signal depends on the hardware
implementation of the GPS communication device.
We denote as τ̂g(li) the value of the external signal
available at the synchronization tick li ∈ N, which is not
necessarily exactly the same as the external signal sampled
at that tick τg(li) due to quantization errors. Indeed, the
value τ̂g(li) 6= τg(li) was received at some point between
the tick li − 1 and tick li and therefore it differs from the
value of the external signal in a maximum of one physical
clock period of (1 + εi)T time units. We can then write
that τg(li) = τ̂g(li) + δg(li), where the quantization error
δg(li) is such that 0 ≤ δg(li) ≤ (1 + εi)T .
At every instant in which a new synchronization signal
value was received, the clock can reset its time register to
the synchronization value reported by the external signal.
That is, for every tick li ∈ N such that a new τ̂g(li) is
available, the clock resets to τi(li) = τ̂g(li), correcting the
measurement to obtain a more accurate value at least at
these synchronization ticks.
Furthermore, one can also calculate the skew of the clock
with respect to the previous received synchronization sig-
nal and use this calculation to obtain a more precise mea-
surement. Assume that the synchronization signal value is
available at li ∈ N and that the previous synchronization
value was available at hi < li. Note that τ̂g(li)− τ̂g(hi) is

not necessarily equal to the external signal actualization
period Tg because of the quantization errors and because
some actualizations might be skipped as a result of the
stochastic nature of the receiving process, which is de-
scribed by the probability Pi{τ̂g(li)} > 0.
For every ki ∈ N such that hi < ki < li, when no
new synchronization signal is available, the clock can be
updated by

τi(ki) = τi(ki − 1) + (1 + gi(hi))T , (5)
where gi(hi) ≈ εi is an estimation of the physical clock’s
deviation. Solving (5) we obtain that τi(ki) = (1 +
gi(hi))T (ki − hi) + τ̂g(hi). Similarly, real time sampled at
the ticks evolves as t(ki) = (1 + εi)T (ki − hi) + t(hi).
Note that because of the update policy described above,
the value of the clock at the synchronization tick li is the
one reported by the synchronization signal, which is not
necessarily the same as the value predicted by (5). That
is, τi(li) = τ̂g(li) 6= τ̂i(li) := (1 + gi(hi))T (li−hi) + τ̂g(hi).
With this definitions we can write that,
τ̂i(li)− τ̂g(hi) = (1 + gi(hi))T (li − hi)

= (1 + gi(hi))
t(li)− t(hi)

1 + εi

= 1 + gi(hi)
1 + εi

(τg(li)− τg(hi))

= 1 + gi(hi)
1 + εi

·

· (τ̂g(li)− τ̂g(hi) + δg(li)− δg(hi))
then, if δg(li)− δg(hi) ≈ 0, we can obtain

εi ≈ (1 + gi(hi))
τ̂i(li)− τ̂g(hi)
τ̂g(li)− τ̂g(hi)

− 1.

If the value gi(li) is updated to match the previous
expression, a better estimation of the physical clock’s
deviation can be obtained. In this way, the following
algorithm can be defined ∀i ∈ V at every tick ki ∈ N:
i) Update the time register:

τi(ki) = τi(ki − 1) + (1 + gi(ki))T ;
ii) If a new external signal, τ̂g(ki), was

received:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13165



a) Update virtual’s clock skew:

gi(ki) = (1 + gi(ki − 1)) τ̂g(ki)− τold(ki)
τi(ki)− τold(ki)

− 1;

b) Reset time register:
τi(ki) = τ̂g(ki);

c) Overwrite last synchronization value:
τold(ki) = τ̂g(ki);

Because it is not necessary that all clocks receive the
external signal at every moment, this algorithm can be
asynchronously and distributively implemented at each
clock without need of communication between the clocks.

Example 3. Consider the same clocks as in Example 1.
With an external signal characterized by a synchronization
period of Tg = 5[µs] time units and a relatively high delay
with respect to real time of ∆τg = 4[µs] time units, with
relatively low catching probabilities of Pi{τ̂g(li)} = 0.50,
∀i ∈ V. These values do not characterize any particular
technology, but are chosen arbitrarily to accentuate their
graphical effect on the behavior of the measurements. With
gi(0) = ε̂i and the same initial conditions as before, the
measurements might produce the signals drawn in Fig. 2
a) depending on the stochastic process that characterizes
the external signal catching process. After an initial period
of adjusting, the measurements converge to the external
signal time, even though it is evident that some synchro-
nization signals are missed by some of the clocks. �

