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Abstract: This paper continues the study started by Kulikov and Kulikova on state estimation
accuracies of various Kalman-like filtering techniques in target tracking scenarios with non-
Gaussian noise in 2018. The cited authors examined a number of methods, which are grounded
in the minimum-variance or maximum-correntropy criteria and cover extended-, cubature- and
unscented-type Kalman filters, in the well-known turning aircraft scenario with impulsive (shot)
noise or mixed-Gaussian one. Despite the success of the maximum-correntropy-based filtering
methods reported on estimation of linear discrete-time stochastic systems in literature, those
case studies expose the superiority of the cubature and unscented Kalman filters towards
various extended Kalman methods designed in the minimum-variance sense or grounded in the
maximum-correntropy criterion within the mentioned target tracking scenarios. Here, we extend
that examination to the turning aircraft scenario with glint noise, which is simulated by a sum of
two zero-mean Gaussian variables with difference covariances. In particular, our study reveals
a valued potential of the maximum-correntropy-based accurate continuous-discrete extended
Kalman filters devised by the above authors in this glint noise state estimation environment.

Keywords: Continuous-discrete nonlinear stochastic model, correntropy, Kalman-like filtering,
radar tracking, maneuvering target, glint noise.

1. INTRODUCTION

Following Bar-Shalom et al. (2001); Li and Jilkov (2003)
and many others, it is natural to simulate target tracking
of airborne objects by means of a coupled continuous-
discrete stochastic state-space system of the form

dX(t) = F
(
X(t)

)
dt+G(t)dW (t), t > 0, (1)

Zk = h(Xk) + Vk, k ≥ 1. (2)

Here, the process model is of continuous-time fashion
and presented mathematically by an Itô-type Stochastic
Differential Equation (SDE) of the form (1), in which
the vector X(t) ∈ Rn of size n represents the state of
the plant, the function F : Rn → Rn (termed the drift
coefficient in this model) describes its state evolution in
time, G(t) is a diffusion matrix of size n×n, which can be
time-variant/-invariant depending on the target tracking
scenario in use, and the disturbance {W (t), t > 0} is the
multivariate Brownian motion whose increment dW (t) is
the zero-mean white process with covariance Q(t)dt >
0 of size n × n being time-variant/-invariant, as well.
Here, the initial state X(0) is assumed to be a random
variable with mean X̄0 and covariance Π0. The discrete-
time-fashion measurement model (2) simulates usually a
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digitalized flight control system, which can be based on
a radar, sonar and so on. This equation links a new
measurement information received in the form of vector
Zk ∈ Rm to the aircraft’s state Xk, which implies the
vector X(tk), by means of a sufficiently smooth function
h : Rn → Rm at every sampling time tk. Such airborne
object’s observations are considered to be noisy, that is
simulated mathematically by the disturbance Vk given in
the form of zero-mean white-noise random vectors with
their covariance matrices Rk > 0. We emphasize that
the sampling information arrives uniformly in a sampling
interval of size δ in our study, below. All realizations of the
noises dW (t), Vk and the initial state X(0) are assumed to
be taken from mutually independent random distributions.

The classical theory developed for a suboptimal estimation
of continuous-discrete stochastic systems (1) and (2) relies
mostly on the Gaussianity assumption of the a priori and a
posteriori random distributions of the plant’s stateXk and
its measurement Zk. It allows various extended-, cubature-
and unscented-type Kalman filters to be designed under
the minimum-variance performance index, as shown in
Jazwinski (1970); Arasaratnam et al. (2010); Särkkä and
Sarmavuori (2013); Särkkä (2007); Kulikov and Kulikova
(2016, 2017b,a, 2020a,b). Certainly, this Gaussianity as-
sumption is not always realistic in applied science and
engineering and state estimators intended for treating non-
Gaussian random distributions are also of great interest.
A novel approach to state estimation in non-Gaussian
stochastic systems is grounded in the notion of correntropy

