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Abstract: In this paper, a fractional-order sliding mode control scheme based on a double-hidden-layer 

recurrent neural network is proposed for a single-phase shunt active power filter. Considering the 

shortcomings of traditional neural networks that the approximation accuracy is not high and weight and 

center vector of neural networks are unchangeable, a new double-hidden-layer recurrent neural network 

structure which contains two hidden layers to make the network have more powerful fitting ability, is 

designed to approximate the unknown nonlinearities. An original output feedback neural network with 

two hidden layers is designed to estimate the uncertainties regardless of unknown system characteristics 

and external disturbances. A fractional-order term is added to the sliding mode controller to have more 

adjustable space and better optimization space. Experimental results verified the validity of the designed 

controller and proved that it can complete the current compensation well with acceptable current tracking 

error, demonstrating the outstanding compensation performance and strong robustness 

 Keywords: Fractional-order control, Sliding mode control, Recurrent neural network (RNN), Double-

hidden-layer recurrent neural network (DHLRNN). 

1. INTRODUCTION 

The rapid development of power electronics technology 

has made serious problems of harmonic pollution of power 

grids. Compared with various harmonic compensation 

methods, active power filters (APF) has strong real-time 

tracking performance, compensation capability, and good 

harmonic suppression. APF is one of the most important 

means to solve the harmonic problem in the power grid. 

At present, APF control strategies mainly include 

hysteresis control, single-cycle control, triangular wave 

control and sliding mode control. Sliding mode control 

method (SMC), which is robust to external disturbances and 

parameter uncertainties, is widely used in nonlinear systems. 

An adaptive SMC method was proposed to make the tracking 

error converge to a small neighbourhood (Liu et al. 2019). A 

high-order sliding mode observer was applied for uncertain 

pure-feedback nonlinear systems (Park et al. 2019). An 

integral SMC method was studied for nonlinear systems with 

input disturbances (Fan et al. 2016). A new sliding mode 

fault-tolerant control method was designed for uncertain 

linear systems (Hao et al. 2017). A terminal sliding-mode-

based cooperative control method was proposed for nonlinear 

systems (Chen et al. 2018).  

The ordinary sliding surface is mainly composed of the 

error of system state or the integer-order calculus of the error. 

With the development of fractional calculus, the researchers 

begin to study the application of the fractional-order in SMC. 

Fractional-order was introduced to represent changes of the 

desired trajectory (Ionescu et al. 2015). Fractional-order 

differential technique was for crawler cranes (Tuan. 2019). A 

fractional-order adaptive control method was proposed for  

 

fuzzy singularly perturbed systems (Song et al. 2019).  

Although the fractional-order sliding mode controller can 

obtain good tracking performance, however, the controller 

can be realized only if the system structure is fully 

understood, which is difficult to achieve in real life. In 

nonlinear systems, there are often some unknown nonlinear 

functions. Neural network (NN) is widely used in nonlinear 

system due to its universal approximation, which means it 

can approximate any unknown smooth nonlinear function. 

NN was used to approximate the nonlinear part in the active 

power filter (Fang et al. 2019). In recent research, many 

scholars have changed the structure of neural networks to 

improve the approximation accuracy, such as increasing 

feedback items or the number of hidden layers. A double-

hidden-layer neural network was designed for a class of 

dynamic systems (Chu et al. 2019). A recurrent neural 

network was proposed to approximate the nonlinear part of 

the system (Wang et al. 2019).  

 Motivated by the above studies and researches, this paper 

proposes a fractional-order sliding mode controller based on 

double-hidden-layer recurrent neural network (DHLRNN) for 

the current control of an APF. Recurrent layers added in the 

input layer and the first hidden layer store more information 

and have better approximation effect. The main contribution 

can be summarized as: 

(1) A new double-hidden-layer recurrent neural network 

with multiple computational layers, which can approximate 

any continuous function with arbitrary precision, is designed 

to approximate the unknown nonlinear part of APF. 

Compared with the single-hidden-layer neural network, the 

double-hidden-layer recurrent neural network is a deep neural  
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network, which can achieve a high precision approximation 

with fewer nodes.  

