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 Abstract: This paper presents a new design strategy for vehicle lateral motion control. In particular, the 
controller design problem for vehicle path following is considered. A new kind of full error-state dynamic 
equation incorporating more significant error states is introduced, which describes vehicle lateral dynamics 
with respect to the desired path, even without the curvature of the desired path acting as disturbance at the 
input. Thus, the feedback and the feedforward controller can be designed straightforwardly. A novel 
solution is provided to extract the desired feedforward steering command and the desired reference states 
from the varying curvature of the desired path. Simulation results demonstrate the efficiency,  high 
performance and robustness of the developed control strategy. 
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1. INTRODUCTION 

Lateral vehicle motion control is an essential part for 
automated driving such as Highway Cruising Chauffeur, Lane 
Keeping Assist, Lane Change Assist and Emergency Steering 
Assist. For decades, researchers have been engaged in 
developing lateral controllers and many control schemes have 
been investigated. Nowadays, car makers and suppliers are 
developing lateral controllers for driver assistance, highly and 
fully automated driving systems under more realistic 
conditions considering sensor noise, actuator dynamics, road 
conditions, robustness, safety constraints and the complexity 
of the algorithm to embed the control algorithm into cost 
efficient ECUs (Electro Control Unit). 

Many model-based design methods have been approached for 
vehicle lateral motion control (Kapania et al. 2015, Ni et al. 
2016, Tange et al. 2016, Schmeitz et al. 2017). Most of the 
model-based design methods for vehicle lateral control deploy 
a so-called vehicle lateral error-state dynamic equation based 
on the well-known linear bicycle model. There are mainly two 
slightly different forms of error-state equations: one (Kramer 
2008) uses the vehicle side-slip angle as one of the state 
variables while the other (Rajamani 2012) uses the vehicle 
lateral speed as a state variable. Both error-state equations 
define the yaw angle error and the lateral position error of the 
vehicle with respect to the desired path as error states. The 
main drawbacks of these error-state equations are: firstly, they 
exclude other potentially useful states such as yaw rate, side-
slip angle and steering angle as error states. However, 
including these as error states can greatly improve the lateral 
tracking performance. Secondly, the varying curvature of the 
path acts as a disturbance input in both error-state equations, 
which makes the design of the lateral motion controller 

nontrivial.  Some case dependent solutions to compensate for 
the known curvature as disturbance input are given by 
Rajamani (2012), Marino et al. (2009). Yin (2010) discusses a 
similar solution for the same cases while considering vehicle 
EPS (Electric Power Steering) dynamics. However, general 
solution for this problem does not seem to be available yet.  

In this paper, we present a new control strategy that removes 
the weaknesses of the known methods and enhances the 
control performance. The proposed control strategy provides a 
novel approach using a new kind of full error-state vehicle 
lateral dynamic equation. Furthermore, it introduces a desired 
states observer, which extracts the desired reference states and 
the desired feedforward steering control command from the 
curvature of the path to be followed. 

The paper is structured as follows. In Section 2, we introduce 
the vehicle lateral dynamics and formulate the objective of the 
lateral motion control. Section 3 presents a new full error-state 
dynamic equation, which eliminates the road curvature as 
disturbance at the model input. In Section 4, the desired 
feedforward steering command and the reference states 
observer is derived. Section 5 demonstrates the efficiency, the 
performance and the robustness of the control strategy through 
numerical simulation. Finally, conclusions are drawn in 
Section 6. 

2. PROBLEM FORMULATION 

2.1 Vehicle lateral dynamics 

The linear bicycle model, as schematically shown in Figure 1, 
describes vehicle lateral dynamics for a given constant 
longitudinal velocity 𝑣  (Mitschke et al. 2004) 
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where 𝑚 and  𝐽  are the vehicle mass and inertia. 𝑐  and 𝑐  are 
the front and rear tire cornering stiffness and 𝑙  and 𝑙  are the 
distance of the front and rear wheel axle from the vehicle 
centre of gravity, respectively. 𝛽 and �̇� are the side slip angle 
and the yaw rate, while 𝛿 is the steering angle of the front 
wheel. 

