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Abstract: This paper investigates continuous-time LPV dynamic-output feedback for control-
ling a type 2 diabetes patients’ fasting glucose concentration. To emulate a real life scenario, the
input and measurement were specified only once per day, and biological variance was introduced.
The results were evaluated by examining the settling time, variance after settling, and the
violation of the nominal fasting glucose concentration range of 4−5 [mmol/l]. The LPV dynamic-
output feedback controller was compared to a simple rule based titration algorithm and a PI
controller tuned by LPV methods. The LPV dynamic-output feedback controller, proved to
deliver better results, in particular for the transient period.
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1. INTRODUCTION

Diabetes mellitus, hereafter, referred to as diabetes, is
increasingly becoming a global burden. As one of the four
non-communicable diseases (NCD), diabetes is account-
able for 1.6 million of 41 million yearly NCD related pre-
mature deaths. The deaths before the age of 70 are defined
as premature deaths. Diabetes is a chronic, progressive
disease. However, a series of interventions can improve the
health of patients, so they live longer with a higher quality
of life (International Diabetes Federation, 2017).

The most prevalent types of diabetes are type 1 diabetes
(T1D) accounting for 9% and type 2 diabetes (T2D) ac-
counting for 89%, see (International Diabetes Federation,
2017). In 2017 a total of 425 million in the age group of
adults from 20 to 79 years was estimated to have diabetes.
This number is estimated to increase to 629 million by
2045 (International Diabetes Federation, 2017).

T2D patients monitor their glucose concentration with
a glucometer, in order to be in the nominal range, 4
to 7 [mmol/l](Diabetes.co.uk, 2019) and to avoid high
concentration leading to hyperglycemia, or dangerously
low concentration leading to hypoglycemia.

Table 1 shows the different concentrations of blood glucose
and the associated risk levels. To regulate the glucose
concentration, insulin is injected.

The Sample Treat-to-Target Algorithm (Swigert, 2014) is
a simple algorithm for basal insulin titration, where one
or more daily fasting glucose (FG) measurements are used
to determine a daily dose for insulin injection. Based on a
target FG level the insulin dose is increased daily until the
target FG level is reached. The dose is lowered immediately
? This work was funded by the IFD Grand solution project ADAPT-
T2D, project number 9068-00056B.

Table 1. Mean fasting glucose

Level mmol/l Risk

Dangerously high 17.4 Very high
High [11,15.6] High
Borderline [7,10] Medium
Normal [4,6] No risk
Low 3.9 Medium
Dangerously low 2.8 High

if FG measurements are significantly lower than the target
is observed.

Linear parameter-varying (LPV) based control algorithms
have previously been investigated for use in controlling the
blood glucose concentration in diabetes mellitus patients.
However, the use of such algorithms have exclusively been
employed for T1D patients.

The identification of an LPV model describing the glucose-
insulin dynamics of the T1D patient is investigated in (Cer,
2012). It is concluded that the identified model provides a
satisfactory description of the dynamics.

LPV based control for glucose concentration was investi-
gated in (Colmegna and Peña, 2014). The paper tests the
controller on 10 simulated adults from a T1D designed
simulator to analyse the closed-loop performance, the tests
also includes unannounced meals. The authors concluded
that stability and robustness is guaranteed based on Lya-
punov theory, and with the use of on-line tuning they re-
duced the risk of having hypoglycemic and hyperglycemic
events.

A switched LPV controller with multiple regions related
to hypo-, hyper-, and euglycemia situations was proposed
in (Colmegna et al., 2016). The model, the controller
is based on, is tuned with a priori patient information.
Additionally an estimator is used to predict perturbations.
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The modelling and discretization of a T1D patient model
in the LPV framework is explored in (Eigner et al.,
2018). Three different LPV discretization methods, and
two Jacobian based discretization methods are introduced,
analysed and proven by RMSE based error assessment.

In (Aradóttir et al., 2017), a physiological model of T1D
is augmented with endogenous insulin production in T2D
in order to obtain a model for simulating FG for T2D
patients. The effect of dose guidance and adherence to
injection is investigated and compared to results from
clinical trials. It is concluded that the model is sufficient to
simulate FG concentrations in a clinical trial. In Aradóttir
et al. (2018), the model is modified to allow for identi-
fication of parameters. The identifiability of parameters
is investigated, and parameter estimation from simulated
and clinical data is performed.