(2) At the same time, the output feedback is introduced in 

the first hidden layer and the outer layer of the double hidden 

layer neural network to store more information, which can 

achieve better approximation effect. The proposed DHLRNN 

can realize the self-adjustment of the base width, center 

vector, weight and hidden layer feedback weight in spite of 

the initial values under the action of the adaptive law.  

(3)A fractional-order term is added to the sliding mode 

controller. Compared with the intermittent adjustment of the 

integer-order sliding mode controller, the fractional-order 

sliding mode controller has more adjustable space and better 

optimization space. Fractional sliding mode controller 

combines the advantages of fractional calculus and sliding 

mode control, improving the control precision and 

performance. 

2. DYNAMICS OF ACTIVE POWER FILTER 

Fig.1 is the basic circuit structure of a single-phase active 

power filter. In Fig.1, sv  is a grid voltage, si is a grid current, 

ci is  a filter output compensation current, L is an AC 

inductor, R  is an equivalent resistor, C is the DC capacitor. 

According to the circuit theory and Kirchhoff's voltage 

law, the following equation can be derived as: 

c

S c MN

di
v L Ri u

dt
                                   (1) 

where MN cu u u  , u is a switch function satisfying that   

2 3 1 4

1 4 2 3

1 if S ,S are on and S ,S are off
u

-1 if S ,S are on and S ,S are off


 


，

，
. 

Then we can get: 

c s dc

c

di v vR
i u

dt L L L
                                (2) 

The derivative of equation (2) becomes: 

                  
2 2

2 2 2 2

1
( )   c s dc

c dc

d i Rv dvR R
i v u

dt L L L L dt
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Fig.1. Schematic structure of single-phase active power filter 

 
In the actual operation process, APF will be affected by 

various unknown disturbances, and the aging of the grid side 

inductor and DC side capacitor will cause parameter 

perturbation. In order to improve the robustness in the 

presence of external disturbances and parameter 

perturbations, it is necessary to consider the above effects in 

the system model. Assuming that the lumped unknown 

disturbance is F , then the mathematical model of APF can be 

expressed as: 
2 2

2 2 2 2

1
( )    c s dc

c dc

d i Rv dvR R
i v u F

dt L L L L dt
            (4) 

Define cx i , and the system can be simplified as the 

following equation. 
2

2
( )  

d x
f x bu F

dt
                            (5) 

where ( )f x
 
is 

2

2 2

s

c

RvR
i

L L
 ,

2

1 dc

dc

dvR
b v

L dtL
  , and F is the 

lumped disturbance, which contains parameter uncertainties 

and external disturbance. It is assumed that the upper bound 

of the lumped disturbance F  is a positive constant dF , 

satisfing dF F . 

3. FRACTIONAL-ORDER SLIDING MODE 

CONTROLLER 

   Fractional-order calculus is defined as: 

0

1 0

( ) 0

a t

t

a

d

dt

D

d













 


 





 



                          (6) 

where a tD  is the symbol of the fractional-order calculus, 

a and t  are the upper and lower bounds of the operation, 

 is the order of the fractional-order calculus. 

We use the Caputo fractional-order for the proposed 

control method. Caputo fractional-order is defined as follows: 
( )

1

0

1 ( )
( ) , 1

( ) ( )

t n

n

f
D f t d n n

n t






 

   
   
       (7) 

where ( )   is a gamma function, n  takes the value one. 

Consider the APF model in equation (5), we define that 

reference current is
dx . The goal of the control system is to 

make the actual current track the reference current and make 

the tracking error 
de x x   as small as possible. 

Define the first derivative of tracking error and the second 

derivative of tracking error are de x x  and de x x  . 

Define the fractional-order sliding surface as: 
1

1 2s e c e c D e   
                           

 (8) 

where 1c  and 2c  are the constant, 1D e  is the 1  order 

derivative of the tracking error, and 0 1  . 

Making the derivative of the fractional sliding surface 
gets 

     

1 2

1 2

1 2( )

d

d

s e c e c D e

x x c e c D e

f x bu F x c e c D e







  

   

     

           (9) 

Without considering the lumped uncertainties, the equivalent 

control law can be obtained by making 0s  . 

1 2

1
( ( ) )eq du f x x c e c D e

b

    

  

            (10) 

Design the switching control law as:  
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sgn( )swu K s                                (11) 

where K is a constant. 

