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Abstract: This paper focuses on parameter identification of mesh distribution grids. In order
to tune secondary level controllers, accurate microgrids models, in terms of topology and
impedances values, are needed. Furthermore, an efficient energy management strategy relays
on the correct estimation of the load behavior considering only measurable signals. We apply
the well known Recursive Least Squares (RLS) methodology to identify the complex admittances
of the lines between, and loads at, nodes where voltage and current measurements are available.
The proposed algorithm has little communication requirements as the signals can be sampled
at low frequencies compared with the grid standard. The relatively low computation load of the
algorithm makes it suitable for on-line implementation on real time. The main characteristics
of the methodology are illustrated with help of simulation examples.
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1. INTRODUCTION

On-line parameter estimation based on Recursive Least
Squares (RLS, Hayes (1996); Haykin (2014)), is a powerful
tool for control of any kind of systems. Electric transmis-
sion and distribution systems in general are good examples
of large Multiple-Input-Multiple-Output (MIMO) systems
where hidden or non-measurable quantities are present.
In particular, islanded microgrids are local distribution
circuits that connect dispersed energy sources and loads in
a relatively small geographic region, to take advantage of
the distributed nature of renewable energy sources (RES).
For the correct operation of this strategy, a three-level
hierarchical control scheme has been proposed in several
publications, e.g. Guerrero et al. (2013); Cheng et al.
(2018). At the secondary level, typically an entire islanded
microgrid is seen as a MIMO plant where some control
strategy is enforced, for example, Schiffer et al. (2016);
Han et al. (2016); Simpson-Porco et al. (2015).
In this context, parameter estimation is an alternative to
direct measurement techniques to determine the values of
the line and load impedances that describe the dynamic
behavior of the a grid. This is not new to transmission
systems, as several publications, e.g. Du and Liao (2012);
Li et al. (2017); Zhou et al. (2014), deal with estima-
tion in isolated transmission lines based on the measure-
ments of electric signals. In the case of more complex
distribution circuits, other publications focus on topology
estimation of medium or low voltage distribution grids,
Park et al. (2018); Liao et al. (2019), or of smart grids,
Xu et al. (2013); Weckx et al. (2012). Furthermore, stan-
dard textbooks as Grainger and Stevenson (1994) apply
Least Squares methods to estimate hidden states. Other
examples of states estimation include Dobbe et al. (2016);
Gelagaev et al. (2008) for general transmission grids, and

Rana and Li (2015); Rana et al. (2018); Pereira Barbeiro
et al. (2014) specifically applied to smart and microgrids.
In this paper we focus on the impedances estimation of
mesh grids in general. Based on RLS, we formally develop
an algorithm that can estimate the parameters of the grid
at a low sample rate, defining a model that can be used
for control design, on-line observation, or future operation
prediction porpoises. The proposed methodology does not
assume a known structure of the grid and can identify
both, the topology of the grid and the line or load
parameters.
After this introduction, Section 2 describes the microgrid
as a secondary level control plant, first by giving insights
about the electric description of the grid, to propose a
model which is suitable for parameters identification based
on network equations. The following Section 3 presents the
main result of the paper, which is the formal deduction
of a recursive algorithm to estimate the admittances of
the lines and the loads based only on the voltage and
current measurements at predefined nodes. Also, some
modifications on the original idea are presented in order
to make the estimation more efficiently when additional
information over the network is known. Section 4 presents
some numeric examples to illustrate the main features of
the proposed methodology before the conclusion section.
Through this paper, matrix AAA′ is the transpose of AAA.
The identity matrix and the null matrix are respectively
denoted by III and 000. A column vector of ones is denoted as
111, and a vector with zeros in every position except in the
i-th row where its value is one, is denoted as sssi ∈ RN . A
(block) element in position (i, j) of a matrix AAA is denoted
[AAA]ij .
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Fig. 1. Voltage and current at node i of a mesh grid with
neighbors Ni = {j, ..., k, ..., l}.