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 2369



introduced recently by Santamaria et al. (2006); Liu et al.
(2007); Principe (2010). Its maximization underlies the
development of a range of filtering methods in He et al.
(2011); Chen et al. (2014, 2015); Wu et al. (2015); Izanloo
et al. (2016); Chen et al. (2017); Liu et al. (2017); Kulikova
(2017), which are robust to outliers and utilized with a
success. Besides, the high performance of such maximum-
correntropy-based filtering methods reported in the cited
literature is observed mainly in linear discrete-time state
estimation tasks. In addition, the further investigation of
Kulikov and Kulikova (2018) reveals rather poor accura-
cies achieved with the Extended Kalman Filtering (EKF)
grounded in the Maximum-Correntropy Criterion (MCC)
in comparison to those of the Cubature Kalman Filtering
(CKF) and Unscented Kalman Filtering (UKF) methods
within the turning aircraft scenario with impulsive (shot)
noise and mixed-Gaussian one, as well. That casts doubt
on a potential MCC-based filtering’s success in nonlinear
state estimation scenarios of the form (1) and (2).

In this paper, we fulfil a comparative case study of all the
filters discussed by Kulikov and Kulikova (2018), within
the air traffic control scenario of Arasaratnam et al. (2010),
but implemented with a glint measurement noise, here.
The glint phenomenon is well-known and observed often
in practical radar performances. It is caused by irregu-
lar electromagnetic wave reflections addressed in Hewer
et al. (1987). Nowadays, we are familiar with different
mathematical representations of target glint noise, as those
elaborated in Borden and Mumford (1983); Wu and Cheng
(1994); Li and Jilkov (2005); Bilik and Tabrikian (2006).
Below, we stick to its particular simulation in the form
of a sum of two zero-mean Gaussian variables, in which
one is realized with high probability but small variance
and the other with low probability but high variance (see
further details in Hewer et al. (1987); Wu (1993); Bilik
and Tabrikian (2006); Kulikov and Kulikova (2020a)).
The main issue of our interest is an assessment of state
estimation potential of the mentioned Kalman-like filters
within this challenging turning aircraft scenario corrupted
by a glint noise disturbance.

2. TURNING AIRCRAFT SCENARIO WITH GLINT
MEASUREMENT NOISE

In line with Arasaratnam et al. (2010), we consider below a
target tracking scenario in which an aircraft turning in the
horizontal plane is being observed by a radar located at
the origin. First, the target’s dynamic behavior is assumed
to obey the SDE model (1) whose state vector is X(t) :=

[ x(t) ẋ(t) y(t) ẏ(t) z(t) ż(t) ω(t) ]
⊤ ∈ R7 with the entries

x(t), y(t), z(t) referring to the airborne object’s position,
the entries ẋ(t), ẏ(t), ż(t) meaning its velocity (both in the
Cartesian coordinates) at time t and ω standing for the (al-
most) constant turn rate of the aircraft. Second, the coor-
dinated turn of the target is simulated by the drift function

F
(
X(t)

)
:= [ ẋ(t) −ω(t)ẏ(t) ẏ(t) ω(t)ẋ(t) ż(t) 0 0 ]

⊤ ∈
R7 in this case study. Furthermore, it is corrupted by the
additive noiseW (t) ∈ R7, which is is a multivariate Wiener
process with independent zero-mean Gaussian increments
dW (t), whose covariance is the diagonal matrix I7dt with
I7 denoting the identity matrix of size 7. Again, in line with
the scenario of Arasaratnam et al. (2010), the diffusion

matrix G is set to be time-invariant, diagonal and of the
form G := diag { 0 σ1 0 σ1 0 σ1 σ2 } with σ1 :=

√
0.2 m/s

and σ2 := 0.007◦/s in the present glint-noise case study.

Next, Arasaratnam et al. (2010) employ the measurement
equation (2) in which, first, the data observed takes the

form of vector Zk := [ rk θk ϕk ]
⊤ ∈ R3 and, second, the

measurement function obeys the following formula:

h
(
Xk

)
:=


√
x2
k + y2k + z2k

tan−1(yk/xk)

tan−1
(
zk/

√
x2
k + y2k

)
∈ R3

where the aircraft’s coordinates xk, yk, zk present its space
position at the sampling time tk. This measurement model
implies that the radar in use is equipped for measuring the
range r, the azimuth angle θ and the elevation angle ϕ.

