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Abstract: The paper studies the control design and parameter tuning for SISO systems with
several practical factors, including nonlinear uncertainty, time delay, input saturation and
measurement noise. An active disturbance rejection control design is proposed to actively
compensate for the above nonlinear factors. Moreover, an automatic tuning method based on
Q-learning is proposed, which is featured with model-free and data-driven properties. By the
tentative actions in the proposed Q-learning algorithm, the optimized control parameters can
be obtained.
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1. INTRODUCTION

The control science and technology aim at solving the
control problem for practical plant, i.e., the design, tuning
and realization of the controller. Since plenty of nonlinear
factors, including nonlinear uncertainty, input saturation,
time delay and measurement noise, exist in the physical
plant, the control problem becomes extremely challenging.

In the past few decades, many researches focusing on
the control problem under a specific practical situation
have been substantially developed. The control design and
the closed-loop performance for systems with saturation
are rigorously studied in Hu and Lin (2001). Niculescu
(2001) discusses the effect of time delay in control systems
and proposes several robust approaches for systems with
time delay. For systems with nonlinear uncertainties, many
active disturbance rejection based designs are innovatively
proposed (see Chen et al. (2016); Han (2009)). Although
there are numerous successfully practical applications by
the above methods (see Su et al. (2004); Sun et al. (2020a);
Xue et al. (2017); Sun et al. (2020b)), the control task
requires the advanced control design for systems with more
complicated situations.

However, for the more complicated model, the less con-
tributions can be made by mathematics. Some studies
for systems with several practical factors, i.e., time delay,
saturation, noise and uncertainties, have been presented
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in recent years, such as Chen et al. (2018); Xue et al.
(2015); Zhao and Guo (2017). For the sake of rigorous
mathematical derivation, the assumptions are conservative
in these studies, which greatly limit the available region of
control parameters and are hard to be verified in practice.
Moreover, these studies only show the qualitative analy-
sis of the closed-loop system, which cannot directly help
practitioners tune the controller parameters. It is of urgent
need to study an effective control design and an automatic
tuning method for systems with several practical factors.

Machine learning has been rapidly developed and drawn
more attentions due to the successful applications in image
processing, medical diagnosis and competitive game (see
LeCun et al. (2015); Mnih et al. (2013); Bar et al. (2015)).
Some researchers have attempted to integrate the learning
method in control design (see Lillicrap et al. (2015);
Karimi et al. (2009)). However, the typical design for
SISO systems with several practical factors has not been
studied. The main difficulty is establishing the suitable
relationship between the conceptions in control task and
learning algorithm.

In this paper, an active disturbance rejection control
(ADRC) based design is proposed for SISO (single-input
single-output) systems with measurement noise, nonlinear
uncertainty, delay and input saturation. Moreover, a Q-
learning algorithm is innovatively proposed to automati-
cally tune the ADRC’s parameters. By the proposed Q-
learning algorithm, the optimized controller parameters
can be obtained. The simulations for the longitudinal
attitude control of a hypersonic aircraft model illustrate
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the effectiveness of the proposed method. The main con-
tributions of the paper are shown as follows:

(i) An ADRC design is proposed for SISO systems with
several practical factors, including uncertainties, input
saturation, measurement noise and time delay.

(ii) The tuning method based on Q-learning is presented,
which is a model-free and data-driven technology. More-
over, the optimized controller parameters can be obtained
by the proposed learning algorithm.

The rest of the paper has the following organization. In
Section 2, the control problem for systems with several
practical factors is presented. An ADRC design is pre-
sented in Section 3. The tuning method based on Q-
learning is proposed in Section 4. Section 5 shows the
simulation results. The conclusion and future works are
presented in Section 6.