2. MESH GRID MODEL

2.1 Problem Formulation

We consider that an electric mesh grid can be represented
by an undirected Graph with additional quantities associ-
ated.
Definition 1 (Mesh Grid). A mesh grid is a tuple

M = (G = (V, E),
{vvvabci (t)}i∈V , {iiiabci (t)}i∈V ,
{Rij}{i,j}∈E∪{{i,i}}i∈V ,

{Lij}{i,j}∈E∪{{i,i}}i∈V

)
,

where
• G: an undirected graph with

· V a set of N vertices or nodes where voltage
amplitude is measured.
· E a set of unordered edges between nodes in such
a way that if {i, j} = {j, i} ∈ E , with i 6= j ∈ V,
then there is an electric three-phase line between
the i-th and j-th node of the mesh grid where
current can be transmitted.

• vvvabci : three-phase balanced sinusoidal voltage mea-
sured at node i ∈ V.
• iiiabci : three-phase net current injected at the i-th node
in V. That is, the addition of the currents injected by
each known source and the subtraction of the currents
of each known load connected to the node.
• Rij and Lij : balanced series resistance and inductance
associated to the line between node i ∈ V and j ∈ V
if i 6= j, or to the unknown load at node i ∈ V to
ground if i = j.

The nominal operation frequency will be denoted f > 0 in
[Hz]. The multiplication ω = 2πf is the nominal operation
angular frequency. Note that, because the edges of the
mesh grid are not oriented, we have that Rij = Rji and
Lij = Lji. In phasor notation, with ı̂ =

√
−1 the imaginary

unit, the complex impedance associated to an edge or a
load is Zij = Rij + ı̂ωLij .

It is also useful to define the line currents iiiabcij from node
i ∈ V to node j ∈ V with i 6= j, and the load currents
iiiabcii from each node i ∈ V to ground. With this concepts,
a circuital representation of a node of a mesh grid can be
seen in Figure 1.
Problem 1 (Parameter Identification). Given a set of
measurements of the node voltages {vvvabci (t)}i∈V , and the
net injected currents {iiiabci (t)}i∈V at different time instants

t ∈ S = {t0, t1, . . . tT , . . . }, recursively determine the
value of the parameters of the lines and passive loads,
{Rij}{i,j}∈E∪{{i,i}}i∈V and {Lij}{i,j}∈E∪{{i,i}}i∈V .
Assumption 1 (Stationary State at sample Instants). At
sample instants, we assume that the voltages and currents
are sinusoidal three-phase quantities with frequency identi-
cal to the nominal value, constant amplitude and constant
phase angle. In this way, with help of the Park transfor-
mation Kundur (1994), we can calculate the constant dq
equivalent of any abc signal: xxxdq := TTT dq−abcxxx

abc, with

TTT dq−abc(t) =
√

2
3

[
cos(ωt) cos(ωt− 2π/3) cos(ωt− 4π/3)
sin(ωt) sin(ωt− 2π/3) sin(ωt− 4π/3)

]
.

Assumption 2 (Access to distributed Measurements).
We assume that the processor where the calculations are
performed to estimate the parameters has access to the
distributed measurements of voltages and currents. This
implies that this information needs to be communicated
from possibly long distances to the processing unit. Nev-
ertheless, if the sample instants t ∈ S = {t0, t1, . . . tT , . . . }
are relatively distant from each other, and the data has a
time stamp, delays or other communication issues can be
ignored.
It a common practice to model the lines and loads not by
their impedance Zij = Rij+ı̂ωLij , but by their admittance
Yij = Z−1

ij = gij + ı̂bij , where the conductance and
susceptance are respectively defined by

gij = real {Yij} = Rij
R2
ij + ω2L2

ij

,

bij = imag {Yij} = ωLij
R2
ij + ω2L2

ij

.