The aim of this paper is to show that linear parameter-
varying based control methods are applicable for control-
ling the glucose concentrations in T2D patients, and able
to manage the transient period with good performance. In-
deed it is shown that dynamic-output feedback in an LPV
setting give better robust performance when compared to
the rule-based titration algorithm described in (Aradóttir
et al., 2017) and standard PI control (see Table 5 and 6).

The rest of this paper proceeds as follows. Section 2 intro-
duces a physiological model for simulating T2D patients
using long-acting insulin. Simulation of glucose consump-
tion, insulin injection and biological variability is also
presented. Lastly, an LPV representation of the physio-
logical model for controller design is explored. In section
3, an LPV based Dynamic-Output Feedback controller
is derived. In section 4, a comparison of results between
the proposed LPV control algorithm and the rule-based
algorithm is presented. Lastly, section 5 concludes on the
methods and results explored.

The numerical results of this paper is obtained using
YALMIP (Löfberg, 2004) as LMI parser, and MOSEK as
solver.

2. THE INVESTIGATED MODEL

This section details the model describing the dynamics
of glucose concentration and long-acting insulin in type
2 diabetes patients. Furthermore, the decisions made in
regards to the design of controllers for the system are
presented.

2.1 Physiological Model

The physiological model describing the long-acting insulin
and glucose concentration in type 2 diabetes patients is as
described in (Aradóttir et al., 2018):

ẋ1 =
1

p1
u− 1

p1
x1 (1a)

ẋ2 =
1

p1
x1 −

1

p1
x2 (1b)

ẋ3 = p3(x2 + p7x4)− p3x3 (1c)

ẋ4 = −(p5 + p4x3)x4 + p6 +RA (1d)

with u [U/day] (1U = 34.7 µg) the exogenous insulin from
injections, x1

p2
[U/l] and x2

p2
[U/l] the insulin concentration

Table 2. Parameter values and distribution of
the model (1).

Parameter Value/Distribution Modified values

p1 0.5
p2 1800
p3 15.8
p4 0.44 N(0.44, σ2

4)
σ4 ∈ {0.01, 0.1}

p5 3.31
p6 N(96.7, 7.942) N(96.7, 52)
p7 N(2.52, 0.52)
pv 22
pd ln(pd) ∼ N(µd, 0.252) ∼ N(µd, 0.722)

µd = ln
(

40
60·24

)
µd = ln

(
40

60·24

)
in subcutaneous and plasma respectively, x3p4

p2
[1/day] the

insulin effect on glucose, and x4 [mmol/l] the continuous
glucose concentration in plasma. The parameters of the
model (1) are:

• p1 is a time constant of the insulin travelling between
subcutaneous and plasma and is chosen to fit the
action profile of the long-action insulin [day];

• p2 is a gain describing insulin clearance [l/day];
• p3 is the time constant describing the delay in insulin

action following increased plasma insulin concentra-
tion [1/day];

• p4 is the gain describing insulin sensitivity [1/U ];
• p5 is the inverse time constant describing the effect of

insulin to eliminate glucose from plasma [1/day];
• p6 is the constant describing the rate of endogenous

glucose production [mmol/l · day];
• p7 describes the endogenous insulin production and

interpreted as the sensitivity of the the insulin pro-
ducing cells in the pancreas which is assumed to be
increasing linearly with fasting glucose concentration
[U · l/mmol · day];

• pv is the distribution volume of the blood glucose [l].
• RA = D2

pvpd
is the rate of appearance of glucose in the

plasma from the ingested food [U/day].

Furthermore, the glucose from the ingested food is incor-
porated as described in (Aradóttir et al., 2017) using a
two-compartment model represented by D1 [mmol] and
D2 [mmol]:

Ḋ2 =
1

pd
D1 −

1

pd
D2 (2a)

Ḋ1 =
1000

MwG
df −

1

pd
D1 (2b)

where

• df is the daily glucose consumption rate (disturbance)
[g/day];

• pd denotes the peak time for meal absorption [min];
• MwG = 180.1559[g/mol] is the molar weight of glu-

cose;

Parameter values and distribution are shown in Table 2
with N(µ, σ2) indicating normal distribution with mean
µ and variance σ2. The numerical values (in the second
column) for p1, . . . , p7 are based on (Aradóttir et al., 2018),
pv is based on Kanderian et al. (2009), and pd is based on
Hovorka et al. (2004); Wilinska et al. (2010).
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2.2 Patient Simulation