Then a comprehensive controller is proposed is 

1 2

1
( ( ) ) sgn( )eq sw du u u f x x c e c D e K s

b

             (12) 

However, if ( )f x in (12) is unknown, it is impossible to 

implement the controller (12). A double-hidden-layer 

recurrent neural network approximator is proposed in next 

step to solve this problem. 

 

4. DOUBLE-HIDDEN-LAYER RECURRENT NEURAL 

NETWORK (DHLRNN)  FRACTIONAL-ORDER 

SLIDING MODE CONTROLLER  (DHLRNNFSMC) 

Fig.2 is a double-hidden-layer recurrent neural network 

structure that comprises four layers, namely an input layer, a 

first hidden layer, a second hidden layer and an output layer. 
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Fig.2.Double-hidden-layer recurrent neural network structure 

 
The input layer of the double-hidden-layer recurrent neural 

network completes the transmission of the input signal, and 

receives the output signal exY of the feedback signals of the 

output layer. The output expression of the input layer is: 

i i roix W exY     , 1, 2,...,i m                             (13) 

The signal is mapped from the input layer space to the first 

hidden layer space, and a feedback loop is added into the first 

hidden layer to complete the signal feedback. 

2 21 22 2[ , ,..., ]T

lH h h h is Gaussian function, and the Gaussian 

function of the j-th node is calculated as: 

1

1
jnet

jh e


 ,

2

1

1 2
1 1

m
i rj j

j

i j

W exh c
net

b





 


 

, 1,2,...,k l (14) 

where 1 jc  is the center vector, and 1 jb  is the base width. 

The second hidden layer maps the signal from the first 

hidden layer space to the second hidden layer space, and 

1 11 12 1[ , ,..., ] T

lH h h h is Gaussian function, and the Gaussian 

function of the k-th node is calculated as: 

2

2
knet

kh e


 ，

2

1 2

2 2
1 2

n
j k

k

i k

h c
net

b


 ， 1,2,...,k l     (15) 

where 
2kc  is the center vector, and

2kb  is the base width. 

The output layer neurons sum the product of the Gaussian 

vector calculated by the second hidden layer neuron and the 

weight, and serve as an output. The double-hidden-layer 

recurrent neural network output is expressed as: 

2 1 21 2 22 2... l lY W H W h W h W h     
               

(16) 
 
In the controller (12), ( )f x is unknown part in practical 

application, DHLRNN can be employed to 

approximate ( )f x . The block diagram of DHLRNN 

fractional sliding mode controller is shown in Fig.3. 
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Fig.3. Block diagram of double-hidden-layer recurrent neural 

network fractional-order sliding mode controller 
 
We suppose that there is an optimal weight *W , optimal 

center *

1c  and *

2c , optimal base width *

1b  and *

2b , and 

optimal feedback weight *

rW  and *

roW ,which can estimate the 

unknown function ( )f x  expressed as * *

2( ) Tf x W H   , 

where * * * * * * * *

2 2 1 2 1 2( , , , , , , )r roH H x c c b b W W , and   is a small 

positive constant. We define ˆ ( )f x as an estimate of ( )f x  

using a double-hidden-layer recurrent neural network. Then 

the difference between the unknown function ( )f x and its 

estimated value ˆ ( )f x  is: 

   

* *

2 2

* *

2 2 2

*

2 2 2 2

2 2 2

2 2 0

ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

T T

T T T

T T T T

T T T

T T

f x f x W H W H

W H W H W H

W H W H W H W H

W H W H W H

W H W H











   

   

    

   

  

   (17) 

Calculate the Taylor expansion of
2H , 

1 1 2 2

1 1 2 2

1 2 1

2

* *2 2
ˆ ˆ2 1 1 2 2

1 2

* *2 2
ˆ ˆ1 1 2 2

1 2

* *2 2
ˆ ˆ

2 1 2 2 2 1

2 2 2 2

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )
r r ro ro

r ro

c c c c

b b b b

r r ro ro hW W W W

r ro

c c b

b W r W

H H
H c c c c

c c

H H
b b b b

b b

H H
W W W W O

W W

DH c DH c DH b

DH b DH W DH

 

 

 

 
   

 

 
    
 

 
   

 

     

     ro hW O 

  (18) 

where hO is a high-order term.