2. PROBLEM FORMULATION

Consider the following SISO systems with several practical
factors:

Ẋ(t) = f(X(t), sat(u(t− τ)), t),

y(t) = h(X(t), t),

ym(t) = y(t) + nm,

t ≥ t0, (1)

where X ∈ Rn is the state vector, u ∈ R is the control
input, y ∈ R is the system output to be controlled, ym ∈ R
is the measured output, nm is the zero-mean measurement
noise, f is the unknown nonlinear dynamics, h is the
unknown nonlinear measurement model, t0 is the initial
time, τ is the unknown input delay and the function sat(·)
is the input saturation given by the following equation.

sat(u) =


smax, if u ≥ smax,

u, if smin < u < smax,

smin, if u ≤ smin,

(2)

where smax and smin are constants satisfying smax > smin.

The control objective is to design the control input u such
that the output y can track the time-varying reference
signal yr(t).

We assume that the relative degree of the system (1),
which is determined by the control mechanism of the
physical plant, is known and invariant:

Assumption 1. For the system (1), the relative degree
from u to y is nr.

Since there are several practical factors in the system
(1), including unknown nonlinear dynamics, nonlinear
measurement, measurement noise, time delay and input
saturation, it is challenging to design the controller to
achieve the tracking objective. Moreover, due to the trade-
off of these nonlinear factors, it is difficult to determine the
feasible region of the controller’s parameters. Optimizing
the control parameters for satisfied tracking performance
becomes a critical issue.

In the paper, an ADRC design and a tuning method based
on Q-learning are presented for the system (1).

3. ACTIVE DISTURBANCE REJECTION CONTROL

In this section, an ADRC design is presented.

From Assumption 1, the relative degree of the system (1)
is nr, which implies that the minimum number of the
integrators from the control input to the controlled output
is nr. Hence the following nr-th integrator chain from the
control input to the controlled output can be presented,
which is equivalent to the system (1).{

y(nr) = f1(y, y(1), · · · , y(nr−1), ξ, sat(u(t− τ)), t),

ξ̇ = f2(y, y(1), · · · , y(nr−1), ξ, t),
(3)

where ξ ∈ Rn−nr is the state vector of zero dynamics. In
addition, the functions f1 and f2 are determined by (f, h)
and the transformation X = φx(y, y(1), · · · , y(nr−1), ξ),
where φx is the local diffeomorphism between X and
[y y(1) · · · y(nr−1) ξ]T (see Chen et al. (2020) for details).

Assume that the nominal control model of f1 is b̄·sat(u(t−
τ̄)), where

sat(u) =


s̄max, if u ≥ s̄max,

u, if s̄min < u < s̄max,

s̄min, if u ≤ s̄min,

(4)

and (b̄, τ̄ , s̄max, s̄min) are constants.

Remark 1. In practice, b̄ is commonly obtained by lineariz-
ing the physical plant (see Ren et al. (2015)). τ̄ represents
for the nominal value of τ . The function sat(·) is the
nominal design of input saturation. In the paper, these
nominal values will be tuned by Q-learning based method.

Then the integrator chain (3) can be reformulated as{
y(nr)(t) = b̄ · sat(u(t− τ̄)) + f∆(y, y(1), · · · , y(nr−1), ξ, t),

ξ̇ = f2(y, y(1), · · · , y(nr−1), ξ, t),
(5)

where f∆ represents for the total disturbance, containing
unmodeled dynamics, external disturbances and paramet-
ric perturbations.

Based on the system (5) and the measured output ym,
the following linear extended state observer (ESO) is
presented to timely estimate the total disturbance and the
derivatives of output.

˙̂yi(t) = ŷi+1(t) − βi(ŷ1(t) − ym(t)), 1 ≤ i ≤ nr − 1,

˙̂ynr (t) = b̄ · sat(u(t− τ̄)) + f̂∆(t) − βnr (ŷ1(t) − ym(t)),

˙̂
f∆(t) = −βnr+1(ŷ1(t) − ym(t)),

(6)

where [ŷ1(t) · · · ŷnr (t)] is the estimation for [y · · · y(nr−1)],

f̂∆ is the estimation for the total disturbance f∆ and
[β1 · · · βnr+1] is the ESO’s parameter vector satisfying
that the polynomial snr+1 +β1s

nr +· · ·+βnr+1 is Hurwitz.
Owing to the method in Yoo et al. (2007), the ESO’s
parameters can be designed as

βi = φi,βω
i
o, φi,β =

(nr + 1− i)!i!
(nr + 1)!