The model (1)-(2) is used to generate virtual patients as
follows. We will consider two cases: three varying parame-
ters pd, p6 and p7 based on the second column in Table 2,
and four varying parameters pd, p4, p6 and p7 based on
the third column in Table 2 with σ4 = 0.01 and p7 as in
column two. To each of the varying parameters there will
be associated three values: the 5th percentile, the mean
and the 95th percentile from the parameter distribution.
Thus 27 and 81 different virtual patients will be simulated.
Moreover, to account for stochastic phenomena, 30 realiza-
tions of each patient will be simulated, resulting in a total
of 810 and 2430 simulations per control strategy. Where
each realization used a different seed for pseudo-random
number generation.

The range of x4 is determined based on the extreme values
shown in Table 1, meaning x4 ∈ [0, 17.4]. However, it is
convenient when using a polytopic LPV representation to
map the range of x4 to [0, 1] and to hide the bias term p6
in the disturbance. This can be done using the following
affine transformation:

x̄4 = αx4 (3)

with

α =
1

x4max − x4min
=

1

17.4
(4)

implying that x̄4 ∈ [0, 1]. To hide the bias term p6 the
following transformations are used

x̄3 = p3x3 (5)

x̄4 = αx4 (6)

D̄2 =
α

pvpd
D2 + C (7)

C = αp6

D̄1 =
α

pvp2d
D1 +

C

pd
(8)

d̄f =
1000α

pvp2dMwG
df +

C

p2d
. (9)

Taking time derivatives of (5)-(9), using (1), and substitut-
ing in the definitions, yields the following model equivalent
to (1)-(2):

ẋ = Apx+Bpu+ Epdf (10)

with

x =
[
x1 x2 x̄3 x̄4 D̄2 D̄1

]T
(11)

Ap =



−p−1
1 0 0 0 0 0

p−1
1 −p−1

1 0 0 0 0

0 p23 −p3
p23p7
α

0 0

0 0 −x̄4
p4
p3
−p5 1 0

0 0 0 0 −p−1
d 1

0 0 0 0 0 −p−1
d


(12)

Bp =
[
p−1
1 0 0 0 0 0

]T
Ep = [0 0 0 0 0 1]

T
. (13)

Note that Ap = Ap(x̄4) is a function of x̄4 (this will be
important when constructing the LPV model).

Fig. 1. Glucose ingestion for five days distributed over
three daily meals

2.3 Glucose Consumption

The patient’s daily glucose consumption from food sources
acts as a disturbance on the system. Recommended glucose
intake is 240−280 [g/day] (Bolder et al., 2009). To include
variability in behaviour of patients, It is assumed that the
patient will ingest between 150− 400 [g/day], interpreted
as df ∼ U(150, 400) [g/day] (uniformly distributed on
[150,400]). In the simulation, the ingestion will be divided
into three meals, rather than the glucose ingestion being
constant throughout the day. The first and second meals,
corresponding to breakfast at 8:00, and lunch at 12:00,
are 10 minutes long, amounting to 1/144 [day], and the
third meal, dinner at 18:00, is 20 minutes long, 1/72 [day];
however with half the consumption rate pr. minute, com-
pared with the first and second meal. The consumption is
distributed such that the total consumption amount to a
value in the assumed interval. This distribution of meal
provide a more realistic emulation of a T2D patients daily
consumption, compared to a constant rate throughout the
day. In Fig. 1, the glucose consumption of a patient over
5 days is shown.

2.4 Shot Insulin Input

Insulin is given as a shot injection where the entire daily
dose is given in a short interval to simulate the one
daily injection that a patient would do in practice, rather
than having continuous input throughout the day. FG is
measured in the beginning of the day at 7am and the shot
input is given at the same time. Shot insulin input on day
d with injection duration tin = 2[min] is defined as

ud(d) =


u0 if d = 0∫ d

d−1

u(t) dt if d ∈ Z>0
(14)

ush(d <t < d+ tin) =
1

tin
ud(d) (15)

Here ud(d)[U ] is the insulin dose injected on day d, ush(t)
[U/day] is the shot input, and u(t) is the input calculated
by the control law. The initial injection dose u0 = 30[U ] of
insulin. On the following days, injection is calculated from
the titration algorithm or control law, as seen in (15). Due
to the injection shot being calculated form the previous
day a delay is introduced into the system.