  Replace unknown function ( )f x with ˆ ( )f x ，then control law 

(12) is redesigned as: 

1 2

1 ˆ( ( ) ) sgn( )du f x x c e c D e K s
b

               (19) 

Select the Lyapunov function candidate as: 
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1 1 2 2

1 2 3

1 1 2 2

4 5 6 7

1 1 1 1
( ) ( ) ( )

2 2 2 2

1 1 1 1
( ) ( ) ( ) ( )

2 2 2 2

T T T T

T T T T

r r ro ro

V s s tr W W tr c c tr c c

tr b b tr b b tr W W tr W W

  

   

   

   

  (20) 

The last seven items are marked as (*)tr . 

Differentiating equation (20), then we can get 

1 2

(*)

[ ( ) ] (*)

T

T

d

V s s tr

s f x bu F x c e c D e tr

 

      
          (21) 

Substituting the control law (19) into (21) yields,   

2 2 0

ˆ( ) ( ) sgn( ) (*)

ˆ ˆ sgn( ) (*)

T

T T T

V s f x f x F k s tr

s W H W H F k s tr

     
 

      
          

 (22) 

Substituting the Taylor expansion (18) into equation (22), 

yields, 

1 2

1 2

2 2 1 2 2

2 1 2 2 2 2

0 1 1 2 2

1 2 3

1 1 2 2

4 5 6

ˆ ˆ ( )

ˆ ( )

1 1 1
[ sgn( )] ( ) ( ) ( )

1 1 1
( ) ( ) (

r ro

T T T T

c c

T T

b b W r W ro h

T T T T

T T T

r r

V s W H s W DH c DH c

s W DH b DH b DH W DH W O

s F k s tr W W tr c c tr c c

tr b b tr b b tr W W


  

  

    

        

     

  
7

1
) ( )T

ro rotr W W




 (23) 

Setting the adaptive laws as: 

1

2 1

2

1 2 1 2 2

2 3 2 1 4 2

2 5 2 6 2

7 2

ˆ ˆ,

ˆ ˆ,

ˆ ˆ,

ˆ

r

ro

T T T T

c

T T T T T T

c b

T T T T T T

b r W

T T T

ro W

W s H c s W DH

c s W DH b s W DH

b s W DH W s W DH

W s W DH

 

 

 



    

    

    

  

       
 (24) 

Substituting adaptive laws (24) into (23), then we can get 

0

0

[F sgn( )]

( )

   

   

T

h

h

V s O K S

s H O K




                   (25) 

Assume that 0  and hO  exist upper bounds E and EO . If 

we make that E EK H O   , then we can guarantee that 

0.V V is semi-negative which ensures that both 

V and s are bounded. 0( )hV s H O K   
 
indicates that 

0
0

1
[ ( ) (0)]

t

h

s dt V t V
H O K

 
   . Since (0)V is bounded 

and 0 ( ) (0)V t V  , 
0

lim
t

T

t
s dt

   is bounded. According to 

Barbalat's lemma lim 0
t

s


 , that is, e  and e  converge to zero 

asymptotically.. 

5. HARDWARE EXPERIMENT VERIFICATION 

In this paper, a hardware experiment is implemented to 

verify the effectiveness of the DHLRNNFSMC scheme using  

dSPACE 1104 real-time system. The overall structure of the 

single-phase APF is shown in Fig.4. The experimental 

prototype is shown in Fig.5.  

We use programmable AC source as the single-phase grid 

power where the frequency and the voltage are 50HZ and 

24V, respectively. The main circuit of APF is a single-phase 

shunt active power filter, selecting IGBT as the main circuit 

switching device. The signal collection circuit adopts Hall 

voltage sensors CHV-25P and Hall current sensors 

CSM002A to collect voltage signals and current signals. The 

dSPACE control circuit is based on dSPACE 1104, which is 

connected to APF through ADC and PWM output ports. The 

signals collected by the signal collection circuit are sent to 

the ADC and calculated by dSPACE. Then the signals are 

sent out to the IGBT driver by PWM output ports. The 

nonlinear loads are composed of a single phase uncontrolled 

rectifier bridge and a capacitive load. In addition, the IGBT 

drive circuit and the signal collection circuit are powered by a 

DC auxiliary power source. The current spectrum analysis 

was performed using the DSOX3PWR power measurement 

application and analysis module of the Agilent DSO-X3034A 

oscilloscope. In the experiment, the parameters are list in 

Table 1. 

