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Abstract: This paper proposes a novel hierarchical coalitional MPC technique, where tran-
sitions to the best communication topology are considered over the prediction horizon. For
this reason, a new variable, called transition horizon, is added to the optimization problem
to compute the optimal instant to introduce a new topology. Consequently, local controllers
can anticipate topology transitions and adapt their trajectories whilst optimizing their local
interests. Furthermore, stability guarantees in the closed-loop control of each coalition are
provided. The benefits of this control method are shown via a simulated non-linear eight-coupled
tanks plant.
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1. INTRODUCTION

Model predictive control (MPC) is an optimization-control
method that uses a model to predict the system response
over a given time horizon. At each time instant, a cost
function is minimized subject to constraints to obtain the
best future control actions. Additionally, MPC allows deal-
ing with delays, dead times, and multi-variable systems.
Due to these advantages, MPC has become one of the
most extended control techniques in both academia and
industry (Camacho and Bordons, 2007).

In some large-scale processes, the application of MPC
is impossible due to issues such as computation burden
and the incapacity to find a centralized model for the
overall system. Consequently, a distributed approach is
needed. The origin of non-centralized control methods
dates back in time, e.g., Kulikowski (1970) discusses the
optimization of a large-scale problem, which is divided
into smaller sub-problems. Nevertheless, distributed model
predictive control (DMPC) techniques have bloomed from
the 90s due to massive improvements in information and
communication technologies. From then on, DMPC has
been applied to large-scale systems such as road traffic
networks (De Oliveira and Camponogara, 2010), power
grids (Alejandro et al., 2014), gas networks (Arnold et al.,
2010), irrigation canals (Negenborn et al., 2009).

The key idea of DMPC is to divide the overall system
into subsystems governed by local controllers or agents
that have their own control goals. Agents have only partial
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information about the global system and communicate to
enhance performance. There are numerous DMPC schemes
proposed in the literature; see (Scattolini, 2009; Maestre
et al., 2014b) for more details.

Lately, the evolution of distributed control methods has
led to schemes where the cooperation burden is adapted
in real-time. Depending on the coupling between control
tasks, the formation of coalitions, i.e., groups of controllers
that communicate and cooperate to optimize their control
actions, is promoted dynamically. Indeed, should there be
a strong coupling between subsystems, controllers will tend
to increase their degree of cooperation. Otherwise, a fully
decentralized approach will be used. For example, an on-
line cluster formation scheme based on active constraints
is presented by Trodden and Richards (2009), and Núñez
et al. (2013) show hierarchical controllers that are adapted
dynamically to operational conditions. Furthermore, a top-
down architecture where a supervisory controller decides
which is the best topology is described by Núñez et al.
(2015); Fele et al. (2014, 2018). Moreover, Maestre et al.
(2014a, 2011) propose that communication links with a
poor contribution to overall system performance should
be disabled.

This work also presents a hierarchical coalitional MPC
scheme where information is exchanged between two con-
trol layers: a lower layer where local controllers optimize
their control and state sequences, and an upper control
layer that evaluates the information received from agents
and chooses the best communication topology to achieve
a global objective that includes performance and cooper-
ation costs. Once the new topology chosen by the upper
layer is sent to the agents, they must implement it. Never-
theless, the instant and how the topology is implemented
influence the results. Unlike previous works (Núñez et al.,
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2015; Fele et al., 2018; Maestre et al., 2011) where the new
topology was selected and implemented by local controllers
at the same time instant, here the moment to switch the
topology over the prediction horizon becomes a variable of
the optimization problem, the so-called transition horizon
Nt. As a result, agents can anticipate a topology change
over the prediction horizon, which takes place at time
k`Nt, providing lower control and cooperation costs and
smoother system evolution.

To illustrate the benefits of this approach, an eight-coupled
tanks benchmark, which is an extension of the quadruple-
tank process (Johansson, 2000), has been designed. The
quadruple-tank process has been used as a benchmark,
e.g., to study the effects of multi-variable dead times
(Shneiderman and Palmor, 2010), and to analyze different
distributed MPC techniques (Alvarado et al., 2011).