2.5 Biological Variability

Several sources of variance can affect the day-to-day vari-
ance of FG concentration of a T2D patient. These sources
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include, but are not limited to, metabolic variability in-
cluding insulin variability, variation due to lifestyle and
adherence, and device-related variability (Aradóttir et al.,
2017).

In (Ollerton et al., 1999), the day-to-day intraindividual
variability of fasting plasma glucose in newly diagnosed,
previously untreated individuals were monitored. Results
found that 95% of the FG concentration of the group of
subjects varied daily with ∼ 14% caused by biological
variability. Hence the coeffcient of variation (CV) for
fasting glucose is 14%. As the results are expressed in
percentages, subjects with higher FG concentration were
likely to experience more significant day-to-day variability.

In simulation, it is assumed that no insulin is omitted
and biological variance is at its minimum, and no lifestyle
or insulin adherence variability of FG concentration is
present. Therefore based on the study mentioned above, a
variance is added to simulated FG concentration by setting
(Aradóttir et al., 2017),

F̂G(k) = x4(btc) + v(k) (16)

with b·c the rounding down operation, k ∈ N denoting day
number, t ∈ [k, k + 1) and v(k) ∼ N (0, (0.14x4(btc))2).

Hence F̂G(k) represent simulated FG with biological vari-
ance as measurement noise. To simulate process uncer-
tainty white noise, v(j) is added to the model, in the
simulation of patients. It is important to note that this
noise is only added in simulation and is not accounted for
in the derivation of the controller.

2.6 Rule-Based Titration Algorithm

As a benchmark for comparison with the LPV control
strategy, the treat-to-target rule-based titration algorithm
in (Aradóttir et al., 2017) is used. Given a specific starting
dose, the patients adjust their insulin dose based on
daily FG measurements, by various amounts depending on
which FG interval their measurement lies within, see Table
3. Furthermore, dose adjustments are not performed in the
first three days of simulation.

Table 3. Dose adjustments of the rule-based
titration algorithm. Adjustments are based on
the average FG of three day above target or the

lowest below target (Aradóttir et al., 2017)

FG [mmol/l] Dose adjustment

<3.1 -4U
3.1 - 3.9 -2U
4.0 - 5.0 In target: No change
5.1 - 7.0 +2U
7.1 - 8.0 +4U
8.1 - 9.0 +6U
>9.0 +8U

2.7 LPV Representation

Linear parameter-varying systems are parametrized lin-
ear dynamical systems whose mathematical description
depends on parameters that change values over time.

The polytopic framework offers a simple and convenient
way for representing and analyzing LPV systems. The
general LPV system:

ẋ(t) = A(ρ)x(t) +Bu(t) + Ew(t)

y(t) = Cx(t)
(17)

is represented as a convex combination of linear time-
invariant systems:

ẋ(t) =

 2N∑
i=1

λi(ρ)Ai

x(t) +Bu(t) + Ew(t) (18)

y(t) = Cx(t) (19)

where x ∈ Rn is the state of the system, u ∈ Rm is the
control input to the system,w ∈ Rp is the exogenous input,
y ∈ Rr is the measured output and N specify the number
of parameters. The parameter vector ρ ∈ RN is constrained
by

ρ = [ρ1(t), ρ2(t), ..., ρN (t)] ∈ ∆N (20)

where ∆N is a bounded convex polytope (see (24)). To
describe ∆N let first the set ρ be defined by

ρ =
{
ρ
1
, ρ1, ..., ρN , ρN

}
, ρ

i
< ρi, i = 1, ..., N

with ρi and ρ
i

the upper and lower bound of parameter

ρi, respectively. Secondly, for each pair (i, j) ∈ N2 define:

Q(i, j) =

⌈
i

2(j−1)

⌉
mod 2 (21)

with d·e the rounding up operation, and mod the modulo
operation. Finally for given ρ define the set of 2N corner
points

V (ρ) = {v1, ..., v2N } (22)

with vi ∈ RN and the j-th coordinate of vi defined by

vij =

{
ρj if Q(i, j) = 0

ρ
j

if Q(i, j) = 1
j = 1, ...N . (23)

The constraining set ∆N from (20) can then be defind by

∆N = Co(V (ρ)) (24)

with Co(S) the convex hull of the set S.