The steering angle 𝛿 is set by a low-level steering angle 
controller through the EPS actuator. The dynamics of the 
steering angle controller and the EPS actuator can be modelled 
as:  

 �̇� = 𝑎 𝛿 + 𝑏𝛿  ,                                                                 (3) 

with  𝛿  the steering angle command as input. 𝑎  and 𝑏 are 
model parameters which are identified from the experimental 
measurements. 

Defining 𝑎  to 𝑎  as: 
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equation (1) and (2) can be rewritten as: 

�̇� =  𝑎 𝛽 + 𝑎 �̇� +  𝑎 𝛿  ,                                            (4) 

�̈� =  𝑎 𝛽 + 𝑎 �̇� +  𝑎 𝛿  .                                            (5) 

The equations (3) to (5) can be written in state space form  

�̇�
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𝛿   .                           (6) 

The lateral dynamics at the vehicle’s CoG (centre of gravity), 
with respect to a desired path, can be described (Li et al. 2005) 
as: 

�̇� = �̇� − 𝑣𝜅  ,                                                                      (7) 

�̇�  = 𝑣𝛽 + 𝑣𝜓  ,                                                                   (8) 

where 𝑣 is the vehicle speed at the vehicle centre of gravity,  
𝑦  is the lateral deviation of the vehicle’s CoG to the desired 
path, 𝜓  is the yaw angle error of the vehicle relative to the 
path and 𝜅  is the path curvature as depicted in Figure 1.  

The model (6) to (8) can be compactly written as:  
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Fig. 1. Vehicle bicycle model and desired path in the global 
frame.  

For a constant velocity, this model describes an LTI-system 
with the control input 𝛿  and the disturbance input 𝜅 . 

In a real vehicle system, the steering angle 𝛿, the yaw rate �̇� 
and the longitudinal velocity 𝑣  can be measured through ESC 
(Electronic Stability Control)-sensors and the side slip angle 𝛽 
can be estimated through a model-based observer. 

The yaw angle error 𝜓 , the lateral deviation 𝑦  of the vehicle 
with respect to the desired path and the path curvature 𝜅  can 
be detected by the camera for the path following control. 

Our focus in this paper is to develop a lateral motion controller, 
therefore, we assume that the state variables in (9) can be 
measured. 

2.2  Control objective 

The objective of vehicle lateral motion control for the given 
system (9) with feasible desired path 𝜅  is to find a feedback 
control input 𝛿  as a function of the available states in (9) and 
the curvature 𝜅  of desired path such that  

𝛿 = 𝑢(𝛿, 𝛽, �̇�, 𝜓 , 𝑦 , 𝜅 )                                                (10) 

and that the closed loop control system  
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guarantees the rapid convergence of the lateral deviation 𝑦  of 
the vehicle to zero with a bounded lateral acceleration. 

3. CONTROL STRATEGY 

The vehicle lateral motion control formulated in (9) falls under 
the tracking control problem. If we can find the reference states 
for (9), then the lateral position tracking can be formulated as 
an error-states regulation problem and all regulator design 
methods can be applied.  

In the following, we derive an error-state equation from (9). In 
particular, we convert the feasible curvature 𝜅  of the desired 
path into an equivalent steering command with the 
corresponding reference states, thus  eliminating the curvature 
disturbance at the input.   

Normally, the curvature of a road is designed in such a manner 
that a vehicle can track the lane for the prescribed speed. In 
case of trajectory tracking, the trajectory planner guarantees 
that the planned trajectory can be tracked by the vehicle. This 
means that there always exists a steering command, which 
ensures that the vehicle can follow the desired path accurately. 