, ωo ≥ 0, (7)

where ωo is a positive constant to be designed.

Via the estimation from the ESO (6), the control input is
designed as follows:

u(t) =
y

(nr)
r − f̂∆ − Σnr−1

i=0 ki(ŷi+1 − y(i)
r )

b̄
, (8)

where ki is the feedback gain to be chosen. Similar with
(7), ki can be simply designed as

ki = φi,kω
i
c, φi,k =

(nr − i)!i!
nr!

, ωc ≥ 0, (9)
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where ωc is a positive constant to be designed.

For the ADRC design (6)–(9), the parameters

b̄, τ̄ , s̄max, s̄min, ωo, ωc (10)

need to be tuned for the specific physical plant. The
tuning of control parameters is a significant problem for
practitioners. In the next section, a Q-learning based
tuning method featured with model-free and data-driven
properties is proposed.

4. Q-LEARNING BASED TUNING METHOD

Reinforcement learning (RL) is a classical method in the
field of machine learning. In RL problem, a agent can take
several actions to interact with the environment, and a
reward is received after the agent takes an action. The
RL problem is to find a policy to map the state of the
environment to an action which maximizes the long-term
rewards. The components of RL problem are shown as
follows (Sutton and Barto (2018)):

• State s: series of information describing the state of
the agent and environment.
• Action a: decision made by the agent that will affect

the environment.
• Reward r: scalar value that determines how close to

the objective.
• Policy π: map from states to actions.
• Action value function Qπ(s, a): the expected return,

or expected discount reward, when starting as state
s, taking action a, and using policy π.

The RL problem can be reformulated as finding the
optimal policy π∗ to maximize the action value function
for all states and actions, i.e., Qπ

∗
(s, a) = maxπ Q

π(s, a).

When knowing transition probabilities and rewards, the
RL problem can be solved by the Bellman equation.
However, these model information is not available in most
cases, especially the tuning problem. Thus, the paper
focus on Q-learning, which is a model-free and data-
driven learning algorithm. Q-learning is one of the widest
used temporal difference algorithm, which updates the
estimation for the action value function by each tentative
action. The updating law of the action value function at
the step k is presented as follows:

Q(sk, ak)←(1− αQ)Q(sk, ak)

+ αQ(r(sk, ak) + γQ max
a′

Q(sk+1, a
′)), (11)

where αQ ∈ (0, 1) is the learning rate and γQ ∈ (0, 1) is
the discounted factor. With (11), the Q-learning algorithm
is shown in Algorithm 1.

Remark 2. With the smaller αQ, the updating law is
dependent more on the previous learning result Q(sk, ak)
rather than the immediate reward r(sk, ak). The larger γQ
leads to the more trust on maxa′ Q(sk+1, a

′), which can be
regarded as the remembered reward.

Next, we design the states, actions and reward for the tun-
ing problem of ADRC’s parameters (b̄, τ̄ , s̄max, s̄min, ωo, ωc).

Let εr be a small positive. For the reference signal yr, the
εr-neighbourhood divides the state plant into the following
three regions:

Algorithm 1 Q-learning algorithm.

Input: learning rate αQ, discounted factor γQ, initial
state s1.
Output: action value function Q.
1: Initialize k = 1, Q(s, a) = 0, ∀(s, a).
2: while the objective is not achieved do
3: Generate the action ak by a policy π (e.g. ε-greedy

policy).
4: Observe the new state sk+1 and the reward rk.
5: Update Q(sk, ak) with (11).
6: k ← k + 1.
7: return Q.

Region A: RA , {y| y > yr + εr},
Region B: RB , {y| |y − yr| ≤ εr},
Region C: RC , {y| y < yr − εr}.