Now that ∆N has been defined, λi : ∆N → ΛN (with ΛN
the N-unit simplex), and Ai from Eq. (18) can be defined:

Ai = A(vi) (25)

λi(ρ) =

N∏
j=1

aij(ρj) (26)

aij(ρj) =


ρj − ρj
ρj − ρj

if Q(i, j) = 1

ρj − ρj
ρj − ρj

if Q(i, j) = 0

. (27)

The left-hand side of (25) indicate that the entries of the
n×n matrix A(vi) are functions of vi, e.g., as Ap = Ap(x̄4)
in (13). Moreover, note that

2N∑
i=1

λi(ρ) = 1, λi(ρ) > 0, i = 1, ..., 2N . (28)

The general description above can now be applied to the
physiological system studied here. The system (13) has a
bilinear term in x̄4 coming from the matrix element (Ap)43.
By taking x̄4 in (Ap)43 as a time-varying parameter ρ, the
non-linearities can be hidden. That is,

Ap(ρ) = Ap(x̄4) (29)
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Table 4. Values obtained using the Matlab
command icdf evaluated at P ∈ {0.05, 0.95}.

Parameter Value (3 param.) Value (4 param.)

ρ1, ρ1
1, 0 1, 0

ρ2, ρ2
54.3113, 23.8624 117.6617, 11.0146

ρ3, ρ3
3.3424, 1.6976 3.3424, 1.6976

ρ4, ρ4
0.6045, 0.2755

so

(Ap(ρ))43 = −ρp4
p3

(30)

and all other matrix elements (Ap(ρ))ij are as in (13).
Similarly the parameters pd, p4, p7 (which are assumed
constant for a specific patient) could potentially also be
considered as time-varying parameters in an LPV model.
Therefore in the sequel three scenarios will be considered; a
one parameter ρ = x̄4, a three parameter ρ = (x̄4,

1
pd
, p7),

and a four parameter ρ = (x̄4,
1
pd
, p7, p4) LPV model. In

the one and three parameter case the the model is affine in
the parameters. In the four parameter case this is not the
case due to the bilinear term in A43. We therefore do an
approximation by considering the system obtained as the
convex hull of the corner matrices from (25). The upper
and lower bounds for the parameters are as in Table 4.

3. CONTROLLER DESIGN

In this section, a dynamic-output feedback controller
(DOF) on the form (31), which quadratically stabilises
the LPV system (32) will be considered. The motivation
is to derive a controller, which does not require the imple-
mentation of an observer. The general form of the control
structure is

ẋc(t) = Ac(ρ(t))xc(t) +Bc(ρ(t))y(t)

u(t) = Cc(ρ(t))xc(t) +Dc(ρ(t))y(t)
(31)

where xc ∈ Rn is the controller state and y ∈ Rr is
the measured output of the Generic Parameter Dependent
System

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t) + E(ρ(t))w(t)

z(t) = C(ρ(t))x(t) +D(ρ(t))u(t) + F (ρ(t))w(t)

y(t) = Cy(ρ(t))x(t) + Fy(ρ(t))w(t)

(32)

with x ∈ Rn the systems states, u ∈ Rm the controlled
input, z ∈ Rq the controlled output, and w ∈ Rp the
exogenous input.

In this paper the controlled output z(t) is designed as

z(t) = e(t) +

∫ t

0

e(s)ds+Du(t) (33)

with e(t) = r(t) − x4(t) the error, r(t) = r = 4.5α
the reference taken as the preferred glucose concentration
in plasma (4.5 [mmol/l]) and leaving D as a tuning
parameter. In summary the physiological system studied
here can be represented by the LPV system

˙[ x
xI

]
=

[
Ap(ρ) 06×1

−C 01×1

] [
x
xI

]
+

[
Bp
0

]
u+

[
Ep 06×1

01×1 1

] [
df
r

]
(34)

z = [−C 1]

[
x
xI

]
+ 0.05u+ [0 1]

[
df
r

]
(35)

y = [−C 1]

[
x
xI

]
+ [0 1]

[
df
r

]
(36)

and the dynamic-output feedback controller can be ob-
tained by applying Theorem 3.3.4 and Proposition 3.3.5
from (Briat, 2014). In the one parameter case this yields

Ac(ρ) = Ac0 + ρAcρ (37)