The paper is organized as follows. Section 2 introduces
the problem formulation; Section 3 defines the control goal
and describes the algorithm proposed; Section 4 provides
stability properties and the controller design procedure;
and Section 5 details the eight-coupled tanks plant, the
three control methods evaluated, and the results obtained
from the simulation of the plant. Finally, conclusions are
given in Section 6.

2. PROBLEM FORMULATION

Consider a system divided into N “ t1, 2, . . . , Nu coupled
subsystems, whose discrete-time dynamics are modeled as

xipk ` 1q “ Aiixipkq `Biiuipkq ` wipkq,
wipkq “

ř

jPMi

`

Aijxjpkq `Bijujpkq
˘

, (1)

where xi P Rqi and ui P Rri are, respectively, the states
and inputs of each subsystem i P N , which are assumed
to be constrained in convex sets containing the origin Xi

and Ui. The variable wi indicates disturbances caused by
the coupling through states xj and inputs uj in the set of
neighbors Mi, where Mi fi tj P N ztiu : Aij ‰ 0_ Bij ‰

0u. Note that wi is bounded due to the system constraints
wi P Wi fi

À

jPMi

`

AijXj ‘ BijUj
˘

. Furthermore, note
that it is straightforward to extend this set to account for
external disturbances.

Aggregating local states and inputs into xN “ pxiqiPN and
uN “ puiqiPN , the system evolution is given by

xN pk ` 1q “ ANxN pkq `BNuN pkq, (2)

where AN “ rAijsi,jPN and BN “ rBijsi,jPN . Global
states and inputs are constrained in the sets XN “
Ś

iPN Xi and UN “
Ś

iPN Ui, respectively. Note that the
disturbance term wN is not in (2) because the coupling
is implicitly included in the dynamics. Moreover, external
disturbances will not be considered for simplicity.

Each subsystem i P N is assumed to be governed by a local
controller with exclusive access to its local state xi. To
control the overall system, agents can communicate within
a network described by the graph (N ,L), where the set of
subsystems is N and the set of links is L Ď N ˆN . Each
link lij “ ti, ju “ tj, iu “ lji P L is assumed to provide
a bidirectional information flow, which can be enabled or
disabled according to the control scheme requirements.

At time instant k, the set of active links defines the control
network topology Λ Ď L. In total, there are 2|L| different
topologies: T “ tΛ0,Λ1, . . . ,Λ2|L|´1u, where Λ0 “ Λdec

corresponds to the decentralized topology (all communi-
cation links disabled), and Λ2|L|´1 “ Λcen denotes the
centralized topology (full network cooperation). The dis-
joint set of cooperation clusters of agents, referred to
as coalitions, resulting from a given topology Λ P T is
denoted by N {Λ “ tC1, C2, . . . , C|N {Λ|u. Note that these
sets satisfy that

Ť

CPN {Λ C “ N (Rahwan et al., 2012).

The dynamics of each coalition C P N {Λ are

xCpk ` 1q “ ACxCpkq `BCuCpkq ` wCpkq,
wCpkq “

ř

jP
Ť

iPC MizC

`

ACjxjpkq `BCjujpkq
˘

, (3)

where xC “ pxiqiPC and uC “ puiqiPC are, respectively,
the aggregate state and input vectors of the subsystems
in C, which are constrained in the sets XC “

Ś

iPC Xi

and UC “
Ś

iPC Ui. The vector wC “ pwiqiPC indicates the
disturbances due to the coupling of C with other agents.

From an overall viewpoint, the dynamics of all coalitions
are aggregated as (2), with xN “ pxCqCPN {Λ and uN “

puCqCPN {Λ.

3. COALITIONAL CONTROL ALGORITHM

A hierarchical coalitional MPC scheme with a top-down
approach is presented in this section. Every Tup time
instants, an upper control layer receives all the current
subsystems states and computes the best communication
topology according to a trade-off between control perfor-
mance and cooperation costs. To this end, it is assumed
that each communication link connected lij P L has a cost
clink ě 0. Note that if clink “ 0, there will be no incentive
to adopt a topology different from the centralized one
because it provides the best results. Once the new topology
is selected, it is sent to the lower layer, where agents must
adopt it. Unlike previous works (Núñez et al., 2013, 2015;
Maestre et al., 2014a), the new communication network is
considered Nt samples ahead to smooth the evolution of
the system variables and improve performance.