For the construction of such a steering command from the path 
curvature and the vehicle dynamics (6), we assume a virtual 
vehicle that moves with the real vehicle on the path as depicted 
in Figure 2. The virtual vehicle’s CoG coincides with the 
desired path at the minimal distance between desired path and 
the CoG of the real vehicle at any given time.  

 

Fig. 2. Virtual vehicle with the accurate tracking of the desired 
path. 

We assume that the lateral dynamics of the virtual vehicle is 
the same as for the real vehicle, so that its lateral dynamics 
comply with (6). We refer to this virtual vehicle hereinafter as 
the desired vehicle and denote its states and input with 
subscript “des” for “desired”. Then the desired vehicle 
dynamics can be described as: 

�̇�
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Both (6) and (12) are linear systems and obey the superposition 
principle. Therefore, with the notation 
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 ,                                                  (13) 

we derive from (6) and (12) the following error dynamics of 
the real and the desired vehicles  

�̇�
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�̈�

=
𝑎 0 0
𝑎 𝑎 𝑎
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(𝛿 − 𝛿 ).  (14) 

The track angle of the desired vehicle is defined as the velocity 
angle of the vehicle in the global frame shown in Figure 2. This 
is same as the yaw angle of the lane centreline, therefor,  

�̇� + �̇� =  𝑣𝜅  ,                                                        (15) 

and equation (7) can be rewritten as:  

�̇� = �̇� − �̇� − �̇�                                                                                               

      = �̇� − �̇�  ,                                                                   

and equivalently   

𝜓 = 𝜓 − 𝛽  .                                                            (16)   

As a result of (16), (8) can be formulated as a function of the 
error states 𝛽  and 𝜓  :  
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           ≈    𝑣  (𝛽 +   𝜓 ) ,                                                 (17) 

whereby  is much less than 1 and is disregarded in (17). 

Extending (14) with the new states 𝜓   and 𝑦  yields 
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or rewritten in a simpler form  

      �̇� = 𝐴 𝒙 + 𝐵  (𝛿 − 𝛿 )                                     (18) 

with  
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Equation (18) describes the error dynamics of the vehicle with 
respect to the desired vehicle states. The state variables are 
solely composed of error states. To distinguish from those 
error-state equations where the states are only partially 
composed of error states, we define (18) as a full error-state 
equation. 

In contrast to conventional vehicle lateral error-state 
equations, this full error-state equation has the following new 
features: 

 There is no path curvature as a disturbance at the 
input. All linear regulator design methods can be 
easily used without “tinkering” a feedforward 
compensator for the path curvature as disturbance. 

 Besides the lateral position error and yaw angle error, 
it incorporates more significant state errors such as 
yaw rate error, side-slip angle error and steering angle 
error as error states. This may lead to an improved 
tracking control performance with a full error-states 
feedback: the controller already reacts for the state 
errors of the steering angle, yaw rate and side-slip 
angle, even when the yaw angle error and the lateral 
position deviation are still zero or negligible but are 
tending to increase. 

It is straightforward to design a LQR state space feedback 
controller for (18). Denoting such a state feedback controller 
designed with the LQR-method for (18) as 𝛿 , yields   

     𝛿 = −𝒌 𝒙  ,                                                            (19) 

where  𝒌  is a 1 × 5 feedback control coefficient matrix. 
Hence, the final vehicle lateral motion control command 𝛿  is 
given by  

𝛿 =  𝛿  + 𝛿  .                                                 (20) 

A linear state feedback (19) designed with the LQR-method 
can guarantee that the error state of (18) converges to zero or 
to a certain desired small value. 