Ac0 =


−5.49 −3.34 −0.57 0.12 −1 −0.0004 0.008

−7 −12 −2.08 0.44 −3.6 −0.0014 0.029

−15.45 2.94 −12.43 −1.3 7.9 −0.034 0.014

0.39 −3.16 −1.82 −33.2 −0.3 −0.001 −0.006

3.69 34.74 12.16 −1.8 −33 0.046 0.07

3705.02 −526 −772.4 26.16 171 3.23 2.37

−171008 40989 20554 −1918 13476 −856.06 −76.05


(38)

Acρ =


0.0005 0.0008 −0.004 0.0002 −0.0003 0.0001 0.000002

0.006 0.01 −0.05 0.002 −0.004 0.0007 0.00002

4.4 8.1 −34.6 1.7 −2.9 0.6 0.01

−0.5 −0.9 4.0 −0.2 0.3 −0.1 −0.002

4.1 7.6 −32.2 1.6 −2.7 0.5 0.01

118.8 219.9 −935.4 47.1 −79.2 14.9 0.4

6825.9 12631.4 −53729.8 2704.4 −4551.9 856.4 22.6


(39)

Bc =



−0.000003
−0.00001
−0.00002
0.000003
−0.00003

0.005
−0.227

 , Cc =



−18343451.1
−21144114.6
−4021526.5

862970.6
−6965816.7
−2698.7
56605.0



T

(40)

Dc = −20. (41)

The three and four parameter case is obtained similar to
the above. For comparison a PI controller u(t) = Dcy(t),
with the numerical value of Dc identical to the LPV case,
will also be tested.

4. RESULTS

The results of regulating fasting glucose concentration in
T2D with the Dynamic-Output Feedback controller, with
1, 3 and 4 time-varying parameters, the PI controller, and
the rule-based titration algorithm, can be seen in

• Case 1: Fig. 2, 3, 4, and 5 respectively, when using
the values from column two in Table 2.

• Case 2: Fig. 6, 7, 8, and 9 respectively, when using
the values from the third column in Table 2 with
σ4 = 0.01 to simulate patients, σ4 = 0.1 to calculate
the control law, and p7 as in column two. Note that
the two choices of σ4 implies that the control law is
robust towards variations in p4.

The two graphs in each of the figures are obtained by for
each time instance to plot the maximum and minimum FG
concentrations (with a CV of 14%) of the 810 (case 1) and
2480 (case 2) simulations. Moreover, an intensity plot (in
blue) is superimposed on each of the figures illustrating
the number of trajectories going through each point.
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Fig. 2. Fasting glucose of T2D patients regulated by
the Dynamic-Output Feedback control with 1 time
varying parameter (case 1).

Fig. 3. Fasting glucose of T2D patients regulated by
the Dynamic-Output Feedback control with 3 time
varying parameters (case 1).

Fig. 4. Fasting glucose of T2D patients regulated by the
PI control (case 1).

Fig. 5. Fasting glucose of T2D patients regulated by the
Rule-based titration algorithm (case 1).

Fig. 6. Fasting glucose of T2D patients regulated by
the Dynamic-Output Feedback control with 1 time
varying parameter (case 2).

Fig. 7. Fasting glucose of T2D patients regulated by
the Dynamic-Output Feedback control with 4 time
varying parameters (case 2).

Fig. 8. Fasting glucose of T2D patients regulated by the
PI control (case 2).

Fig. 9. Fasting glucose of T2D patients regulated by the
Rule-based titration algorithm (case 2).
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4.1 Comparison of methods

The four methods are compared by the settling time,
variance and violations, shown in Table 5 and 6. The
settling time

tp% = max{l = 1, 2, . . . ,p | tp%,l},

with p=2430 or p=810 patients, denotes the maximum
of the first time after which the lth output does not
violate the 4 and 5 mmol/l bounds more than p% of
the time during the time interval [tp%,l, 100], with tp%,l
characterised by

p% =
Total length of time intervals in [tp%,l, 100] where yl(t) 6∈ [4, 5]

100− tp%,l

with yl denoting patient l. The variance vp% is relative to
tp% and given by

vp% = 1
n

∑p·s(tp%)
i=1

(
si − 1

n

∑p·s(tp%)
j=1 sj

)
with s(tp%) equal to the number of samples in [tp% 100],
and sk ∈ Stp% with

Stp% = {y1(tp%), y1(tp% + 1), . . . , y1(100), y2(tp%), . . .