si Li

sU
cU
Li
ci

Nonlinear 

loads
sU

ci

L

C

dSPACE  

control

APF 

main 

circuit

IGBT 

driver

Signal 

collection 

circuit

Harmonic 

current 

detection

Compensation 

current 

tracking 

control

PWM 

modulation 

algorithm

DC voltage 

stability 

control

  
Fig.4. The overall structure of the single-phase APF 

 
Fig.5. Single-phase APF experimental setup system  

Table 1. System experimental parameters 

System parameters Nominal value 

Supply voltage and 

frequency 
220 , 50sV V f Hz   

Single-phase diode 

rectifiers parameters 
1 115 , 1R C mF  

 

Active power filter 

parameters 

10 , 0.1L mH R  
 

2200 , 50dcrefC F v V   

Switching frequency 20swf KHz  

 
(a) Supply current without APF 
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(b) THD of supply current without APF 

Fig.6 Power supply current analysis without APF 

 
(a) Steady state response of DRNNFSMC scheme 

 
(b) THD of DHLRNNFSMC scheme 

Fig.7. Steady-state experiment of DRNNFSMC scheme 

 
(a) Steady state response of NNSMC scheme 

 
(b) THD of NNSMC scheme 

Fig.8. Steady-state experiment of NNSMC scheme 

A. Steady state response and comparative study 

The proposed DHLRNNFSMC method and the common 

neural network sliding mode control method (NNSMC) are 

applied to the APF, respectively. Fig.6 (a) is a waveform 

curve of the supply current 
si  before the APF is accessed, 

and Fig.6 (b) is a corresponding spectrum analysis diagram. 

Fig.7 (a) and Fig.8 (a) are steady-state response waveform 

diagrams using the DHLRNNFSMC and NNSMC control 

method, respectively. The waveforms are the power supply 

voltage
sv , the compensation current

ci , the load current
Li , 

and the power supply current
si , respectively. Fig.7 (b) and 

Fig.8 (b) are corresponding spectrum analysis diagrams. 

THD of the power supply current is reduced from 37.05% to 

3.7% with the connection of APF, and the power supply 

current is approximately compensated as a sine wave, 

realizing the purpose of current compensation. Compared 

with the NNSMC method, the proposed DHLRNNFSMC 

scheme has smaller glitch and chattering, smaller THD, better 

robustness and higher compensation accuracy. 

B. Dynamic response 

The dynamic performance of the proposed scheme is 

verified by increasing load and decreasing load suddenly. 

Fig.9 and Fig.10 show the system response process during 

load burst and load dump. Fig.9 (a) and Fig.9 (b) are the 

waveform diagram of the system response and the spectrum 

analysis diagram of the power supply current during the load 

sudden increasing. Fig.10 (a) and Fig.10 (b) are the cases 

during the load sudden decreasing. The power supply current 

can enter a new stable state quickly regardless of the sudden 

increase or decrease of the load, showing the proposed 

algorithm has good adaptability to load disturbance. 

Fig.8. Steady-state experiment of NNSMC schem 

    
(a) Dynamic response of loads increase 

 
(b) Spectrum analysis of loads increase 

Fig.9. Dynamic experiment of loads increase 
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(a) Dynamic response of loads decrease 

 
(b) Spectrum analysis of loads decrease 

Fig.10. Dynamic experiment of loads decrease 

6. CONCLUSION 

In this paper, a fractional-order sliding mode controller 

based on a double-hidden-layer recurrent neural network is 

designed to compensate grid harmonic current. A double-

hidden-layer recurrent neural network is designed to 

approximate the unknown nonlinear part of APF. The base 

width, center vector and weight in the network have self-

adjusting performance. Fractional sliding mode controller 

combines the advantages of fractional calculus and sliding 

mode control, improving the control precision and 

performance. The experimental verification are realized on 

dSPACE 1104, showing the proposed DHLRNNFSMC 

scheme can quickly compensate the power supply current 

with better current tracking effect, indicating the superiority 

and effectiveness of the proposed scheme. 
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