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Abstract: Control of robot orientation in Cartesian space implicates some difficulties, because
the rotation group SO(3) is not contractible, and only globally contractible state spaces support
continuous and globally asymptotically stable feedback control systems. In this paper, unit
quaternions are used to represent orientations, and it is first shown that the unit quaternion set
minus one single point is contractible. This is used to design a control system for temporally
coupled dynamical movement primitives (DMPs) in Cartesian space. The functionality of the
control system is verified experimentally on an industrial robot.
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1. INTRODUCTION

Industrial robots typically work well for tasks where accu-
rate position control is sufficient, and where work spaces
and robot programs have been carefully prepared, so that
hardware configurations can be foreseen a priori by robot
programmers in each step of the tasks. Such preparation is
very time consuming, and introduces high costs in terms of
engineering work. Further, the arrangements are sensitive
to variations, e.g., uncertainties in work object positions,
small differences between individual work objects, etc.
This has prohibited the automation of a range of tasks,
including seemingly repetitive ones such as assembly tasks
and short-series production.

It would therefore be beneficial if the capabilities of robots
to adapt to their surroundings could be improved. The
framework of dynamical movement primitives (DMPs),
used to model robot movement, has an emphasis on such
adaptability (Ijspeert et al., 2013). For instance, the time
scale and goal position of a movement can be adjusted
through one parameter each. The fundamentals of DMPs
have been described in (Ijspeert et al., 2013), and earlier
versions have been introduced in (Schaal et al., 2000;
Ijspeert et al., 2002, 2003). DMPs have been used to
modify robot movement based on moving targets in the
context of object handover (Prada et al., 2014), and based
on demonstrations by humans (Karlsson et al., 2017b;
Karlsson, 2017; Talignani Landi et al., 2018; Karlsson,
2019). In most of the previous research, it has been
assumed that the robot configuration space is a real
coordinate space, such as joint space or Cartesian position
space; see, e.g., (Prada et al., 2014; Karlsson et al., 2017b;
Talignani Landi et al., 2018; Papageorgiou et al., 2018;
Yang et al., 2018). However, in (Ude et al., 2014) DMPs
were formulated for orientation in Cartesian space.
? The research leading to these results has received funding from the
Vinnova project Kirurgens Perspektiv, Boverket Innovativt bostads-
byggande #6438/2018, and Vinnova Uppkopplad byggplats #2017-
05202. The authors are members of the ELLIIT Excellence Center
at Lund University.

Fig. 1. The ABB YuMi robot (ABB Robotics, 2019) used
in the experiments.

Temporal coupling for DMPs enables robots to recover
from unforeseen events, such as disturbances or detours
based on sensor data. This concept was introduced in
(Ijspeert et al., 2013), was made practically realizable in
(Karlsson et al., 2017a), and proven exponentially stable
in (Karlsson et al., 2018). However, these previous results
are applicable only if the robot state space is Euclidean,
which is not true for orientation in Cartesian space. Higher
levels of robot control typically operate in Cartesian space,
for instance to control the pose of a robot end-effector or
an unmanned aerial vehicle.

In this paper, we therefore address the question of whether
the control algorithm in (Karlsson et al., 2017a) could
be extended also to incorporate orientations. Because a
contractible state space is necessary for design and analysis
of a continuous globally asymptotically stable control law
(see Sec. 2), we first investigate the contractibility proper-
ties of the quaternion set used to represent orientations. A
space is contractible if and only if it is homotopy equivalent
to a one-point space (Hatcher, 2002), which intuitively
means that the space can be deformed continuously to
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a single point; see, e.g., (Hatcher, 2002) for a definition of
homotopy equivalence.

1.1 Contribution

This paper provides a control algorithm for DMPs with
temporal coupling in Cartesian space. It extends our
previous research in (Karlsson et al., 2017a, 2018) by
including orientation in Cartesian space. Equivalently, it
extends (Ude et al., 2014) by including temporal coupling.
Furthermore, it is shown that the quaternion set minus one
single point is contractible, which is a necessary property
for design of a continuous and globally asymptotically
stable control algorithm. Finally, the theoretical results
are verified experimentally on an ABB YuMi robot; see
Fig. 1 and (ABB Robotics, 2019).

2. THE QUATERNION SET MINUS ONE SINGLE
POINT IS CONTRACTIBLE

The fundamentals of mathematical topology and set the-
ory are described in, e.g., (Hatcher, 2002; Crossley, 2006;
Schwarz, 2013). As noted in (Mayhew et al., 2011), the
rotation group SO(3) is not contractible, and therefore it is
not possible for any continuous state-feedback control law
to yield a globally asymptotically stable equilibrium point
in SO(3) (Bhat and Bernstein, 2000; Koditschek, 1988).
Contractibility is also necessary to apply the contraction
theory from (Lohmiller and Slotine, 1998), as done in
(Karlsson et al., 2018). In this paper, unit quaternions
are used to parameterize SO(3). Similarly to SO(3), the
unit quaternion set, H, is not contractible. In this section
however, it is shown that it is sufficient to remove one point
from H to yield a contractible space. Table 1 lists some of
the notation used in this paper.

2.1 Preliminary topology

We will use that homeomorphism (defined in, e.g., (Cross-
ley, 2006)) is a stronger relation than homotopy equiva-
lence.

Lemma 1. If two spaces X and Y are homeomorphic, then
they are homotopy equivalent.