(12)

We select a time series {ti}ns
i=1 where ns is a positive integer

and ti+1 > ti > t0 for 1 ≤ i ≤ ns. The state in Q-learning

is designed as s , [s(1) · · · s(ns)] ∈ Rns , where s(i)
satisfies

s(i) =


1, if y(ti) ∈ RA,
0, if y(ti) ∈ RB ,
− 1, if y(ti) ∈ RC .

(13)

Fig. 1 shows the sketch for designing the state.

Figure 1. Sketch for designing state in Q-learning.

Remark 3. As the number ns increases, the state s can
sufficiently describe the error between y(t) and yr(t), which
contains the information of classical performance index
such as overshoot, rise time and settling time. In practice,
the time node ti can be selected as the critical time at
which the system faces vast uncertainties.

The actions in Q-learning are designed as adjusting the
ADRC’s parameters. In each action, the ADRC’s param-
eters are updated by

pr ← pr + ∆pr, pr = b̄, τ̄ , s̄max, s̄min, ωo, ωc, (14)

where pr is the symbol for the ADRC’s parameters and
∆pr represents for the corresponding variation. The action
set is shown in Tab. 1, where δb̄, δτ̄ , δs̄max, δs̄min, δωo and
δωc are positive constants.

The reward function describes the tracking performance of
the current ADRC’s parameters. In the paper, the reward
is selected as the minus of the integral of the square
tracking error (MISE):
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Table 1. Action set.

Action ∆b̄ ∆τ̄ ∆s̄max ∆s̄min ∆ωo ∆ωc
a1 0 0 0 0 0 0
a2 +δb̄ 0 0 0 0 0
a3 −δb̄ 0 0 0 0 0
a4 0 +δτ̄ 0 0 0 0
a5 0 −δτ̄ 0 0 0 0
a6 0 0 +δs̄max 0 0 0
a7 0 0 −δs̄max 0 0 0
a8 0 0 0 +δs̄min 0 0
a9 0 0 0 −δs̄min 0 0
a10 0 0 0 0 +δωo 0
a11 0 0 0 0 −δωo 0
a12 0 0 0 0 0 +δωc
a13 0 0 0 0 0 −δωc

Algorithm 2 Q-learning based tuning method.

Input: the initial parameters (b̄, τ̄ , s̄max, s̄min, ωo, ωc).
Output: the action value function Q and the optimized

parameters (b̄∗, τ̄∗, s̄∗max, s̄
∗
min, ω

∗
o , ω

∗
c ).

1: Initialize k = 1, Q(s, a) = 0, ∀(s, a).
2: while the satisfied tracking performance is not

achieved do
3: Generate the action ak from Tab. 1 by a policy π

(e.g. ε-greedy policy).
4: Do an experiment or simulation.
5: Observe the new state sk+1 (13) and the reward rk

(15).
6: Update Q(sk, ak) with (11).
7: k ← k + 1.
8: return Q and (b̄, τ̄ , s̄max, s̄min, ωo, ωc).

r = −
∫ tT

t=t0

(y(θ)− yr(θ))2dθ, (15)

where tT > t0 is the stop time.

With the designed states, actions and reward function,
the Q-learning based tuning method is shown in Algo-
rithm 2. By Algorithm 2, the optimized parameters can
be obtained. Moreover, the tuning logic, i.e., action value
function Q, is learned, which provides the strategy of
tuning parameters for the better closed-loop performance
based on the information for the current simulation or
experimental result.

Remark 4. The most noticeable difference with the exist-
ing iterative learning control and adaptive dynamic pro-
gramming is that the proposed Q-learning tuning method
is model-free and data-driven, which is capable to optimize
the controller parameters despite complicated physical
limitations, i.e., uncertain nonlinear dynamics, time delay,
input saturation and measurement noise.

5. SIMULATION

In this section, the simulation for the longitudinal attitude
control of a hypersonic aircraft model is presented.

From Wang and Stengel (2000), the following longitudinal
dynamics of the generic hypersonic aircraft, including an
inverse-square-law gravitational model and the centripetal
acceleration for the non-rotating earth, is presented as

Table 2. Parameter description.