As already said above, our target tracking scenario as-
sumes noisy measurements Zk corrupted with a glint noise.
Then, following Hewer et al. (1987); Wu (1993); Bilik
and Tabrikian (2006); Kulikov and Kulikova (2020a), this
measurement disturbance is simulated as follows:

Vk := (1− pg)N (0, Rm) + pg N (0, Rg). (3)

In Eq. (3), the zero-mean Gaussian variable N (0, Rm)
represents the uncertainty of radar measurements, the
other one N (0, Rg) models the glint phenomenon and
the scalar pg denotes the probability of the glint. In line
with the cited literature, the covariance Rm of the radar
measurement noise is considered to be standard, i.e. as in
Arasaratnam et al. (2010), it is taken to be diagonal and
of the form Rm := diag

{
σ2
r σ2

θ σ2
ϕ

}
where σr = 50 m,

σθ = 0.1◦, σϕ = 0.1◦. However, the covariance of the
target glint outliers must be large. That is why we merely
increase the radar measurement covariance with a factor
of 100, i.e. set Rg := 100Rm in our case study, below.
We stress that the covariance Rk in the measurement
model (2) with the glint-noise disturbance (3) is considered
to be time-invariant and evaluated statistically from the
sampled noise sequence Vk in each Monte Carlo simulation.

The scenario in use follows Arasaratnam et al. (2010) and
considers that the initial state of the target obeys the
Gaussian distribution X0 ∼ N (X̄0,Π0) with the mean

X̄0 := [ 1000m 0m/s 2650m 150m/s 200m 0m/s 6◦/s ]
⊤
,

and covariance Π0 := I7/100. It is treated by Kalman fil-
ters outlined briefly in Sec. 3 in the time interval [0, 160 s].

3. BRIEF DESCRIPTION OF KALMAN-LIKE
FILTERING METHODS UNDER EXAMINATION

All state estimation algorithms examined in the above-
described glint-noise-air-traffic-control scenario are appli-
cable to continuous-time stochastic systems of the form (1)
with discrete-time measurements of the form (2). These
are devised under the minimum-variance optimization cri-
terion or under the maximum-correntropy performance
index as well. More precisely, our case study covers various
versions of the EKF, CKF and UKF techniques, which
are presented both in the conventional (non-square-root)
form and in the square-root one and elaborated with all
necessary particulars in Kulikov and Kulikova (2018) and
references therein. In Sec. 3, we outline briefly all the state

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2370



estimation algorithms under consideration and refer the
interested reader for further details to the cited literature.

3.1 Minimum-Variance-Based Extended Kalman Filters

The minimum-variance-based extended Kalman filtering
was designed long ago and presented briefly in the form
of Theorem 8.1 in Jazwinski (1970). The cited result is
grounded in application of the known continuous-time fil-
ter of Kalman and Bucy (1961) to the nonlinear stochastic
system (1) and (2) linearized around the filtering solution
at each sampling time tk. This allows the EKF to be split
into two stages: the time and measurement updates.

The time update (or prediction) step of the EKF under
consideration is based on the time evolution of the mean
and covariance of the random distribution propagated in
line with the Moment Differential Equations (MDE):

dX̂(t)

dt
= F

(
X̂(t)

)
, (4)

dP (t)

dt
= J

(
X̂(t)

)
P (t) + P (t)J⊤(X̂(t)

)
+GQG⊤, (5)

in which the matrix J(X̂(t)) refers to the derivative (Ja-
cobian) of the drift coefficient in SDE (1). This Jacobian
matrix is evaluated at the expected trajectory in every
sampling interval [tk−1, tk]. The diffusion and covariance
matrices G and Q have been already presented in Sec. 2.

Having used the filtering solution X̂k−1|k−1 and Pk−1|k−1

as the initial values in MDE (4), (5), one solves the set
problem by means of any appropriate numerical integra-
tion method and, then, the numerical solution derived at
the end point of the integration interval [tk−1, tk] is taken

as the predicted state expectation X̂k|k−1 and covariance
Pk|k−1 at each sampling time tk. The measurement update
(or correction) step of the EKF methods under consider-
ation can be fulfilled in the conventional (i.e. non-square-
root) form or in the square-root one as explained in Sec. 4.1
and 4.2 of Kulikov and Kulikova (2018), respectively.