For each coalition C P N {Λ, let us define the control and
topology sequences as UCpkq fi ruCpkq, . . . , uCpk`Np´1qs
and ΛCpkq fi rΛCpkq, . . . ,ΛCpk ` Npqs, respectively. The
goal of coalition C is to minimize the sum of a stage
cost function lCp¨q, a cooperation cost function gCp¨q and
a terminal cost function fCp¨q over the Np-horizon, i.e.,

JC
`

xCpkq, UCpkq,ΛCpkq
˘

“

Np´1
ř

t“0
lC
`

xCpk ` tq, uCpk ` tq
˘

`

Np
ř

t“0
gC
`

|ΛCpk ` tq|
˘

` fC
`

xCpk `Npq
˘

,

(4)

with
lC
`

xCpk ` tq, uCpk ` tq
˘

“

xCpk ` tq
JQCxCpk ` tq ` uCpk ` tq

JRCuCpk ` tq,

gC
`

|ΛCpk ` tq|
˘

“ clink|ΛCpk ` tq|,

fC
`

xCpk `Npq
˘

“ xCpk `Npq
JPC

`

ΛCpk `Npq
˘

xCpk `Npq,

where QC and RC are positive-definite weighting matrices;
|ΛCpk` tq| represents the number of links in coalition C at
time step k` t; and PC is a terminal cost positive-definite
matrix, which depends on the topology at the end of the
prediction horizon Np.
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The proposed hierarchical coalitional MPC algorithm is
summarised in Algorithm 1.

Algorithm 1

Step 1: Every Tup time samples, the upper control
layer solves the following mixed-integer optimization
problem to find optimal values for UN pkq, Nt, and Λ:

tU˚N pkq,Λ
˚
new, N

˚
t u “ arg min

UN pkq,Λnew, Nt

JN
`

xN pkq, UN pkq,Λpkq
˘

,

(5)
subject to

xCpk ` t` 1q “ ACxCpk ` tq `BCuCpk ` tq,
xCpkq “ x̃Cpkq, @C P N {ΛC ,
xCpk ` tq P XC

`

ΛCpk ` tq
˘

aWC
`

ΛCpk ` tq
˘

, t “ 1, . . . , Np ´ 1,
xCpk `Npq P XCf

`

ΛCpk `Npq
˘

,
uCpk ` tq P UC

`

ΛCpk ` tq
˘

, t “ 0, . . . , Np ´ 1,

for all C P N {Λ, and

Λpk ` tq “

"

Λcur if t ă Nt

Λnew if t ě Nt
, t “ 0, . . . , Np,

Λnew Ď L,
where the global cost function is

JN
`

xN pkq, UN pkq,Λpkq
˘

“
ř

CPN {Λ
JC

`

xCpkq, UCpkq,ΛCpkq
˘

,

(6)
x̃C represents the measured state; WC refers to the
disturbances caused by the coupling of C with other
neighboring subsystems; the terminal set of the coali-
tion is XCf , which depends on the topology at instant
k ` Np; and the current and the new topology are
denoted respectively as Λcur and Λnew. Furthermore,
we require the global cost to decrease to ensure stabil-
ity and feasibility in the case of a switch of topology.
Otherwise, the same topology can be maintained, i.e.,
Λnew “ Λcur, because it guarantees stability and
recursive feasibility. See section 4 for details.

Step 2: Each coalition C computes its control se-
quence at each time instant and implements the topol-
ogy chosen by the upper layer. In particular, each
coalition C solves

U˚C pkq “ arg min
UCpkq

JC
`

xCpkq, UCpkq,ΛCpkq
˘

, (7)

subject to

xCpk ` t` 1q “ ACxCpk ` tq `BCuCpk ` tq,
xCpkq “ x̃Cpkq, @C P N {ΛC ,
xCpk ` tq P XC

`

ΛCpk ` tq
˘

aWC
`

ΛCpk ` tq
˘

, t “ 1, . . . , Np ´ 1,
xCpk `Npq P XCf

`

ΛCpk `Npq
˘

,
uCpk ` tq P UC

`

ΛCpk ` tq
˘

, t “ 0, . . . , Np ´ 1,

and

ΛCpk ` tq “

"

ΛC,cur if t ă Nt

ΛC,new if t ě Nt
, t “ 0, . . . , Np,

where ΛC,cur and ΛC,new denote coalition C in the
current and the new topology, respectively.