Parameters Physical definitions
a speed of sound, ft/s
c̄ reference length, ft
D drag, lbf
H altitude, ft
Jz moment of inertia, slug · ft2
L lift, lbf
Mz pitching moment, lbf · ft
m mass, slugs
q pitch rate, rad/s
r radius of the Earth, ft
S reference area, ft2

T thrust, lbf
V velocity, ft/s
α angle of attack, rad
αt angle of attack at trim condition, rad
θ flight-path angle, rad
δe elevator deflection, rad
δT throttle setting, 18.3 × 100%
µ gravitational constant, 1.39 × 1016 ft3/s2

ρ density of air, slug/ft3

CD drag coefficient
CL lift coefficient
CT thrust coefficient
M Mach number
ce coefficient of elevator deflection, 0.0292
vi coefficients of uncertainties

CM,ωz pitching moment coefficient by pitch rate
CM,α pitching moment coefficient by angle of attack
CM,δe pitching moment coefficient by elevator deflection

V̇ =
T cosα−D

m
− µ sin θ

r2
,

θ̇ =
L+ T sinα

mV
− (µ− V 2r) cos θ

V r2
,

Ḣ = V sin θ,

α̇ = ωz − θ̇,

ω̇z =
Mz

Jz
,

(16)

where
L = QSCL, D = QSCD, T = QSCT ,

Mz = QSc̄[CM,ωz + CM,δe + CM,α],

Q =
1

2
ρV 2, r = H + 20903500.

(17)

Since the flying environment frequently varies, the aerody-
namic coefficients Ca(a = L,D, T,M) have uncertainties
compared with the nominal value obtained from the wind
tunnel test or numerical simulations. The 28 coefficients
of uncertainties vi(i = 1, 2, · · · , 28) are multiplied by the
system coefficients to fit the biases around the nominal
cruising condition. The aerodynamic coefficients Ca(a =
L,D, T,M) and inertial data are presented as follows:

m = m0v1, Jz = Jz,0v2, S = S0v3, c̄ = c̄0v4, M = V/a,

ρ = 57.12v8e
−H , a = v5(8.99 × 10−9v6H

2 − 9.16 × 10−4v7H + 996),

CL = v9α(0.493 + 1.91v10/M),

CD = 0.0082v11(171v12α
2 + 1.15v13α+ 1)

× (0.0012v14M
2 − 0.054v15M + 1),

CT =


0.0105v16[1 − 164v17(α− αt)

2]

×(1 + 17v18/M)(1 + 0.15v19)δT , if δT < 1,

0.0105v16[1 − 164v17(α− αt)
2]

×(1 + 17v18/M)(1 + 0.15v19δT ), if δT ≥ 1,

CM,α = v2010−4(0.06 − e−v21M/3)(−v226565α2 + v236875α+ 1),
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CM,ωz = (c̄/2V )ωzv24(−v250.025M + 1.37)

× (−v266.83α2 + v270.303α− 0.23),

CM,δe = v28ce(sat(δe(t− τ)) − α).

The physical definitions of the parameters in the system
(16) are shown in Tab. 2.

The control objective is to design the angle of elevator
deflection δe such that the angle of attack can track the
reference signal αr. In this simulation, we consider the
down-phase control problem, where αr satisfies

αr =

{
0.0524 (rad), if 0 ≤ t ≤ 30,

0.0022t2 − 0.2774t+ 9.3236 (rad), if 30 < t ≤ 80.

Due to the physical limitation of elevator deflection, the
saturation function is clearly known:

sat(δe) =



25π

180
(rad), if δe ≥

25π

180
,

δe (rad), if − 25π

180
< δe <

25π

180
,

− 25π

180
(rad), if δe ≤ −

25π

180
.

(18)

The exact input delay τ is unknown. Combined with the
analysis in Bai et al. (2017), the parameters in the nominal
control model b̄ · sat(u(t− τ̄)) satisfy

b̄ = (
28.56ceS0c̄0

Jz,0
)e−HV 2, τ̄ = 0, s̄max =

25π

180
, s̄min = −

25π

180
, (19)

where (Jz,0, S0, c̄0) = (7 × 106, 3603, 80) are the nominal
value of (Jz, S, c̄). Moreover, from the analysis in Bai et al.
(2017), the relative degree from the elevator deflection to
the angle of attack is 2. The ADRC controller (6)–(9) is
designed with nr = 2.