5. LEADER-FOLLOWER DYNAMIC CALIBRATION

In some occasions, it is not desire that the synchronization
mechanism relays on external information. If the different
clocks have the ability to communicate the value of their
time register, a leader-follower based algorithm can be
thought in order to achieve synchronization. Several tech-
nologies, e.g. Network Time Protocol (NTP), Timing-sync
Protocol for Sensor Networks (TPSN), Reference Broad-
cast Synchronization (RBS), Flooding Tie Sync Protocol
(FTSP) Maróti et al. (2004), etc, use similar reference-
follower ideas. The NTP synchronizes each agent with a
time server through statistical analysis of round-trip time.
The RBS, TPSN, and FTSP are adapted from NTP to
wireless sensors networks (WSN) with increasingly better
capabilities.
In our case, we consider a very simple case based on
the external synchronization idea. For this algorithm, we
choose one of the clocks in V to be the "leader" who would
serve as reference for every other clock in the network.
That is, we consider a root clock r ∈ V, that runs at
its particular speed with respect to real time, and who
every Tr time units broadcasts its register value, τr(kr),
to the other clocks which will receive this information
with a probability Pi{τ̂r(ki)}. These clocks reset their own
register to the received value τ̂r(ki) and adjust their own
skews as if the root clock was the external signal in the
previous section.
The suggested algorithm can be written as follow ∀i ∈ V
at every tick ki ∈ N:
i) Update the time register:

τi(ki) = τi(ki − 1) + (1 + gi(ki))T ;

ii) If the clock is not the root, i 6= r:
a) If a new external signal, τ̂r(ki), was

received:
1) Update virtual’s clock skew:

gi(ki) = gnew := (1+gi(ki−1)) τ̂r(ki)− τold(ki)
τi(ki)− τold(ki)

−1;

2) Overwrite time register:
τi(ki) = τ̂r(ki);

3) Overwrite last synchronization value:
τold(ki) = τ̂r(ki);

iii) Else, if the clock is the root, i = r:
a) If ticks counter is larger than accepted

value, ci ≥ ∆kr :
1) Send register value to others.
2) Reset counter:

ci = 0;
b) Else, update counter:

ci = ci + 1;

Example 4. With the same clocks as in Example 1, we
choose the less precise clock as the root. The current root
register value τr(kr) will be sent every ∆kr = 15 ticks,
and the probability that the rest of the clocks catch this
information will be assumed constant and identical as that
in the Example 3, i.e. Pi{τ̂r(ki)} = 0.50. Fig. 2 b) shows
one possible trajectory of the time registers under identical
initial conditions as before. Note that after an initial period
of adjustment, the clocks tend to synchronize around the
value of the root clock, even though in the periods between
the synchronization signals, the clocks diverge slightly from
another. Observe further that at certain instances, the
registers decrease their value to adjust with the upcoming
data from the root. This gives the impression that during
these ticks time went backwards. �

It is easy to think several simple modifications of the pre-
vious algorithm. For example, instead of defining a unique
root node, what could be described through a directed
star tree-graph Tr = (V, Er), one could define clusters of
clocks that try to synchronize with a local root, while
all these roots try to synchronize with another master
clock, defining a synchronization hierarchy as in TPSN.
In fact, any connected directed tree graph between the N
nodes can be used to describe a different synchronization
protocol with distinct dynamic behaviors. Other possibili-
ties include switching between different graphs in a round
robin fashion or stochastically.
Furthermore, some minor algorithmic modifications can
also be considered to avoid undesired behaviors. Particu-
larly, instead of updating the relative error approximation
gi(ki) only with the last available information, one could
define a weight pi ∈ [0, 1], such that

gi(ki) = pi · gi(ki − 1) + (1− pi) · gnew. (6)
In this way, the current value of the error approximation
also depends on the past values, what would avoid abrupt
changes between gi(ki) and gi(ki − 1) that might result
of communication problems, as quantization errors and
delays, or resolution issues. High and low saturation values
of the change rate of the error approximation can also be
considered for the same purposes.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13166



real time [µ s]
0 10 20 30 40 50

m
ae

su
re

d 
tim

e 
τ

i [
µ

 s
]

0

10

20

30

40

50

real time [µ s]
0 10 20 30 40 50

real time [µ s]
0 10 20 30 40 50

a) b) c)

Fig. 2. a) Externally and dynamically calibrated digital clocks in Example 3. b) Leader-follower calibrated digital clocks
in Example 4. c) Consensus calibrated digital clocks in Example 5.