Note that the relationship between impedance and admit-
tance is invertible,

Rij = gij
g2
ij + b2

ij

, ωLij = bij
g2
ij + b2

ij

,

and therefore, if we can estimate the values of the conduc-
tances gij and the susceptances bij , we can indirectly find
the resistances and inductances that describe the mesh
grid.

2.2 Circuital model of a Mesh Grid

From a Kirchhoff circuital analysis of Figure 1, considering
Assumption 1, we obtain for the currents that

iiidqi = iiidqii +
N∑

j∈Ni

iiidqij .

For the loads we have
vvvdqi = [RiiIII − LiiωJJJ ] iiidqii ,

where
JJJ =

[
0 −1
1 0

]
.

Similarly, at each RL transmission line {i, j} ∈ E :
vvvdqi − vvv

dq
j = [RijIII − LijωJJJ ] iiidqij .

Assumption 2 allows to have access to the dq representa-
tion of every abc signal by simply multiplying the mea-
surements vector by the Park transformation evaluated at
the corresponding instant. Combining the currents balance
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equation with the load and lines equations, the current
injected at the i-th node can be written as
iiidqi = [giiIII + biiJJJ ]vvvdqi +

∑
j∈Ni

[gijIII + bijJJJ ]
(
vvvdqi − vvv

dq
j

)
(1)

From here, an expression that describes the behavior of the
entire set of nodes can be written as a matrix equation.
For this effect we define vectors

iiid := col
{
idi
}N
i=1 ∈ RN , iiiq := col {iqi }

N
i=1 ∈ RN ,

vvvd := col
{
vdi
}N
i=1 ∈ RN , vvvq := col {vqi }

N
i=1 ∈ RN ,

and matrices
GGG = diag {gii}Ni=1 , BBB = diag {bii}Ni=1 , DDD = D′(Go)
WWW g = diag {gikjk

}|E|k=1 , WWW b = diag {bikjk
}|E|k=1 ,

where the incidence matrix D(Go) of a directed graph Go is
derived by giving arbitrary orientations to the edges of G.
To do so, we need to identify the |E| ≤ N(N − 1)/2 edges
ek = (ik, jk) ∈ E through an index k ∈ {1, 2, . . . , |E|} and
define an orientation for each one of them. In that case,
one can define the incidence matrix D(Go) ∈ RN×|E| in
such a way that its elements are either [D(Go)]ik = −1 if
the edge ek has its origin in the i-th node, [D(Go)]ik = 1
if the i-th node is the destination of ek, or [D(Go)]ik = 0
otherwise.
Using this notation, separating (1) in its d and q compo-
nents and rearranging, we find that a model for the entire
mesh grid is given by[

iiid

iiiq

]
=
[
GGG+DDD′WWW gDDD −BBB −DDD′WWW bDDD
BBB +DDD′WWW bDDD GGG+DDD′WWW gDDD

] [
vvvd

vvvq

]
. (2)

Note that this model is not dynamic as the present value
of the currents depend only on the present value of the
voltages. The expression is linear with respect to the
voltages vvvd and vvvq, but also with respect to its parameters.
This can be used to write the last equation in a form more
convenient for parameter identification.
Remark 1 (Non-linear model). An equivalent quadratic
and trigonometric representation of the grid can be pro-
posed in terms of active and reactive power instead of dq
currents, and voltages magnitude and phase angles instead
of dq components. Even though many measurement de-
vices work with these quantities, it is a matter of algebraic
calculation to obtain the equivalent dq currents and volt-
ages. We prefer the representation (2) because it is linear
on the variables. However, both representations are linear
with respect to the admittance parameters, and therefore
an equivalent methodology can be proposed when power
measurements must be used.
Observation 1. The product between a diagonal matrix
MMM ∈ Rn×n and a vector uuu ∈ Rn can be written as MMMuuu =
UUUmmm, where UUU = diag {[uuu]i}ni=1 and mmm = col {[MMM ]ii}ni=1.
Using this property, because matrices GGG, BBB, WWW g, and WWW b