Note that the error state of the yaw angle 𝜓  in (18) is not 
directly available from the camera in case of lane following 
control. However, with the known desired side slip angle 𝛽  
and the camera measurement 𝜓 , it can be calculated from (16) 
as follows 

      𝜓 =  𝜓 + 𝛽  .                                                          (21) 

We derived the full error-state dynamics (18) based on the 
linear bicycle model with a given constant longitudinal 
velocity 𝑣 .  The velocity of the real vehicle can vary 
depending on the driving situation. Experimental driving tests 
have shown that the linear bicycle model can describe vehicle 

lateral dynamics for varying driving speeds if the longitudinal 
acceleration is smooth enough. Hence, we can design the 
controller for different vehicle speeds with the speed 
dependent weights in matrices  𝑄 and/or 𝑅 to obtain the desired 
control performance. Using MATLAB as the design tool, a 
speed dependent 𝒌 (𝑣) can be calculated for certain discrete 
speed values 𝑣  as: 

     𝒌 (𝑣 ) = 𝑙𝑞𝑟 𝐴 (𝑣 ), 𝐵 (𝑣 ), 𝑄(𝑣 ), 𝑅(𝑣 )          (22) 

for later use in the simulations or real vehicles.  

4. DESIRED INPUT AND STATES OBSERVER 

We derived the vehicle lateral error-state dynamics (18) given 
that all the desired states and the steering command in (12) are 
available. Now we develop a method to estimate these desired 
states and corresponding steering commands from the 
curvature of the desired path by means of a Luenberger 
observer. 

In (15), a link is established between the lateral dynamics of 
the desired vehicle and the curvature of the desired path. 
Substituting the rate of change of the side slip angle �̇�  in 
(15) with the left side of (4) results in 

 𝑣𝜅 = �̇� + 𝑎 𝛿 + 𝑎 𝛽 + 𝑎 �̇�                                    
         =     𝑎 𝛿 +  𝑎 𝛽 + (1 +   𝑎 )�̇�   ,         (23)   

or  

        𝑣𝜅 = 𝐶[𝛿    𝛽    �̇� ]                                     (24) 

with  

𝐶 = [𝑎  𝑎 (1 +  𝑎 )] .                                        (25) 

Now we reconstruct (12) (Eyckhoff 1974) and use the 
Luenberger observer to estimate desired vehicle states and the 
desired steering command. For this purpose, we treat the 
steering command 𝛿  of the desired vehicle as a new state 
variable and rewrite (12) as 

⎣
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 .                       (26) 

It can be easily proven that the states of the system (26) with 
the measurement equation (24) are observable and they can be 
calculated with 

�̇� = 𝐴𝒙 + 𝒌 (𝑣𝜅 − 𝐶𝒙 ),                                  (27) 

where 

𝒙 = 𝛿  𝛽  �̇�  𝛿                                         

is an estimate of 𝒙 , and  
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are the system matrix and the measurement matrix, 
respectively. 𝒌  is an 5 × 1 observer coefficient matrix, which 
can be calculated through the pole placement or the LQR- 
method. The efficiency of the observer will be shown later 
with simulation results. 

In (26), it is implied that the steering command 𝛿  is a 
constant for the observer design. However, with a high 
observer gain  𝒌 , a rapid convergence of 𝛿  to 𝛿  can be 
achieved. Nevertheless, the observer gain should be tailored to 
avoid undesired “nervous” observer outputs in a real vehicle 
path tracking application, especially, if the curvature of the 
path captured by a sensor is noisy. 

Similar to the feedback control coefficient 𝒌 , the observer 
coefficient 𝒌  can be designed for different vehicle speeds to 
achieve speed dependent desired observer dynamics. 

Finally, substituting the desired states 𝛿 , 𝛽 , �̇�  and the 
desired steering command 𝛿  in (19) and (20) with the 

estimated values 𝛿 , 𝛽 , �̇� , 𝛿 , it results in: 

    𝛿 = −𝒌 𝒙  ,                                                            (29) 

   𝛿      =   𝛿  + 𝛿  ,                                              (30) 

where 𝒙  is now defined as 

            𝒙 =  [𝛿   𝛽   �̇�   𝜓   𝑦 ] .                                     (31)                    

Equation (29) and (30) describe the final controller with the 
state feedback 𝛿  and the feedforward steering command 
𝛿 . 