This theory allows the following two EKF-based filters
(and their acronyms) to be included in our case study:

• ACD-EKF is the acronym of the ACD-EKF method
grounded in the NIRK formula of order 6 (see Sec. 2.2
in Kulikov and Kulikova (2017a) for more details);

• ACD-EKF(sr) is the acronym of the square-root ver-
sion of ACD-EKF described above (see Sec. 3 in Kulikov
and Kulikova (2017b) for further details).

3.2 Maximum-Correntropy-BasedExtendedKalmanFilters

The correntropy is a novel random variable similarity mea-
sure introduced by Santamaria et al. (2006); Liu et al.
(2007); Principe (2010), which leads to the MCC-based
EKF built for treating stochastic systems (1) and (2) in
Sec. 3 of Kulikov and Kulikova (2018). The time update
steps of such filters are grounded in the numerical inte-
gration of the same MDE (4) and (5), whereas their mea-
surement update steps differ. These are presented in full
detail and explained in the cited paper. In particular, the
practical performance of the MCC-based EKF methods
depends on the size σ > 0 of the kernel (bandwidth),

which is utilized in the MCC implemented here and can be
adaptive or fixed. That is why we include the following six
filters (and their acronyms) in our glint-noise case study:

• MCC(ad)-ACD-EKF is the acronym of the MCC-based
ACD-EKF with the adaptive kernel size σ (see more
details in Sec. 3.1 of Kulikov and Kulikova (2018));

• MCC(80)-ACD-EKF is the acronym of the MCC-based
ACD-EKF with the prefixed kernel size σ (see more
details in Sec. 3.1 of Kulikov and Kulikova (2018));

• IMCC(ad)-ACD-EKF is the acronym of the IMCC-
based ACD-EKF with the adaptive kernel size σ (see
details in Sec. 3.1 of Kulikov and Kulikova (2018));

• IMCC(80)-ACD-EKF is the acronym of the IMCC-
based ACD-EKF with the prefixed kernel size σ (see
details in Sec. 3.1 of Kulikov and Kulikova (2018));

• IMCC(ad)-ACD-EKF(sr) is the acronym of the square-
root IMCC-based ACD-EKF with the adaptive kernel
size σ (see Sec. 3.2 in Kulikov and Kulikova (2018));

• IMCC(80)-ACD-EKF(sr) is the acronym of the square-
root IMCC-based ACD-EKF with the prefixed kernel
size σ (see Sec. 3.2 in Kulikov and Kulikova (2018)).

3.3 Minimum-Variance-Based Cubature Kalman Filters

The CKF methods in use are grounded in the third-degree
spherical-radial cubature rule and implemented always
in the square-root form. These can be built within the
continuous-discrete and discrete-discrete approaches. In
the first one, the evolution of the mean and covariance
obeys the MDE, again, but such equations have a more
complicated and coupled form, which requires advanced
numerical integration solvers with automatic local and
global error controls to be applied as explained in Kulikov
and Kulikova (2017b). The cited paper also presents the
mixed-type filter based on the EKF and CKF techniques.
The second approach relies on application of SDE dis-
cretization schemes, as those in Arasaratnam et al. (2010).
It entails equidistant sampling interval subdivisions to be
implemented. In other words, all such state estimators are
of the m-step fashion, where m is the number of equal
numerical integration steps fulfilled in each sampling pe-
riod [tk−1, tk]. In our glint-noise case study, we include and
examine the following CKF methods and their acronyms:

• ACD-ECKF(sr) is the square-root ACD-ECKFmethod
designed in Sec. 4 of Kulikov and Kulikova (2017b);

• ACD-CKF(sr) is the square-root ACD-CKF method
presented in Sec. 2 of Kulikov and Kulikova (2017b);

• CD-CKF256(sr) and CD-CKF512(sr) are the square-
root CD-CKF methods implemented with 256 and
512 equidistant subdivisions of sampling interval (see
details in Sec. II-A of Kulikov and Kulikova (2016)).