are all diagonal, then we can write,

1
S

[
iiid

iiiq

]
= 1
S

[
VVV d DDD

′∆VVV d −VVV q −DDD′∆VVV q
VVV q DDD

′∆VVV q VVV d DDD′∆VVV d

]θθθ
v
g

θθθeg
θθθvb
θθθeb

 ,

where,
VVV d = diag

{
vdi
}N
i=1 , ∆VVV d = diag

{
[DDDvvvd]k

}|E|
k=1 ,

VVV q = diag {vqi }
N
i=1 , ∆VVV q = diag {[DDDvvvq]k}|E|k=1 ,

θθθvg = col {gii}Ni=1 , θθθeg = col {gikjk
}|E|k=1 ,

θθθvb = col {bii}Ni=1 , θθθeb = col {bikjk
}|E|k=1 ,

and S > 0 is an arbitrary scalar thought as a way to
normalize the data for parameter identification. Indeed,
numeric errors can be expected if, for example, the voltage
signals are too large when compared with the current
signals.. If all nodes share a common current or power
rating, or a nominal voltage, a practical choice for S > 0
would be this value.
In an even more compact way we have that a model for
the mesh grid is given by:
Definition 2 (Mesh Grid Model).

iiidq = VVV dqθθθ, (3)
with,

iiidq = 1/S · col
{
iiid, iiiq

}
∈ R2N ,

θθθ = col
{
θθθvg , θθθeg, θθθvb , θθθeb

}
∈ R2(N+|E|),

VVV dq = 1
S

[
VVV d DDD

′∆VVV d −VVV q −DDD′∆VVV q
VVV q DDD

′∆VVV q VVV d DDD′∆VVV d

]
∈ R2N×2(N+|E|).

Note that, although not explicitly indicated, vector iiidq
and matrix VVV dq depend on time, while the parameters are
constant.

3. PARAMETER IDENTIFICATION

3.1 Identification through Least Squares (LS)

Define an error vector
eee(t) = iiidq(t)− VVV dq(t)θ̂θθT ∈ R2N

where θ̂θθT ∈ R2(N+|E|) is an estimation of the real parame-
ters in model (3). Note that contrary to the most common
Least Squares setup (See for example Hayes (1996); Haykin
(2014)), the error defined here is a vector and not a
scalar and the standard LS estimation method needs to
be modified.
If we consider the first T + 1 time instants in S =
{t0, t1, . . . , tT , . . . }, we can also define an aggregated error
vector in the following way:

eeeT =


eee(t0)
eee(t1)
...

eee(tT )

 =


iiidq(t0)
iiidq(t1)

...
iiidq(tT )

−

VVV dq(t0)
VVV dq(t1)

...
VVV dq(tT )

 θ̂θθT = iiidqT −VVV
dq
T θ̂θθT ,

where the vector iiidqT ∈ R2N ·(T+1) and the matrix VVV dqT ∈
R2N ·(T+1)×2(N+|E|) are implicitly defined.
With a forgetting factor 0 < λ < 1 we can define a
quadratic functional,

J(θ̂θθT ) =
T∑
i=0

(λ)T−ieee′(ti)eee(ti) = eee′T (LLLT ⊗ III2N )eeeT , (4)

which implicitly depends on the parameters estimations
through the error vector and where ⊗ stands for the
Kronecker Product and,

LLLT := diag
{
λT−i

}T
i=0 .

When λ = 1, the functional represents the accumulated
quadratic error between the model and the real values of
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currents and voltages in the last T − 1 observations. For
smaller forgetting factors, the accumulation is weighted
so that the last observation is more important than the
previous ones. Minimizing this functional in terms of θ̂θθT , a
procedure can be proposed to estimate the real parameters
of the grid.
Theorem 2 (Least Squares). The positive functional (4)
is minimum for

θ̂θθT =
[
(VVV dqT )′(LLLT ⊗ III)VVV dqT

]−1
(VVV dqT )′(LLLT ⊗ III)iiidqT (5)

Proof. At the minimum, the divergence of the functional
(4) with respect to the parameters vector must be zero.
This standard procedure leads directly to (5).