5. SIMULATION RESULTS 

Simulations have been performed in MATLAB to demonstrate 
the efficiency of the developed control strategy. The vehicle 
model parameters used in the simulations are presented in 
Table 1. The sampling time used is 10 ms and no assumption 
of a constant longitudinal speed has been made. 

Table 1.  Vehicle Model Parameters 

Parameter Description Value 

𝑚[𝑘𝑔] Mass 1744.00     

𝐽 [𝑘𝑔 × 𝑚²] Yaw moment of inertia 2825.00     

𝑐  [𝑁/𝑟𝑎𝑑] Rear cornering stiffness 
coeff. 

177800.00 

𝑐  [𝑁/𝑟𝑎𝑑] Front cornering stiffness 
coeff. 

135000.00 

𝑙 [𝑚] Rear axle to CoG distance 1.62      

𝑙 [𝑚] Front axle to CoG distance 1.43      

𝑎  EPS parameter 1 -2.801 

𝑏 EPS parameter 2  2.801 

The observer coefficient matrix 𝒌  has been designed with the 
pole placement method. The values of 𝒌  with corresponding 
speed are shown in Table 2. 

Table 2.  Observer Gain Matrix 

𝑣  [m/s] 𝑘 (1)  𝑘 (2)  𝑘 (3) 𝑘 (4) 

10.0 -31.9973   -22.6158 -180.9843 170.8645 
15.0 15.8719     0.3644   -58.1470   168.1563 

20.0 30.8573     7.0144    27.0266   139.9722 

25.0 37.0846     8.8263    77.3579   128.0911 

30.0 41.0621     9.3655   115.3127   123.0737 

35.0 44.2948     9.4696   147.6546   121.5400 

40.0 47.2454     9.4009   177.0357   122.0016 

45.0 50.0827     9.2577     204.6854 123.7069 

50.0 52.8755     9.0813   231.2437   126.2376 

 

The speed dependent feedback controller coefficients were 
calculated with the speed dependent weighting matrices Q and 
R.  The values are given in Table 3.    

Table 3.  LQR Controller Gain Matrix 

𝑣 [m/s] 𝑘 (1)  𝑘 (2)  𝑘 (3) 𝑘 (4) 𝑘 (5) 

10.0 3.445
6 

0.9805 0.2735 4.9338 0.8944 

15.0 3.911
6 

1.6567 0.3488 5.5592 0.7303 

20.0 4.200
9 

2.3316 0.4018 6.1684 0.6325 

25.0 4.394
5 

2.9903 0.4404 6.7596 0.5657 

30.0 4.530
5 

3.6295 0.4693 7.3322 0.5164 

35.0 4.628
7 

4.2487 0.4913 7.8863 0.4781 

40.0 4.700
9 

4.8486 0.5083 8.4226 0.4472 

45.0 4.754
3 

5.4301 0.5214 8.9420 0.4216 

50.0 4.793
9 

5.9941 0.5317 9.4455 0.4000 

 

The path to be followed (blue) is shown in Figure 4. The 
curvature of the path and the prescribed vehicle's speed are 
shown in Figure 3, where the x-axis represents the length s of 
the path. The initial position and yaw angle of the simulated 
vehicle are the same as those of the path’s starting point.  

5.1   Tracking with LQR feedback controller only 

First, we demonstrate the efficiency of the full error-state 
feedback controller. For this purpose, only the states feedback 
control 𝛿   is used to generate the steering command, 
namely:    𝛿 =  𝛿 .    

In Figure 4 and Figure 5, we see that the lateral deviation 𝑦  is 
kept under 0.025 m. Furthermore, the maximum yaw angle 
error is under 0.0286° over the whole simulation distance of 
25 km. Even though only the feedback steering control 𝛿  
has been used, the tracking performance of the proposed  
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Fig. 3. Curvature 𝜅  and vehicle speed 𝑣 over path distance. 

control strategy is already excellent. The superior performance 
of the proposed control strategy can be mainly attributed to the 
full error states feedback and the excellent accuracy of the 
reference states obtained by the proposed desired states 
observer.  