Remark 1. The transition from Λcur to Λnew is not
instantaneous. Due to the receding horizon strategy, if a
change of topology is requested at time step k ` Nt, at
sample k`1 the controller will consider Λnew from sample
k ` Nt ´ 1; at time instant k ` 2, Λnew will start from
sample k`Nt´2, and so on. After Nt samples, the change
of topology will be completed.

4. STABILITY AND CONTROLLER DESIGN

The stability of the coalitions is assured through a terminal
invariant set approach (Amrit et al., 2011; Blanchini,
1999). For each topology Λ, the invariant set ΩΛ

C for each
coalition C is calculated considering its disturbances, which
stem from the coupling with its neighbors.

Assumption 1. For each coalition C P N {Λ described
by p3q, there is a feedback KΛ

C that ensures that all
eigenvalues of pAC `BCK

Λ
C q are within the unit circle for

all Λ P T . Likewise, the same holds for the corresponding
global feedback KΛ “ pK

Λ
C qCPN {Λ.

Assumption 2. There is a robust positively invariant
(RPI) set ΩΛ

C that satisfies

pAC `BCK
Λ
C qΩ

Λ
C ‘WΛ

C Ď ΩΛ
C , ΩΛ

C Ď XC , K
Λ
C ΩΛ

C Ď UC ,
(8)

under the linear control law uC “ KΛ
C xC , with WΛ

C being
a convex set that contains the origin in its interior.

Remark 2. There are numerous procedures to find an
RPI set given a bounded disturbance, see, for example,
the work of Blanchini (1999). Here, the Multi-Parametric
Toolbox of MATLAB R© (Herceg et al., 2013) is employed
to compute the maximal RPI set for each coalition C of the
topology Λ P T taking into account its constraints and the
disturbances arising from its neighbors.

Assumption 3. The terminal cost f
`

xN pkq
˘

is a Lya-

punov function: xN pkq
JPΛxN pkq, with PΛ “ pP

Λ
C qCPN {Λ,

for the overall system controlled by KΛ “ pKΛ
C qCPN {Λ,

which also satisfies

f
`

xN pkq
˘

ě

8
ÿ

t“0

lN
`

xN pk ` tq, uN pk ` tq
˘

. (9)

Observe that, in accordance with (9) and (4), it can be
deduced that JN p¨q in (6) satisfies

JN p¨q ě
8
ř

t“0
lN

`

xN pk ` tq, uN pk ` tq
˘

`

Np
ř

t“0
gN p|Λpk ` tq|q

ě
8
ř

t“0
lN

`

xN pk ` tq, uN pk ` tq
˘

.

(10)
In other words, JN p¨q is bound on the control cost-to-go
of the overall system.

Remark 3. The size of a coalition C can range from a
singleton C “ tiu to even the global system C “ N . Hence,
these assumptions require defined feedbacks for all cases
from decentralized to centralized topologies. Nevertheless,
it is possible to implement this method with just a subset
of topologies to avoid combinatorial explosion issues.

The design of the overall matrices KΛ and PΛ to guarantee
stability for each topology Λ P T is based on the following
linear matrix inequality (LMI) (Maestre et al., 2014a).

Theorem 1. Let the system be divided into N subsys-
tems connected by a set of active links Λ Ď L. The
discrete system matrices are AN “ rAijsi,jPN and BN “

rBijsi,jPN , and the stage cost matrices QN “ diagpQiqiPN
and RN “ diagpRiqiPN . If there are matrices HΛ “ HJΛ “
rHijsi,jPN , where Hij P Rqiˆqj , and YΛ “ rYijsi,jPN , where
Yij P Rriˆqj with Hij “ 0 and Yij “ 0 if the link lij P Λ is
disabled, i.e., if i P C and j R C, in such that the following
constraints are satisfied
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»

—

—

–

HΛ HΛA
J
N ` Y

J
Λ B

J
N HΛQ

1{2
N Y JΛ R

1{2
N

ANHΛ `BNYΛ HΛ 0 0

Q
1{2
N HΛ 0 I 0

R
1{2
N YΛ 0 0 I

fi

ffi

ffi

fl

ě 0,

(11)
then there is a PΛ “ H´1

Λ that satisfies (9), and a feedback

control law KΛ “ YΛH
´1
Λ that stabilizes the closed-loop

system for the topology Λ.