3.2 Recursive Parameter identification

It is desired to find a recursive method to identify the
parameters.
Theorem 3 (Recursive Least Squares). Giving an initial
estimations for the parameters, θ̂θθT−1 ∈ R2N(T+1), and an
initial covariance matrix PPPT−1 ∈ R2(N+|E|)×2(N+|E|), the
positive functional (4) is minimum for

θ̂θθT = θ̂θθT−1 + 1
λ
PPPT−1(VVV dq(tT ))′eee(tT ), (6)

where,

PPPT = 1
λ
PPPT−1 −

1
λ2PPPT−1(VVV dq(tT ))′ΓΓΓTVVV dq(tT )PPPT−1, (7)

and

ΓΓΓT :=
[
III + 1

λ
VVV dq(tT )PPPT−1(VVV dq(tT ))′

]−1
∈ R2N×2N .

Proof. First, note the following decompositions:

VVV dqT =
[
VVV dqT−1
VVV dq(tT )

]
, iiidqT =

[
iiidqT−1
iiidq(tT )

]
, LLLT⊗III =

[
λLLLT−1 ⊗ III 000

000 III

]
Equation (5) can be equivalently written as RRRT θ̂θθT = gggT ,
where
RRRT := (VVV dqT )′(LLLT ⊗ III)VVV dqT

= λ(VVV dqT−1)′(LLLT−1 ⊗ III)VVV dqT−1 + (VVV dq(tT ))′VVV dq(tT )
= λRRRT−1 + (VVV dq(tT ))′VVV dq(tT ) (8)

and
gggT := (VVV dqT )′(LLLT ⊗ III)iiidqT

= λ(VVV dqT−1)′(LLLT−1 ⊗ III)iiidqT−1 + (VVV dq(tT ))′iiidq(tT )
= λRRRT−1θ̂θθT−1 + (VVV dq(tT ))′iiidq(tT )

Developing this expression based in the noted decompo-
sitions and the error definition, defining the covariance
matrix PPPT := RRR−1

T , we come to the recursive expression
(6).
Because we already have the recursive expression (8), then

PPPT =
[
λRRRT−1 + (VVV dq(tT ))′VVV dq(tT )

]−1
,

can be expressed recursively as in equation (7) directly
applying the Matrix Inversion Lemma stated bellow.

Lemma 4 (Matrix Inversion Lemma). For matrices AAA,BBB,
CCC, and DDD, such that the multiplications and the inverses
used bellow are well defined, then

(AAA+BBBCCCDDD)−1 = AAA−1 −AAA−1BBB
(
CCC−1 +DDDAAA−1BBB

)−1
DDDAAA−1.

Proof. The lemma, also known as the Woodbury ma-
trix identity, Sherman-Morrison-Woodbury formula or just
Woodbury formula can be easily found in several text-
books (e.gGolub and Loan (2013); Horn and Johnson
(2013)) or on the Internet.

Remark 2 (Inverse of ΓΓΓ). In the procedure proposed by
Theorem 3, we still need to calculate the inverse of matrix
FFFT = III + 1

λVVV
dq(tT )PPPT−1(VVV dq(tT ))′ = ΓΓΓ−1

T ∈ R2N×2N .
The dimension of this matrix only depends on the number
of nodes and not the number of edges, which is not
the case when directly computing the inverse of RRRT ∈
R2(N+|E|)×2(N+|E|) in Theorem 2.
In the standard recursive least squares set up, the error
is a scalar, which finally makes matrix FFFT also to be
a scalar easy to invert. In our case this matrix inverse
might not even exist and therefore we need to check for
existence in order to estimate parameters. One way of
doing this is through the condition number (e.g Golub
and Loan (2013); Horn and Johnson (2013)) of the matrix
κ(FFFT ) = ‖FFF−1

