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Abstract: In this work the ore particle size distribution is estimated from an input image of the
ore. The normalized weight of ore in each of 10 size classes is reported with good accuracy. A
deep convolutional neural network, making use of the VGG16 architecture, is deployed for this
task. The goal of using this method is to achieve accurate results without the need for rigorous
parameter selection, as is needed with traditional computer vision approaches to this problem.
The feed ore particle size distribution has an impact on the performance and control of minerals
processing operations. When the ore size distribution undergoes significant changes, operational
intervention is usually required (either by the operator or by an automatic controller).

Keywords: Deep learning, convolutional neural network, image analysis, minerals processing,
neural regression.

1. INTRODUCTION

Silva and Casali (2015) argues that comminution (espe-
cially milling) is the most important minerals processing
operation, partly because of its effect on the downstream
processes, and further that the feed size distribution is one
of the most important factors affecting semi-autogenous
grinding mill performance. Tessier et al. (2007) also notes
that feed size variations strongly affect mill performance,
along with ore composition and grindability.

Particle size analysis is a crucial aspect of minerals pro-
cessing. Product sizes are used to determine the optimal
size of the feed for maximum efficiency, as well as to
determine at which feed sizes losses occur in the plant,
such that they may be reduced (Wills and Finch, 2015).
Important changes in plant operation and control are made
based on the results of the particle size analysis, either by
an operator or automatic controller (e.g. Coetzee et al.
(2010)).

The ore feed size may in some cases be inferred by applying
parameter estimation to operational data (Olivier et al.,
2012), but a more direct approach is to monitor images of
the feed and inferring the size distribution using computer
vision.

Methods exist that calculate the size distribution from
input images, see e.g. Zhang et al. (2013) and Chen
et al. (2018), or Maerz et al. (1996) which describes
the commercially available WipFrag system. Wills and
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Finch (2015) notes that such systems generally segments
the input images, carries out some corrections, and then
calculates the size distribution. One common correction
employed is the Rosin-Rammler equation to correct the
cumulative percentage of particles passing a specific size,
as these size distributions are generally non-uniform (Ko
and Shang, 2011).

Such nonlinear corrections should be used with caution
(Wills and Finch, 2015), which is in part why methods
like those of Ko and Shang (2011) and Hamzeloo et al.
(2014) have been proposed where image analysis is used in
conjunction with a neural network. Traditional computer
vision techniques are used for feature extraction, but
a neural network is used to estimate the particle size
distribution. Both methods used traditional “shallow”
networks with only fully connected layers.

An often more accurate approach, which eliminates the
need for explicit feature extraction, is deep convolutional
neural networks (CNNs) (Schmidhuber, 2015). These net-
works are very efficient at extracting features for clas-
sification and regression tasks, to the point where they
can achieve superior performance to the combination of
traditional feature extraction and fully connected neural
networks.

Deep CNNs have only recently been applied in the process
industries. Olivier et al. (2019) shows how the ore feed size
category can be classified, Fu and Aldrich (2019) shows
how deep CNNs can be used to characterize flotation froth,
and Wang and Liu (2018) shows how a stacked auto-
encoder deep neural network is used for soft sensing of air
pre-heater rotor deformation. To the authors’ knowledge,
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using a CNN for bulk solid size distribution estimation
from a conveyor belt is novel.

In this work, a deep CNN is used to infer the feed size
distribution from an ore image. The aim of using a CNN is
to achieve superior accuracy without the need for explicit
parameter selection for feature extraction, as is required
when using traditional computer vision techniques.

2. CONVOLUTIONAL NEURAL NETWORKS

The first description of a true convolutional network seems
to be that of Fukushima (1980). The structures and opera-
tions presently associated with CNNs are those introduced
by LeCun in the late 1980s and early 1990s (see e.g. LeCun
and Bengio (1995)). A recent overview of CNNs, including
the common layers and how they work, is provided by
LeCun et al. (2015). An overview of the development of
deep learning in neural networks is given by Schmidhuber
(2015).

Fig. 1 shows a simple CNN layout to illustrate common
network elements. As the name implies, convolutional lay-
ers apply a convolution operation to the input image or fea-
ture map. This convolution is the core concept that drives
the efficacy of CNNs and overcomes the impracticality of
using only fully connected feedforward neural networks for
image analysis. It reduces the number of free parameters
that need to be trained, and also maintains some spacial
information of neighbouring pixels. The output of the
convolutional layer is a feature map of numerical values.