In particular,  the steering angle error 𝛿  and the yaw rate error 

�̇�  in the full error states feedback act as derivative terms of 
yaw angle error 𝜓  and lateral displacement  𝑦   and enable an 
earlier response of the controller against the increasing of 
tracking errors. Additionally, the feedback of the side slip 
angle 𝛽  contributes to eliminating small tracking errors 
caused by non-zero curvature of the path. 

 
Fig. 4. Simulated vehicle paths with LQR feedback controller 
only (red) and with both LQR feedback and feedforward 
controller (violet) versus the desired path (blue). 

5.2   Tracking with both LQR feedback and feedforward 
controller 

Now we simulate the vehicle tracking control with both the 
state feedback control 𝛿  and the feedforward steering 𝛿  

as the steering command, namely: 𝛿 =  𝛿 + 𝛿 .  

The simulation results are depicted in Figure 4 and Figure 6. 
The maximum yaw angle error is under 0.0218° and the 
maximum lateral deviation of the vehicle position is under 

 

0.002 m over the whole simulation distance, which is less than 
one tenth of those obtained from the LQR feedback controller 
only.  

It can be observed from Figure 6 that the steering command 𝛿  
is almost identical to the desired steering command 𝛿 . This 
demonstrates that the proposed control strategy is efficiently 
integrates the road curvature into the equivalent desired 
steering command and the corresponding desired state. 

Fig. 5. Vehicle states over time with LQR controller only. 

Note that even though the feedback controller 𝛿  has very 
little contribution to the magnitude of the final steering 
command 𝛿  in our simulation, it nonetheless guarantees the 
tracking success through error states feedback control. 

 

Fig. 6. Closed loop simulation with both 𝛿  and 𝛿 . 
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5.3   Robustness of the controller 

Finally, to investigate the robustness of the proposed control 
strategy against the vehicle model uncertainties, the same 
observer coefficient and LQR controller coefficient shown in 
Table 1 and Table 2 are deployed in simulations with the 
following modified vehicle parameters:  

 30% reduced vehicle mass 𝑚 and inertia 𝐽  

 30% increased vehicle mass 𝑚 and inertia 𝐽  

 30% reduced tire cornering stiffness 𝑐  and 𝑐   

 30% increased tire cornering stiffness 𝑐  and 𝑐 .  

 

Fig. 7. Simulation with modified vehicle model parameter.  

It can be seen from the simulation results shown in Figure 7 
that the vehicle parameter uncertainties in the considered 
scope have very low impact on the tracking control results, 
even though the observer and the controller parameters are not 
adapted to the changed vehicle parameters. The tracking 
controller designed with the proposed control strategy seems 
robust against vehicle model uncertainties.  

6. CONCLUSION 

This paper presents a novel control strategy for vehicle path 
following and trajectory tracking. The newly introduced 
vehicle lateral full error-state dynamic equation incorporates 
more significant error states than conventional error-state 
equations and enables the straightforward design of the full 
error-state feedback controller without having to consider 
varying path curvature as an uncontrollable disturbance input 
unlike previous solutions. The developed desired state 
observer almost exactly maps the varying curvature of the 
desired path into a feedforward steering command. It 

simultaneously delivers the necessary desired reference states 
to construct the full error-states and thus realizes tracking 
control.  

The presented simulations demonstrate the efficiency, high-
performance and robustness of the developed control strategy 
for vehicle lateral motion control.  

Although the control strategy has been developed for vehicle 
path following control, the strategy can be used for the tracking 
controller design of many other linear systems. Especially, for 
tracking problems where the signals to be tracked are not 
explicitly available as system reference states and reference 
input, the presented method can be used to reconstruct this 
lacking information to realize a full error-state feedback and 
feedforward tracking control.  
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