T ‖‖FFFT ‖, defined for some matrix norm
‖ · ‖. With the Euclidean norm, we have that κ(FFFT ) =
‖FFF−1

T ‖2‖FFFT ‖2 = σmax(FFFT )/σmin(FFFT ) is easy to calculate
with σmax(FFFT ) and σmin(FFFT ), respectively, the largest
and smallest singular values of the matrix.
If the condition number of a matrix is infinite, then the
matrix is singular. In principle, any positive value of
the condition number characterizes an invertible matrix.
However, if the condition number is too large (κ(FFFT )� 1),
the matrix is ill conditioned (or close to be singular) and
the computation of its inverse is prone to large numeric
errors.

3.3 Immediate extensions

A priory knowledge on some of the parameters that
describe the mesh grid might ease the identification. For
example, some parameters might be significantly larger
than the values of other parameters, or some parameters
might already be known through direct measurement or
previous identifications. In this cases, the model in (3)
needs to be modified in order to properly include this
information.
Define the set of the indexes of all parameters as

P = {1, 2, . . . , 2(N + |E|)}
and a partition of this set into a set of known parameters,

PK =
{
p ∈ P |[θθθ]p = [θ̂θθT ]p

}
,

and a set of unknown parameters such that PU ∪ PK = P
and PU ∩ PK = { }. Additionally, consider that each
unknown parameters is weighted by a constant wp > 0
in order to adjust the units.
In this way,
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Table 1. Line and Load Nominal Parameters
in Examples 1 and 2.

i j Rij [Ω] Lij [mH] gij [S] bij [S]

Lo
ad

s 1 1 180.00 130.00 0.0053 0.0012
2 2 280.00 260.00 0.0033 0.0010
3 3 243.00 084.00 0.0041 0.0004
4 4 201.00 100.00 0.0049 0.0008

Li
ne

s

1 2 0.5000 1.1000 1.3535 0.9354
1 4 0.9000 1.4000 0.8969 0.4383
2 3 0.1000 0.7600 1.4924 3.5632
3 4 0.1000 1.5000 0.4309 2.0306

θ̂θθT =
∑
p∈PK

sssp[θθθ]p +
∑
p∈PU

ssspwp[θ̂θθT ]p

= SSSKθθθ
K +SSSUWWWU θ̂θθ

U

T .
Where sssp ∈ R2(N+|E|) is a vector with zeros in every
entry but the p-th entry where its value is one; and SSSK =
row {sssp}p∈PK

, SSSU = row {sssp}p∈PU
, WWWU = diag {wp}p∈PU

,
θθθK = col {[θθθ]p}p∈PK

is a vector with all known parameters,
and θθθUT = col

{
[θ̂θθT ]p

}
p∈PU

is a vector with unknown
parameters to be estimated.
Replacing the last expression in the definition of the error
leads to
eee(tT ) = iiidq(tT )− VVV dq(tT )θ̂θθT

=
(
iiidq(tT )− VVV dq(tT )SSSKθθθK

)
−
(
VVV dq(tT )SSSUWWWU

)
θ̂θθ
U

T

= iiidqU (tT )− VVV dqU (tT )θ̂θθ
U

T ,
where iiidqU (tT ) ∈ R2N and VVV dqU (tT ) ∈ R2N×|PU | are implic-
itly defined. To adapt Theorem 3 is straight forward.