Pooling layers combine the outputs of a cluster of neurons
in one layer into a single neuron in the next layer. Max
pooling, for example, takes the maximum value from a
cluster of neurons.

A feature map can then be flattened (converting it into a
one dimensional array) such that the feature values can be
passed to a fully connected layer. Fully connected layers
are the same in principle to the layers in traditional multi-
layer perceptron neural networks.

Dropout layers may set the input from a fraction of
neurons to zero, which in essence means that the layer
is not fully connected. Other layer types may be used in
CNNs, but those shown in Fig. 1 are the most pertinent
to the present work.

The first number of layers in a CNN are devoted to
feature extraction while the last layers are devoted to
decoding these features into the output space (albeit for
classification or regression).

Much research has gone into developing architectures for
functional deep CNNs. Formulating the correct sequence
of layers is not necessarily an easy task, which is why many
implementations, like those in Fu and Aldrich (2019),
use standard CNN architectures. Common architectures
include AlexNet, Inception, and ResNet. The solution
presented in this work makes use of the VGG16 network
architecture (Simonyan and Zisserman, 2014), as shown in
Fig. 2, specifically because it is more sensitive to the size
of objects in the image than some of the other options
mentioned.

2.1 Transfer learning

In order to accomplish appropriate feature extraction
before the fully connected network layers, CNNs can
become very large in size. More layers imply more network
parameters, and as the network becomes very deep there
can be millions of parameters that need to be defined
through training. The VGG16 implementation used here
has in the order of 28 million parameters. Such a large
number of parameters consequently means that a very
large number of training images is required to train the
network from scratch.

Training a network with an architecture like that of
VGG16 from scratch for each task would render the use
of deep CNNs impractical. A network that was trained
for a specific task can however be re-purposed for another
task through a process called transfer learning. Pan and
Yang (2010) notes that transfer learning often works across
different domains, feature spaces, and data distributions.

In deep CNNs the process of transfer learning often in-
volves loading a model pre-trained for one task, and then
re-training the final layers of this network using the train-
ing data available for the task at hand.

In this work, a VGG16 model trained on ImageNet is used,
and only the final fully connected layers are re-trained.
ImageNet (Deng et al., 2009) is a large database of labelled
images that is commonly used for training and testing of
image classification algorithms.

3. ESTIMATING ORE SIZE DISTRIBUTION

Minerals processing operations deal with a wide range of
feed sizes and distributions as run-of-mine ore is gener-
ally the input, which is by definition not pre-processed.
Operations therefore need to be robust enough to deal
with large feed disturbances while producing an output of
consistent quality. Having information about the feed size
distribution is important for consistent production. Given
this information, the appropriate operational adjustments
can be made. These adjustments are either made by the
operator or an appropriate automatic controller.

In this work, the VGG16 architecture as shown in Fig. 2
is used to infer the size fractions of ore in each of ten size
classes. The dimensions shown in Fig. 2 are for the input
images and subsequent network layers used in this work.

Note that the input is a color image (with three channels)
with dimensions of 400x225. This is a 16:9 format that
ensures the input image can be resized with a fixed aspect
ratio. Following the fully connected layers is a layer with
length ten which corresponds to the ten size classes.
This layer employs a linear activation function, which is
common for regression tasks.

3.1 Input data

Input images were taken from above using a vertically
mounted camera to produce images similar to those from a
typical on-belt system as shown in Wills and Finch (2015).

Images contain ore from one of the ten size classes, or
from one of nine mixed batches containing various size
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Fig. 1. Convolutional neural network layers.
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Fig. 2. VGG16 architecture (with specific dimensions used in this work).

classes; 781 images were captured in total. Table 1 shows
the number of images taken from each source and also the
normalized weight fractions per class. Fig. 3 shows one
example image from each class.

The potential problems with nonlinear transformations
like the Rosin-Rammler equation as highlighted by Wills
and Finch (2015) is partly why correction factors are
commonly applied to the equation in practice (see e.g.
Ko and Shang (2011)). This is because the ore does not
strictly originate from the distribution described by the
equation. It is therefore necessary that the size distribution
should be accurately inferred irrespective of the underlying
distribution from which the ore was taken. As such, some
of the mixed batches were purposefully prepared to have
seemingly arbitrary distributions that cannot accurately
be modelled by the Rosin-Rammler equation (or any of
the other common distribution functions used to model
ore sizes).