Note that the controllers are designed maximizing the
trace of HΛ in (11), i.e.,

max trpHΛq, (12)

as a way of minimizing the trace of PΛ “ H´1
Λ and,

therefore, the cost-to-go of the system.

Assumption 4. Algorithm 1 has an overall feasible con-
trol sequence at time instant k “ 0 for the initial topology.

Theorem 2. Let the N -agent system be connected by
the set of active links of Λ and let the matrices KΛ and
PΛ be obtained according to p11q, the coalitional MPC
controllers can guarantee recursive feasibility and stability
of the closed-loop system.

5. APPLICATION

An eight-coupled tanks plant, which is an extension of the
quadruple-tanks process proposed by Johansson (2000),
has been designed to test the proposed algorithm. As
shown in Fig. 1, four upper tanks (3, 4, 7, and 8) discharge
caudal flows into lower tanks (1, 2, 5, and 6), and these,
in turn, into sinking tanks. They are controlled by four
pumps that transport water from sinks to tanks, and the
coupling is set by six three-way valves that divide into two
ways the pumped flows on arrival.

?3·qb

1 2

3 4

5 6

7 8

h1 h2

h4
h3

h5

h7 h8

h6

qa qb qc qd

(1- ?1)·qa

(1-?2-?3)·qb

(1-?5)·qd

(1-?4-?6)·qc?6·qc

?1·qa ?2·qb ?4·qc ?5·qd

Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 4

Fig. 1. Schematic diagram of the eight-coupled tanks plant

The overall system is divided into N “ 4 subsystems:
the first one is composed of tanks 1 and 3; the second
subsystem is formed by tanks 2 and 4; the third one by
tanks 5 and 7; and the fourth subsystem by tanks 6 and 8.
The control goal is to make lower tanks reach the desired
target levels taking into account control and cooperation
costs, and operational constraints. Hence, it is a multi-
variable problem with four inputs (qa, qb, qc, qd) and four
outputs (h1, h2, h5, h6).

5.1 Plant model

The non-linear model used in simulations can be obtained
on applying mass balance and Bernoulli’s law. Hence, the
plant is described by the following equations:

S1
dh1

dt
“ a3

a

2gh3 ´ a1

a

2gh1 ` γ1
qa

3600
,

S2
dh2

dt
“ a4

a

2gh4 ´ a2

a

2gh2 ` γ2
qb

3600
,

S3
dh3

dt
“ ´a3

a

2gh3 ` p1´ γ2 ´ γ3q
qb

3600
,

S4
dh4

dt
“ ´a4

a

2gh4 ` p1´ γ1q
qa

3600
` γ6

qc

3600
,

S5
dh5

dt
“ a7

a

2gh7 ´ a5

a

2gh5 ` γ4
qc

3600
,

S6
dh6

dt
“ a8

a

2gh8 ´ a6

a

2gh6 ` γ5
qd

3600
,

S7
dh7

dt
“ ´a7

a

2gh7 ` p1´ γ5q
qd

3600
` γ3

qb

3600
,

S8
dh8

dt
“ ´a8

a

2gh8 ` p1´ γ4 ´ γ6q
qc

3600
,

(13)

where hn is the water level of tank n P t1, 2, . . . , 8u; Sn “

13.89 ¨ 10´3rm2s is its corresponding cross-section, which
is assumed to be equal for all tanks; and an “ 50.265 ¨
10´6rm2s stands for the cross-section of all the outlet
pipes. The parameters γi P r0, 1s, @i P t1, 2, . . . , 6u refer
to the opening of the six three-way valves (γ1, γ4 “ 0.3;
γ2, γ5 “ 0.4 and γ3, γ6 “ 0.1); gravity is g “ 9.81rm{s2s;
and qm is the caudal flow pumped by pump m P ta,b, c,du.