Based on the known saturation function (18), we uses
the proposed Q-learning to get the optimized control
parameters (b̄, τ̄ , ωc, ωo). Since the altitude H and the
velocity V are measurable and time-varying, the update of
b̄ is designed as ±δb̄·e−HV 2. The initial control parameters
(ωc, ωo) are selected with the same values in Bai et al.
(2017):

ωc = 5, ωo = 30. (20)

Moreover, due to Bai et al. (2017), the following three
typical variations of parameters are considered:

Case 1: vi = 0, 1 ≤ i ≤ 28,

Case 2: v2 = 0.2, v3 = v4 = v8 = v28 = −0.2,

vj = 0, j 6= 2, 3, 4, 8, 28,

Case 3: v2 = −0.2, v3 = v4 = v8 = v28 = 0.2,

vj = 0, j 6= 2, 3, 4, 8, 28,

(21)

where Case 1 represents for the nominal situation, Case 2
represents for the situation that the system (16) has the
weak control ability and Case 3 represents for the situation
that the system (16) has the strong control ability. In
the simulations, the sum of the MISEs for Cases 1-3 are
used as the reward function r. The states in Q-learning
depend on the trajectory of Case 1 with the time series
{t1 = 2(s), t2 = 32(s), t3 = 61(s), t4 = 80(s)} and the error
bound εr = 0.02. The ε-greedy policy with the probability
ε = 0.1 is utilized. The parameters in Q-learning are
designed as follows:

αQ = γQ = 0.9,

δb̄ =
28.56ceS0c̄0

10Jz
, δτ̄ = 0.01, δωc = 0.2, δωo = 1.
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Figure 2. The updating process of control parameters.
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Figure 4. The tracking results for the initial parameters
and optimized parameters for Cases 1-3.

The initial conditions of the system (16) are chosen
as (M0, H0, V0, θ0, αt) = (15, 110000, 15060,−0.1, 0.0315).
The time delay is set as τ = 0.05(s) and the measurement
noise of the angle of attack obeys the normal distribution
N(0, ( 0.04∗π

180 )2).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1320



The learning process of control parameters is shown in
Fig. 2 and Fig. 3. It is significant to point out that the
proposed tuning method tries to increase the nominal
value of the delay τ̄ around the 150-th trial, while the
reward shown in Fig. 3 decreases. Then it is automatically
learned that the larger τ̄ means the worse performance.
Final, the optimized control parameters are shown as
follows:

b̄ = 0.0457e−HV 2, τ̄ = 0.05, ωc = 3.2, ωc = 36. (22)

The simulations for the initial parameters (19)–(20) and
the optimized parameters (22) are shown in Fig. 4. From
Fig. 4, the optimized parameters (22) greatly improve
the tracking accuracy for Cases 2-3, which illustrates the
effectiveness of the proposed automatic tuning method.

6. CONCLUSION AND FUTURE WORKS

The paper studies the control problem for SISO sys-
tems with several practical factors, including nonlinear
uncertainty, input saturation, time delay and measure-
ment noise. To overcome the challenges caused by these
nonlinear factors, an ADRC design is proposed. Moreover,
the tuning of control parameters is agonisingly difficult for
practitioners due to these nonlinear factors. An automatic
tuning method based on Q-learning is presented. By suit-
ably establishing the relationship between the conceptions
in control task and learning algorithm, the control param-
eters can be automatically optimized by several trials.

The following future works will be considered:

(1) The theoretical analysis of the paper lacks due to the
complicated practical factors. We will theoretically study
the effectiveness of learning algorithm in the future.

(2) The designed Q-learning is innovative but subjective.
Since there are plenty of feasible designs, how to construct
the learning algorithm with the suitable relationship be-
tween conceptions in control task and learning algorithm
is a critical job.
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