3.2 Data augmentation

Data augmentation is the process by which training data
are up-sampled to improve network accuracy. Data aug-
mentation increases the number of training samples, but
more importantly it helps with the generalization of image
features. In the present example, the network should not
be sensitive to a large rock in a specific region of the image,
it should indicate a large rock anywhere in the image.

Image augmentation may involve various image transfor-
mations. Here, augmentation is set up such that the input
image may be flipped horizontally, rotated by as much as
10 degrees, translated horizontally or vertically by up to
half of the width or height of the image, the color channels

1.7+ 2.36+ 3.3+ 4.75+ 6.7+

8+ 11.2+ 13.2+ 19+ 26.5+

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

Batch 6 Batch 7 Batch 8 Batch 9

Fig. 3. One example image from each size class and mixed
batch.

may be adjusted by up to 10 %, or any combination of
these.

Fig. 4 shows how a single input image has been augmented
to produce four images that may now be used for training.
These variations are created from the same input image,
which is somewhat difficult to confirm with the naked eye.
When the image is rotated or translated, the empty space
is filled by wrapping the image around the frame. This
wrapping does not introduce significant image artefacts
for translations, but might for rotations. This is why the
rotation range is limited to 10 degrees. Rotations are
however still important to ensure that the network does
not over-fit on any vertical or horizontal shadows.
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Table 1. Number of images and normalized weight per category by source.

Source Num images 1.7+ 2.36+ 3.3+ 4.75+ 6.7+ 8.0+ 11.2+ 13.2+ 19.0+ 26.5+

1.7+ 25 1.000 - - - - - - - - -
2.36+ 26 - 1.000 - - - - - - - -
3.3+ 25 - - 1.000 - - - - - - -
4.75+ 26 - - - 1.000 - - - - - -
6.7+ 26 - - - - 1.000 - - - - -
8.0+ 28 - - - - - 1.000 - - - -
11.2+ 26 - - - - - - 1.000 - - -
13.2+ 27 - - - - - - - 1.000 - -
19.0+ 25 - - - - - - - - 1.000 -
26.5+ 26 - - - - - - - - - 1.000
Batch 1 53 0.065 0.000 0.226 0.000 0.227 0.000 0.000 0.184 0.299 0.000
Batch 2 56 0.078 0.000 0.144 0.243 0.174 0.257 0.000 0.000 0.000 0.104
Batch 3 52 0.087 0.000 0.161 0.271 0.194 0.287 0.000 0.000 0.000 0.000
Batch 4 65 0.000 0.000 0.000 0.000 0.159 0.000 0.000 0.170 0.349 0.322
Batch 5 54 0.039 0.063 0.072 0.078 0.088 0.182 0.097 0.089 0.131 0.162
Batch 6 64 0.017 0.024 0.044 0.070 0.198 0.495 0.075 0.034 0.024 0.019
Batch 7 59 0.005 0.012 0.014 0.026 0.036 0.206 0.322 0.126 0.113 0.138
Batch 8 58 0.041 0.093 0.186 0.362 0.137 0.114 0.024 0.014 0.017 0.012
Batch 9 60 0.240 0.126 0.063 0.031 0.016 0.026 0.030 0.066 0.124 0.277

Fig. 4. Example of creating four augmented images from
one input image.

3.3 Dividing the source data

The source images are divided into training, validation,
and test sets.

The training set is used to train the CNN, and the
validation set is used to track the training progress. This
provides a good indication of the performance one may
obtain when the model is in operation and these images
are used to calculate the validation loss during training
(which is an important metric that shows if the network
is over-trained).

Hyper-parameter adjustments are partly made based on
the reported validation loss. This means that the vali-
dation data is implicitly used during training. For this
reason it is necessary to have a totally independent test
set that was not used in any form during the training and
re-training process.

When separating the data, 70 % is used for training (546
images), 15 % for validation (117 images), and 15 % for
testing (118 images). This is done in a stratified manner,
meaning that 70 % of the images from each source will
be selected for training and the fraction of images in the
training set per source will remain the same.