3.4 Minimum-Variance-Based Unscented Kalman Filters

The UKF-like methods under consideration are close to the
state estimators outlined briefly in Sec. 3.3, but these are
grounded in the unscented transform instead and imple-
mented always in the conventional (i.e. non-square-root)
form. All such filtering techniques are also constructed
within the same continuous-discrete and discrete-discrete
approaches, which admit the variable- and fixed-stepsize
implementations and the mixed-type version based on the
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EKF and UKF methods, as well. In our glint-noise-air-
traffic-control case study, we include and examine the
following UKF-type methods and their acronyms:

• ACD-EUKF is the mixed-type ACD-EUKF algorithm
designed in Sec. 2.3 of Kulikov and Kulikova (2017a);

• ACD-UKF is the acronyms of the ACD-UKF algorithm
presented in Sec. 2.1 of Kulikov and Kulikova (2017a);

• CD-UKF256 and CD-UKF512 are the CD-UKF methods
implemented with 256 and 512 equidistant subdi-
visions of every sampling interval, respectively (see
details in Sec. II-B of Kulikov and Kulikova (2016)).

4. SIMULATION RESULTS

We assess performances of the filters outlined briefly in
Sec. 3 in severe conditions of tackling the 7-dimensional
radar tracking scenario of Arasaratnam et al. (2010),
where an aircraft executes the coordinated turn, but
implemented here with the glint noise discussed in Sec. 2
in detail. We further skip other particulars of our target
tracking case study, and refer the interested reader to those
elaborated in Kulikov and Kulikova (2018), which are
similar to the present glint-noise scenario. All the methods
under consideration are coded and run in MATLAB.

Following Kulikov and Kulikova (2018), the accuracies of
all the state estimation methods are assessed in the sense
of the Accumulated Root Mean Square Errors in position
(ARMSEp) and in velocity (ARMSEv) defined as follows:

ARMSEp :=
[ 1

100K

100∑
mc=1

K∑
k=1

(
xtrue
mc (tk)− x̂mc

k|k
)2

+
(
ytruemc (tk)− ŷmc

k|k
)2
+

(
ztruemc (tk)− ẑmc

k|k
)2]1/2

,

ARMSEv :=
[ 1

100K

100∑
mc=1

K∑
k=1

(
ẋtrue
mc (tk)− ˆ̇xmc

k|k
)2

+
(
ẏtruemc (tk)− ˆ̇ymc

k|k
)2
+

(
żtruemc (tk)− ˆ̇zmc

k|k
)2]1/2

where xtrue
mc (tk), y

true
mc (tk), z

true
mc (tk) and ẋtrue

mc (tk), ẏ
true
mc (tk),

żtruemc (tk) stand for the aircraft’s position and velocity
simulated by the Euler-Maruyama method with the small
step size τ := 0.0005 at time tk in the mc-th Monte
Carlo run (out of 100 independent simulations), x̂mc

k|k, ŷ
mc
k|k,

ẑmc
k|k and ˆ̇xmc

k|k,
ˆ̇ymc
k|k,

ˆ̇zmc
k|k denote the aircraft’s position and

velocity estimated by each filter, k means the particular
sampling time tk and K refers to the total number of
samples in the simulation interval [0, 160 s]. The sampling
periods utilized are δ = 2, 4, . . . , 20 s, and, following Bilik
and Tabrikian (2006), the glint-noise probability is set to
be pg = 0.25 in our glint-noise-air-traffic-control scenario.