4. NUMERIC EXAMPLES
Example 1 (Four nodes microgrid). Consider a microgrid
with N = 4 nodes and |E| = 4 < N(N − 1)/2 = 6
lines. The parameters of the microgrid are shown in Table
1. Note that two lines do not exist, and therefore the
associated admittances are identically zero. The behavior
of the microgrid is simulated with nominal values V =
220[VRMS ] and f = 50[Hz]. The original data used for
estimation is available upon request to the author.
We will assume no knowledge about the microgrid, that
is, all possible N(N − 1)/2 = 6 lines are assumed present,
implying P = {1, . . . , 20} and PK = { }. Sampling the
data every ∆T := tT − tT−1 = 0.1[s], with θθθ0 = 000, PPP 0 = III,
S =

√
3/2V , κ̄ = 1.5 and λ = 0.95, the estimation results

can be seen in Figure 2 for the non-zero admittances and in
Figure 3 for the parameters associated to the un-existing
lines which should have a value zero.
Note that even though the estimation is achieved, the
algorithm intents to find the value of the zero parameters
making large errors during a long period, as can be seen
in Figure 3 a). Furthermore, at the end of the simulation
time, the value at which these parameters are estimated
is numerically comparable with the real values of the load
admittances, see Figure 3 b). This issues can be addressed
by considering additional information about the circuit in
order to improve the identification performance. �
Example 2 (Estimation with known parameters). Con-
sider the exact same data than in Example 1. How-
ever, now we assume that the graph that describes
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Fig. 2. Identification results for four nodes microgrid with
sampling period tT − tT−1 = 0.1[s], κ̄ = 1.5 and
λ = 0.95 in Example 1. a) Positive Admittances
identification, b) Detail of load admittances, and c)
Detail of line admittances.
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Fig. 3. Identification results for four nodes microgrid with
sampling period tT − tT−1 = 0.1[s], κ̄ = 1.5 and λ =
0.95 in Example 1. a) Zero admittances identification,
and b) Detail of zero admittances.

the microgrid is known, so that DDD = D′(Go), P =
{1, . . . , 2(N + |E|) = 2(4 + 4) = 16}, and we do not need
to estimate the parameters associated to the un-existing
lines. Furthermore, we will assume that we know the
parameters of the loads under the second, third, and
fourth node. That is, PK = {2, 3, 4, 10, 11, 12} and PU =
{1, 5, 6, 7, 8, 9, 13, 14, 15, 16}. In this way, we only need to
estimate ten parameters instead of the twenty parameters
from the previous example. Additionally, we know that
the load admittances are around a thousand times smaller
than the line admittances, therefore we choose wp = 1,
∀p ∈ PU\{1, 9} and w1 = w9 = 0.001.
With ∆T := tT − tT−1 = 0.1[s], θθθ0 = 000, PPP 0 = III, S =√

3/2V , κ̄ = 1.5 and λ = 0.95, the same as in Example
1, the estimation results can be seen in Figure 4 with the
same color pattern. It is clear at simple sight, that the
estimation is carried out faster than before. Note also that
the introduction of the weights in matrix WWWU 6= III, makes
the parameters of the first load comparable in magnitude
to those of the lines. �
Example 3 (Estimation of time varying loads). Consider
the same microgrid, but this time assume that the values
of the line impedances are already known. The unknown
loads begin at their nominal values used in the previous
examples, but they abruptly change up to a 20% during
the simulation time. Figure 5 shows the result of the
estimation process including the dynamic behavior of the
load. �
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Fig. 4. Identification results for four nodes microgrid with
sampling period tT − tT−1 = 0.1[s], κ̄ = 1.5 and
λ = 0.95 in Example 2.
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Fig. 5. Identification results for four nodes microgrid with
sampling period tT − tT−1 = 0.1[s], κ̄ = 1.5 and
λ = 0.95 in Example 3. a) Conductance of loads, and
b) Susceptance of loads.

5. CONCLUSION
In this paper we have applied the RLS methodology to the
estimation of the line and load parameters of a three phase
mesh grid using only voltage and current measurements
at predefined nodes. The resulting proposed recursive al-
gorithm is suitable for on-line operation. The algorithm
determines the admittances values, also identifying zero-
admittance lines, and therefore the topology of the grid.
Because the sample rate at which the parameter estima-
tion is defined by the user, there are no large commu-
nication restrictions and the algorithm can be run at a
centralized unit.
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