3.4 Training

The deep CNN is implemented using Keras with Tensor-
flow back-end. Training was conducted using Google Colab
on an Nvidia Tesla K80 GPU.

The loss function in use is in the form:

J = γ1
1

N

N∑
i=1

(ŷi − yi)2 +γ2

(
1−

N∑
i=1

ŷi

)2

+γ3

N∑
i=1

si (1)

where N is the number of size classes, yi is the true weight
fraction for size class i, ŷi is the prediction of the weight
fraction, γj with j ∈ [1, 3] and

∑3
j=1 γj = 1 is the relative

importance weights of the loss function terms, and si is a
slack variable in the form

si =


ŷ2i , if ŷi < 0

(ŷi − 1)2, if ŷi > 1

0, otherwise

. (2)

The first term in (1) is the mean squared error (MSE)
as is often used in training for regression problems. The
second term is a soft constraint that tries to force the
predictions to sum to 1. The third term tries to prevent
predictions below 0 and above 1 by penalizing such values.
This constrained loss function is not trivial to minimize.
As such, an adaptive approach is followed whereby the
relative importance weights γ2 and γ3 are set to zero for a
number of epochs before being given a non-zero value. This
means that the loss function only contains the MSE for a
number of epochs, and once a decent solution space has
been found the constraint terms are also included. With
η representing the epoch number, the relative importance
weights are set as:

γ =

{
[ 1, 0, 0 ] ∀ η ≤ 250

[0.7, 0.1, 0.2] ∀ η > 250
. (3)

Training is run for 500 epochs, with 32 batches per epoch,
and 64 samples per batch. This means that 32×64 = 2048
samples are used per epoch. A stochastic gradient descent
optimizer was used with an initial learning rate of 0.01
and Nesterov momentum. The training loss at the end of
each epoch, as well as the components that constitute the
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Fig. 5. Training loss values.
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Fig. 6. Validation loss values.
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Fig. 7. Training and validation R2.

loss, are shown in Fig. 5 and the validation loss values are
shown in Fig. 6.

It is visible from Fig. 5 and Fig. 6 that before epoch 250
the weighted loss is simply the MSE, which has decreased
significantly before this epoch. Once the relative weights
are adjusted, the deviation of the sum of the predictions
from 1 and the sum of slack variables, the second and
third terms respectively in (1), decrease notably. After 500
epochs the rate of decrease of the loss has reduced. Fig. 7
shows the mean R2 values achieved for the training and
validation sets. The R2 is not included in the loss function,
but is shown as a proxy for the regression accuracy.

3.5 Size distribution estimation performance

To validate the network performance, the size estimates
are produced for the 118 test images, which are the
images the CNN has not yet encountered. The prediction
constraints are then enforced by adjusting the produced
prediction to be:

ỹi =
median (0, ŷi, 1)∑N
i=1 median (0, ŷi, 1)

, (4)

where ỹi is the final prediction for size i,N is the number of
size classes, and median (·) in this case ensures ŷi ∈ [0, 1]. If
ŷi is accurate, this adjustment will not have a big impact,
as the sum of the predictions will already be close to 1.
The adjustment is however made to ensure that this is the
case even with minor inaccuracies.

The cumulative size distribution is then calculated and
presented along with the true distribution for each ore
source in Fig. 8. The true normalized size distribution is
shown in red, and the distribution of predictions per size
class is shown as box plots in blue.

Next, the prediction error for each size class per image
is calculated (10 prediction errors of each of the 118
test images produces 1180 prediction error values). The
distribution of these values are shown in Fig. 9. The mean
error is -0.012 and the standard deviation is 0.107.

4. CONCLUSION

Images of feed ore captured from above were used to
estimate the ore size distribution. A deep CNN based
on the VGG16 architecture was used, and was trained
using transfer learning. Image augmentation was also
used, partly to increase the effective number of samples
available, but also to make the network more robust.

The accuracy achieved shows how successfully a CNN can
be employed to estimate the ore size distribution. Sizes are
accurately estimated for arbitrary distributions as well as
for those that may be accurately described using e.g. the
Rosin-Rammler equation. An accurate indication of the
ore feed size distribution allows early adjustments to be
made to important operational parameters.
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