6. CONSENSUS BASED DYNAMIC CALIBRATION

The leader-follower algorithm described in the previous
section can be further generalized to define a consensus
based synchronization algorithm. Consensus algorithms
are well studied and are characterized by an averaging
mechanism that weights the information of several nodes
in order to report a common time. Some examples are
ATS Schenato and Gamba (2007); Schenato and Florentin
(2009), CCS Maggs et al. (2012), or CSMNS Rentel and
Kunz (2005, 2008).
Consider that, besides its own register τii(ki), each pro-
cessor i ∈ V implements also registers τij(ki) that are
synchronized with the information that comes from the
j-th clock, with j ∈ V\{i}. To synchronize these registers,
we can use the same algorithm described in the previous
section considering that all clocks are simultaneously the
root of a different tree, and that all synchronization pro-
tocols are running in parallel. That is, the tree whose root
is the i-th node serves its own register τii(ki) = τii(ki −
1)+(1+gii(ki))T as the synchronization signal for all reg-
isters τji(kj). The probability that the i-th clock catches
the signal broadcast by the j-th agent will be denoted
Pij{τ̂jj(ki)} ≥ 0. In this way, every clock has access to a
proxy of the value of each other clock, and can report time
as an average of all these values.
That is, each clock i ∈ V can define an average time
indicator in the following way:

τi(ki) =
∑
j∈V

wijτij(ki),

where
∑
j∈V wij = 1 and wij ∈ [0, 1] are scalars that

weight the influence of each clock on the acknowledged
time register τi(ki).
Furthermore, as can be seen in Example 4, because gij are
only approximations of the relative error between clocks,
the synchronization of the registers with a root clock can
imply that, at certain instants, the corresponding register
is updated with a value that is smaller than the previous
value. i.e. τij(ki) = τ̂jj(ki) < τij(ki − 1). Exception rules
can be considered to avoid that this is reflected in the
average register τi(ki).

The algorithmic modifications described in the previous
section can also be considered. In particular, for i 6= j,
we can impose that the change of the error estimation is
bounded. That is,

|gij(ki)− gij(ki − 1)| ≤ δij .
Defining weights pij ∈ [0, 1] we can also update the value
of the error estimation considering the information of the
past in a similar way as in equation (6).
With this, the following algorithm can be proposed ∀i ∈ V
at every tick ki ∈ N:
i) For each j ∈ V:

a) Update register:
τij(ki) = τij(ki − 1) + (1 + gij(ki))T ;

b) If i == j:
1) If ticks counter is larger than accept-

ed value, ci ≥ ∆ki :
• Send register value to others.
• Reset counter:

ci = 0;
2) Else, update counter:

ci = ci + 1;
c) If i 6= j and if a new external signal,

τ̂jj(ki), was received:
1) Update virtual’s clock skew:

gnew = (1 + gij(ki− 1)) τ̂jj(ki)− τij,old(ki)
τij(ki)− τij,old(ki)

− 1;

gij(ki) = pij · gij(ki − 1) + (1− pij) · gnew;
2) Saturate virtual’s clock skew:

gij(ki) = min {gij(ki − 1) + δij , gij(ki)} ;
gij(ki) = max {gij(ki − 1)− δij , gij(ki)} ;

3) Overwrite time register:
τij(ki) = τ̂jj(ki);

4) Overwrite last synchronization value:
τij,old(ki) = τij(ki);

ii) Update average register:

τi(ki) = max

τi(ki − 1),
∑
j∈V

wijτij(ki)

 ;

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13167



The weights wij ∈ [0, 1] and pij ∈ [0, 1] can be chosen by
the users and therefore it is possible to tune this algorithm
considering particular implementation issues. For example,
to weight less the proxies of clocks that are known to
be less accurate or where communication problems make
the received data unreliable. Furthermore, there are also
several possibilities to modify the algorithm to consider,
for example, clusters of clocks that synchronize with each
other or external synchronization signals available at some
or all nodes.

Example 5. Consider again the same clocks as in the
previous examples. Each clock will broadcast its synchro-
nization signal every ∆ki = 15 ticks. For every pair
(i, j) ∈ V × V, the catching probabilities will be considered
equal Pij{τ̂jj(ki)} = 0.50, which is the same as in Example
4. The tune parameters of the algorithm will be equal for
every pair with wij = 1/N and pij = 0.1. With this,
the clocks can behave like in Fig. 2 c) for identical initial
conditions as before. Note that the skews are closer to one
than in Example 4. �

7. CONCLUSION

In this paper we have developed a consensus based al-
gorithm thought to synchronize different hardware clocks
in microgrids. We begun from the premise that addi-
tional time-measuring hardware is considered for the im-
plementation of Grid Forming power sources, and that this
hardware is capable of communicate with other clocks in
order share time stamps information and asynchronously
update their time measurement. The resulting protocol is
then robust to information loss and communication delays.
Future work includes the mathematical validation of this
statements and implementation in standard hardware.

REFERENCES
Bidram, A. and Davoudi, A. (2012). Hierarchical structure

of microgrids control system. IEEE Transactions on
Smart Grid, 3, 1963– 1976.