The filters’ accuracies observed in this glint-noise radar
tracking case study are shown in the logarithmically-scaled
Fig. 1(a-d). First, these plots expose the superiority of the
variable- and fixed-stepsize CKF- and UKF-type filtering
algorithms when the discretization error is small enough
(i.e. the number m of sampling interval subdivisions is
sufficiently large). We emphasize that this condition holds
automatically in ACD-UKF and ACD-CKF(sr) and these pro-
duce decent state estimates for all the sampling rates δ uti-
lized in the case study in Sec. 4. Besides, if the subdivision

number m predefined by the user is insufficient the fixed-
stepsize methods produce poor state estimates with large
ARMSEp and ARMSEv for long sampling periods, as those
committed by CD-UKF256 and CD-CKF256(sr) at δ ≥ 14 s.
The same reason counts in favor of the variable-stepsize
CKF and UKF methods in this target tracking scenario
with low sampling rates in comparison to their fixed-
stepsize counterparts CD-UKF512 and CD-CKF512(sr) (see
Fig. 1(c,d)). In general, the higher accuracy of the variable-
and fixed-stepsize CKF and UKF methods reported in
our experiment is explained by more accurate approx-
imations of the time- and measurement-updated mean
and covariance achieved within these techniques and their
applicability to treating non-Gaussian stochastic systems
of the form (1) and (2), as well. Second, all the EKF-
type methods are less accurate and underperform the
above-discussed CKF and UKF. Nevertheless, the best
accuracy is observed for the MCC-based EKF methods
with the adaptive kernel size among this family of filter-
ing algorithms in our radar tracking scenario with glint
noise (3). Eventually, these filters can be a good choice
because of their low computational complexity exhibited
in Fig. 1(e,f). Third, the remaining EKF techniques lose
considerably the above-elaborated filters (especially, in the
sense of ARMSEv reported in Fig. 1(c,d)) and hardly suit
for decent estimation of stochastic systems with glint noise.

Next, we pay more attention to the efficiency of all the fil-
tering algorithms under examination. Here, we assess and
compare the average filtering time out of 100 Monte Carlo
simulations. This time is displayed in Fig. 1(e,f). First,
the latter plots show that the variable-stepsize methods
ACD-CKF(sr) and ACD-UKF, which are the most accurate
ones, are really time-consuming and slow. This is explained
by the size of the MDE solved within these techniques.
Kulikov and Kulikova (2017b,a, 2018) already mentioned
that the filters under consideration integrate numerically
the MDE, which are of size 98 and 105 in our glint-noise-
air-traffic-control scenario, respectively. Second, all the
EKF-based and mixed-type filters treat the MDE of size 7,
only. That is why the latter methods are much less time-
consuming and even expose the similar computational
effort. On the other hand, they are less accurate in com-
parison to ACD-CKF(sr) and ACD-UKF. Third, the fixed-
stepsize CD-CKF256(sr), CD-CKF512(sr), CD-UKF256 and
CD-UKF512 are also rather accurate in the present glint-
noise scenario. However, such filtering algorithms are not
self-adaptive and can fail when the process model and/or
sampling rate change, as evidenced by Kulikov and Ku-
likova (2016, 2017b,a, 2018). Fourth, as a potential com-
promise between the accuracy and efficiency, the MCC-
based EKF methods with the adaptive kernel size σ may
succeed and be recommended for practical use in state
estimation tasks of applied science and engineering.

5. CONCLUSION

This paper has continued the study started by Kulikov
and Kulikova (2018) on the state estimation performance
of various Kalman-like filtering techniques in nonlinear
target tracking scenarios with non-Gaussian noise. Fol-
lowing the cited authors, we have examined a number of
methods, which are grounded in the minimum-variance
or maximum-correntropy criteria and cover extended-,
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Fig. 1. The accuracy and efficiency comparison of the minimum-variance- and maximum-correntropy-based Kalman-like
filtering methods in the air traffic control scenario with glint noise (3).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2373



cubature- and unscented-type Kalman filtering techniques.
These have been applied for treating the famous turning
aircraft scenario but implemented presently with glint
noise. This glint noise has been modeled by a sum of
two zero-mean Gaussian variables with difference covari-
ances in our case study. The numerical examination ful-
filled has revealed the superiority of the cubature and
unscented Kalman filtering methods towards various ex-
tended Kalman filters designed in the minimum-variance
sense or grounded in the maximum-correntropy criterion
within our target tracking scenario. At the same time, the
maximum-correntropy-based accurate continuous-discrete
extended Kalman filters with the adaptive kernel size
also expose a decent state estimation potential in treat-
ing target tracking scenarios with the glint noise. Most
importantly, their low computational burden makes such
methods preferable in state estimation tasks of large size.
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