Let us define the operating point of each tank, measured in
meters, by water levels h0

1 “ 2.77, h0
2 “ 2.659, h0

3 “ 2.524,
h0

4 “ 0.129, h0
5 “ 2.77, h0

6 “ 2.659, h0
7 “ 1.242, h0

8 “ 1.209;
and the operating point of each pump, measured in cubic
meters per hour, by flow rates q0

1 “ 0.1920, q0
2 “ 2.4194,

q0
3 “ 1.3953, q0

4 “ 1.0113, to obtain the control model. The
corresponding overall discrete linear state-space model is

x̄N pk ` 1q “ AN x̄N pkq `BN ūN pkq, (14)

where x̄N pkq “ rh1pkq ´ h0
1, . . . , h8pkq ´ h0

8s
J is the state

vector, and ūN pkq “ rqapkq ´ q0
a , . . . , qdpkq ´ q0

ds
J is

the input vector. Likewise, the state evolution of each
subsystem i P N fi t1, 2, 3, 4u is given by

x̄ipk ` 1q “ Aiix̄ipkq `Biiūipkq ` w̄ipkq,
w̄i “

ř

jPMi

Aij x̄jpkq `Bij ūjpkq, (15)

where the subsystem matrices are given by

A11 “

„

0.9762 0.0246
0 0.9751



, B11 “

„

0.0296
0



, B12 “

„

0.0006
0.0494



,

A22 “

„

0.9757 0.1041
0 0.8946



, B21 “

„

0.0037
0.0662



, B22 “

„

0.0395
0



, B23 “

„

0.0005
0.0095



,

A33 “

„

0.9762 0.0349
0 0.9647



, B32 “

„

0.0002
0.0098



, B33 “

„

0.0296
0



, B34 “

„

0.0011
0.0589



,

A44 “

„

0.9757 0.0354
0 0.9642



, B43 “

„

0.0011
0.0589



, B44 “

„

0.0395
0



,

Aij “

„

0 0
0 0



, i ‰ j @i P N , j PMi,

and the states and inputs are respectively subject to the
constraints 0.02 ă hn ď 5 and 0 ă qm ď 5. Each local
controller can communicate in a bidirectional way through
the network formed by the edges L “ tt1, 2u, t2, 3u, t3, 4uu.
As the number of links is |L| “ 3, there are 8 different
cooperation topologies, T “ tΛ1,Λ2, . . . ,Λ8u. In this
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case, Λ1 and Λ8 refer to the decentralized and centralized
topology, respectively.

From the global viewpoint, the objective of the proposed
coalitional MPC is to optimize the sum of the performance
cost Jperf and the cooperation cost Jcoop subject to a set
of constraints, i.e.,

tU˚N pkq,Λ
˚
new, N

˚
t u “ arg min

UN ,Λnew,Nt

Jperf ` Jcoop, (16)

with

Jperf “
N
ř

i

Np´1
ř

t“0

`

x̄ipk ` t` 1qJQix̄ipk ` t` 1q`

ūipk ` tq
JRiūipk ` tq

˘

` x̄ipk `Npq
JPix̄ipk `Npq,

Jcoop “
Nt
ř

t“1
clink|Λcur| `

Np
ř

t“Nt`1

clink|Λnew|,

subject to the subsystem dynamics (15); the new topology
Λnew Ď T after k ` Nt time steps; the state terminal
set xipk ` Npq P Ωi; the state and input constraints; and

the state and input weighting Qi “

„

1 0
0 0



and Ri “ 0.1,

@i P t1, 2, 3, 4u.

Additionally, local controllers KΛ “ rKijsi,jPN and the
terminal cost matrices PΛ “ rPijsi,jPN for each topology
are obtained solving (12). For example, for topology Λ1,
i.e., when no cooperation between agents is enabled, the
following matrices are obtained

KΛ1
“

»

—

–

0.020 0 0.024 0 0 0 0 0
0 ´0.051 0 ´0.049 0 0 0 0
0 0 0 0 0.035 0 0.039 0
0 0 0 0 0 ´0.036 0 ´0.033

fi

ffi

fl

,

PΛ1
“

»

—

—

—

—

—

—

—

—

—

—

–

22.05 0 11.55 0 0 0 0 0
0 19.58 0 15.19 0 0 0 0

11.55 0 11.96 0 0 0 0 0
0 15.19 0 14.97 0 0 0 0
0 0 0 0 22.49 0 19.93 0
0 0 0 0 0 19.95 0 11.01
0 0 0 0 13.93 0 14.47 0
0 0 0 0 0 11.01 0 10.67

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

5.2 Simulation control methods

In order to assess our method, the following three control
methods have been considered:
1. CEN consists of a centralized MPC scheme that has
full system information.