Castilla, M., Camacho, A., Martí, P., Velasco, M., and
Moradi Ghahderijani, M. (2018). Impact of clock drifts
on communication-free secondary control schemes for
inverter-based islanded microgrids. IEEE Transactions
on Industrial Electronics, 65, 4739– 4749.

Castilla, M., Camacho, A., Miret, J., Velasco, M., and
Martí, P. (2019). Local secondary control for inverter-
based islanded microgrids with accurate active power
sharing under high load conditions. IEEE Transactions
on Industrial Electronics, 66, 2529– 2539.

Gersho, A. and Karafin, J. (1966). Mutual synchronization
of geographically separated oscillators. The Bell System
Technical Journal, 45, 1689– 1704.

Golsorkhi, M., Lu, D., and Guerrero Zapata, J.M. (2017).
A GPS-based decentralized control method for islanded
microgrids. IEEE Transactions on power electronics,
32, 1615– 1625.

Guerrero, J.M., Chandorkar, M., Lee, T.L., and Loh, P.C.
(2013). Advanced control architectures for intelligent
microgrids, part I. IEEE Transactions on Industrial
Electronics, 60, 1254–1262.

Kolluri, R.R., Mareels, I., Alpcan, T., Brazil, M., de Hoog,
J., and Thomas, D.A. (2017). Power sharing in angle

droop controlled microgrids. IEEE Transactions on
Power Systems.

Kolluri, R.R., Mareels, I., Teixeira, C., Tong, S., Alpcan,
T., Brazil, M., de Hoog, J., and Thomas, D.A. (2018).
Overcoming the impact of clock drifts on power sharing
for microgrids. In IEEE Power & Energy Society
General Meeting (PESGM).

Lu, H., Zhan, L., Liu, Y., and Gao, W. (2017). A
microgrid monitoring system over mobile platforms.
IEEE Transactions on Smart Grid, 8, 749– 758.

Maggs, M.K., O’Keefe, S.G., and Thiel, D.V. (2012). Con-
sensus clock synchronization for wireless sensor net-
works. IEEE Sensors Journal, 12, 2269– 2277.

Maróti, M., Kusy, B., Simon, G., and Lédczi, Á. (2004).
The flooding time synchronization protocol. In Confer-
ence: Proceedings of the 2nd International Conference
on Embedded Networked Sensor Systems, SenSys 2004.

Martí, P., Torres-Martínez, J., Rosero, C.X., Velasco, M.,
Miret, J., and Castilla, M. (2018). Analysis of the
effect of clock drifts on frequency regulation and power
sharing in inverter-based islanded microgrids. IEEE
Transactions on power electronics, 33, 10363– 10379.

Palizban, O. and Kauhaniemi, K. (2015). Hierarchical
control structure in microgrids with distributed gener-
ation: Island and grid-connected mode. Renewable and
Sustainable Energy Reviews, 44, 797– 813.

Rentel, C.H. and Kunz, T. (2005). A clock-sampling mu-
tual network time-synchronization algorithm for wire-
less ad hoc networks. In Wireless Communications and
Networking Conference, 638– 644.

Rentel, C.H. and Kunz, T. (2008). A mutual network
synchronization method for wireless ad hoc and sensor
networks. IEEE Transactions on Mobile Computing, 7,
633– 646.

Rocabert, J., Luna, Á., Blaabjerg, F., and Rodríguez, P.
(2012). Control of power converters in AC microgrids.
IEEE Transactions on Power Electronics, 27.

Schenato, L. and Florentin, F. (2009). Average TimeSync:
a consensus-based protocol for time synchronization
in wireless sensor networks. In Proceedings of the
First IFAC Workshop on Estimation and Control of
Networked Systems, 30– 35.

Schenato, L. and Gamba, G. (2007). A distributed consen-
sus protocol for clock synchronization in wireless sensor
network. In Proceedings of the 46 th IEEE Conference
on Decision and Control, 2289– 2294.

Schiffer, J., Hans, C.A., Kral, T., Ortega, R., and Raisch,
J. (2016). Modelling, analysis and experimental valida-
tion of clock drift effects in low-inertial power systems.
IEEE Transactions on Industrial Electronics, PP.

Schiffer, J., Ortega, R., Hans, C.A., and Raisch, J. (2015).
Droop-controlled inverter-based microgrids are robust
to clock drifts. In American Control Conference, 2341–
2346.

Youssef, T.A., Salem, A., Elsied, M., Mabwe, A.M., Abido,
M.A.Y., and Mohammed, O.A. (2018). GPS synchro-
nization of smart distributed converters for microgrid
applications. Energies, 11, 695.

Zambroni de Souza, A.C. and Castilla, M. (eds.) (2019).
Microgrids. Design and Implementation. Springer Na-
ture Switzerland AG, 1 edition.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13168