. . . , yp(tp%), yp(tp% + 1), . . . , yp(100)}

and yl(q) the q-sample output of patient l. That is, vp% is
the variance of the sample data Stp% . The violations is the
integrated amount of violations from the accepted interval
as depicted in Fig 6.

Fig. 10. Indication of the t10% = 15 settling time, and
violation (=12.32) in red, related to Figure 6.

Table 5. Performance comparison between
methods (DOF - Dynamic-Output Feedback 1
and 3 time-varying parameters, PI - standard
PI controller, and R.B. - Rule Based Titration

algorithm (Pfützner et al., 2016)

Case 1 CV 14%

DOF 1 DOF 3 PI R.B.

t10% 10 14 15 67

t20% 1 1 4 8

v10% 0.023 0.034 0.019 0.032

v20% 0.343 0.37 0.039 0.044

Violations 8.583 16.523 10.703 16.795

Table 6. Performance comparison between
methods (DOF - Dynamic-Output Feedback 1
and 4 time-varying parameters, PI - standard
PI controller, and R.B. - Rule Based Titration

algorithm (Pfützner et al., 2016)

Case 2 CV 14%

DOF 1 DOF 4 PI R.B.

t10% 15 8 15 89

t20% 3 1 4 14

v10% 0.021 0.036 0.020 0.032

v20% 0.036 0.356 0.040 0.038

Violations 12.32 10.75 14.31 21.85

Case 1: Overall, the Dynamic-Output Feedback controller
with 1 time-varying parameters performs better than the
other methods with lowest settling times and violation,
and a v10% close to the lowest value which is obtained
for the PI controller. The v20% is high compared to the
PI controller and the rule-based algorithm, however this
is due to the small value of t20%. The Dynamic-Output
Feedback controller with 3 time-varying parameter has
better settling time performance compared to the PI con-
troller and the rule-based algorithm, but is outperformed
on variance and violations. The rule-based algorithm per-
forms the worst overall. Note that there are close to zero
hypoglycemia events.

Case 2: Overall, the Dynamic-Output Feedback controller
with 4 time-varying parameters performs better than
the other methods with lowest settling times and lowest
violation. The Dynamic-Output Feedback controller with
1 time-varying parameter has a performance similar to
the PI controller. However, the Dynamic-Output Feedback
controller controller has a lower violation, coming from
the faster convergence in the transient period. The rule-
based algorithm performs the worst overall, as it only
has a lower variance than the Dynamic-Output Feedback
controller with 4 time-varying parameters. The possibility
of hypoglycemia seen in Fig 7 can be removed by changing
the reference value slightly. In this case performance of the
Dynamic-Output Feedback controller with 4 time-varying
parameters will be similar to the PI controller as seen in
Fig. 11

Fig. 11. Fasting glucose of T2D patients regulated by the
DOF 4 control with reference at 4.6 [mmol/l]

5. CONCLUSION

Through simulation of T2D patients with the control
methods, Dynamic-Output Feedback control, PI control,
and the rule-based algorithm, it can be concluded that
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the standard rule-based algorithm is outperformed by the
other control methods, both in terms of settling time and
violation of nominal fasting glucose concentration range.
The Dynamic-output Feedback controller proved to overall
have the best performance, with fast settling times and
low violation. It is noted that the PI controller performed
somewhat similar to the 3 parameter Dynamic-output
Feedback controller in case 1, and to the 1 parameter
Dynamic-output Feedback controller in case 2. Finally, it
should be remarked that the Dynamic-Output Feedback
and the PI controller concentrate trajectories around the
reference value significantly better than the rule-based
approach. This is indicated by the intensity (blue) in the
figures. In case 2, it is seen that the Dynamic-Output
Feedback controller and the PI controller obtain maximum
intensity values of 723, 552 and 620, while the rule-
based approach only obtain 427. In case 1, the Dynamic-
Output Feedback controller with 1 parameter and the
PI controller obtain intensity values of 251 and 243,
while the rule-based approach only obtain 188. From
a practical point of view, to get better results than a
rule-based approach, implementing a simple PI controller,
tuned by LPV methods, could be a solution. However,
an LPV dynamic-output feedback controller will provide
more robustness to variability, while still offering better
performance, especially in the transient period. One should
of course be aware of the possibility of hypoglycemia when
using the LPV approach.
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