2. ABRUPT presents a coalitional MPC algorithm where
the topology Λcur is instantly switched to Λnew such as
in (Núñez et al., 2015) and (Fele et al., 2018), i.e., the
transition horizon is Nt “ 0. In this method, the topology
Λ˚new is chosen every Tup “ 20 samples (from k “ 0) after
evaluating |T | “ 8 problems.

3. PREDNtup presents a coalitional MPC scheme, based
on Algorithm 1, which solves |T | ¨ |Nt| convex problems
every Tup “ 20 samples (from k “ 10), and chooses that
with the lowest cost to find the pair tΛ˚new, N

˚
t u. The

variable Nt can take values between 0 and 10, and the
total number of topologies is |T | “ 8.

5.3 Simulation results

The sampling time used in the simulations is Tm “ 5 s,
with a simulation length of Nsim “ 240 time instants. The

MPC methods consider a prediction horizon Np “ 20,
and a cost per active cooperation link clink “ 0.02. The
value of clink has been chosen large enough to represent
cooperation costs considering that a small value and a
very large value will always lead to a centralized and
a decentralized network, respectively. Table 1 displays a
summary of the simulation results for each scheme.

Table 1. Simulation results for each method.

CEN

Performance cost 1.1543
Cooperation cost 14.4000

Total cost 15.5543

ABRUPT

Historical of topologies [ 8, 1, 5, 1, 5, 5, 8, 7, 5, 2, 5, 1 ]
Performance cost 1.1582
Cooperation cost 6.2600

Total cost 7.4182

PREDNtup

Historical of topologies [8, 1, 1, 5, 5, 1, 5, 2, 5, 5, 5, 1, 5]
Performance cost 1.3469
Cooperation cost 4.3210

Total cost 5.6679

Fig. 2. Formation of coalitions in the scheme PREDNtup

Fig. 2 illustrates the formation of coalitions in the scheme
PREDNtup, where the four agents have cooperated for the
first t “ 50 s (centralized topology Λ8); then, the topology
changes to Λ1 and agents do not cooperate until t “ 250 s;
afterwards, agents 1 and 2 form a coalition, and agents 3
and 4 work independently, etc. As a example, figs. 3 and 4
depict the outputs of tanks 2 and 5 and their corresponding
flow rates of pumps qb and qc. Regarding the total cost of
CEN, ABRUPT has a reduction of 52.36 % and PREDNtup

a reduction of 63.56 %. As can be seen, the leeway when
choosing the instant to introduce the new topology is
essential in the reduction in the total cost.

6. CONCLUSIONS

In this work, a hierarchical coalitional MPC algorithm
where local controllers can predict the topology transitions
over the prediction horizon is presented. In particular, it is
introduced a new variable, the transition horizon Nt, into
the optimization problem to provide the best time instant
to switch topology. Moreover, conditions for closed-loop
stability and recursive feasibility are given.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3408



0 200 400 600 800 1000 1200
2.5

2.6

2.7

2.8

2.9

W
a

te
r 

le
v
e

l 
(m

)
h

2

CEN

ABRUPT

PRED
N

t
 up

Reference

0 200 400 600 800 1000 1200

Time (s)

2.2

2.4

2.6

2.8

3

F
lo

w
 (

m
3
/h

)

q
b

CEN

ABRUPT

PRED
N

t
 up

Fig. 3. Output of tank 2, and flow rate of pump qb
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Fig. 4. Output of tank 5, and flow rate of pump qc

Numerical results in a simulated eight-coupled tanks plant
show improvements in the total cost after Nt is introduced
in the optimization problem. In particular, our comparison
shows that the method PREDNtup provides the lowest
accumulated total when cooperation costs are explicitly
considered. Future work will include a fully distributed
implementation of the proposed approach and plug-and-
play features.
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