Proof: See Lemma 6.11 in (Crossley, 2006). �

Lemma 2. Assume that X ∼= Y , with a homeomorphism
f : X → Y . Then X minus a point p ∈ X, denoted X \ p,
is homeomorphic to Y \ f(p).

Proof: Consider the function f2 : X \ p → Y \ f(p),
and let f2(x) = f(x) ∀x ∈ X \ p. It can be seen
that f2 is a restriction of f . Since a restriction of a
homeomorphism is also a homeomorphism (Lehner, 1964),
f2 is a homeomorphism, and hence X \ p ∼= Y \ f(p). �

We will also use that homeomorphism preserves con-
tractibility.

Lemma 3. If X ∼= Y , and X is contractible, then Y is also
contractible.

Proof: Since X ∼= Y , they are homotopy equivalent
according to Lemma 1. In turn, X is contractible and
therefore homotopy equivalent to a one-point space. Hence
Y is also homotopy equivalent to a one-point space, and
therefore contractible. �

Table 1.

Notation Description

H Unit quaternion set
Sn ∈ Rn+1 Unit sphere of dimension n
ya ∈ R3 Actual robot position
g ∈ R3 Goal position
yc ∈ R3 Coupled robot position
qa ∈ H Actual robot orientation
qg ∈ H Goal orientation
qc ∈ H Coupled robot orientation
ωc ∈ R3 Coupled angular velocity
q0 ∈ H Initial robot orientation
h Quaternion difference space
dcg ∈ h Difference between qc and qg
z, ωz ∈ R3 DMP states
αz , βz , kv , kp ∈ R+ Constant control coefficients
τ ∈ R+ Nominal DMP time constant
τa ∈ R+ Adaptive time parameter
x ∈ R+ Phase variable
αx, αe, kc ∈ R+ Positive constants
f(x) ∈ R6 Learnable virtual forcing term
fp(x), fo(x) ∈ R3 Position and orientation parts
Nb ∈ Z+ Number of basis functions
Ψj(x) ∈ R6 The j:th basis function vector
wj ∈ R6 The j:th weight vector
e ∈ R3 × h Low-pass filtered pose error
ep ∈ R3 Position component of e
eo ∈ h Orientation component of e
ÿr, ω̇r ∈ R3 Reference robot acceleration
ξ ∈ R22 × h3 DMP state vector
q̄ ∈ H Inverse of quaternion q
' Homotopy equivalence
∼= Homeomorphic relation

2.2 The largest contractible subset of the unit quaternion
set

First, it will be shown that the unit sphere Sn (see
Definition 1) minus a point is contractible. This will then
be applied to H, which is homeomorphic to S3 (LaValle,
2006).

Definition 1. Let n be a non-negative integer. The unit
sphere with dimension n is defined as

Sn =
{
p ∈ Rn+1 | ‖p‖2 = 1

}
(1)

Theorem 1. The unit sphere Sn minus a point p ∈ Sn,
denoted Sn \ p, is contractible.

Proof: Consider first the case n ≥ 1. There exists a
mapping from Sn \ p to Rn called stereographic projection
from p, which is a homeomorphism. Thus, Sn \ p ∼= Rn

(Huggett and Jordan, 2009; Schwarz, 2013). See Fig. 2 for
a visualization of these spaces. Since Rn is a Euclidean
space it is contractible, and it follows from Lemma 3 that
Sn \ p is also contractible.

Consider now the case n = 0. The sphere S0 consists of the
pair of points {−1, 1} according to Definition 1. Thus S0\p
consists of one point only, and homotopy equivalence with
a one-point space is trivial. Hence S0 \ p is contractible. �

Remark 1. Albeit we consider unit spheres in this paper, it
is not necessary to assume radius 1 in Theorem 1. Further,
it is arbitrary which point p ∈ Sn to remove.

Theorem 2. The set of unit quaternions H minus a point
q̃ ∈ H, denoted H \ q̃, is contractible.

Proof: The set H is homeomorphic to S3 (LaValle, 2006).
Therefore H \ q̃ ∼= S3 \ p for some point p ∈ S3, according
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Fig. 2. Visualization of Sn \ p (left) and Rn (right) for n =
0, 1, 2. The red cross marks a point p removed from the
unit sphere. Each space to the left is homeomorphic to
the corresponding space to the right, i.e., Sn\p ∼= Rn.
In turn, Rn is homotopy equivalent to a point (for
instance p̂ marked by a purple dot in each plot to the
right) and therefore Sn \p is contractible according to
Lemma 3. Higher dimensions are difficult to visualize,
and therefore S2 is commonly used to visualize parts
of the quaternion set, as done in Fig. 10.

to Lemma 2. Theorem 1 with n = 3 yields that S3 \ p is
contractible, and because of the homeomorphic relation,
Lemma 3 yields that H \ q̃ is also contractible. �

It is noteworthy that the contractible subset H \ q̃ is the
largest possible subset of H, because one point is the
smallest possible subset to remove. Hence, it is guaranteed
that no unnecessary restriction is made in Theorem 2,
though there are other, more limited, subsets of H that are
also contractible. Sometimes only half of H, for instance
the upper half of the quaternion hypersphere, is used
to represent orientations. However, instead of continuous
transitions between the half spheres this results in discon-
tinuities within the upper half sphere (LaValle, 2006). In
the context of DMPs and automatic control such discon-
tinuities would cause severe obstructions, which motivates
the search for the largest possible contractible subset of
H. One of the experiments (Setup 3 in Sec. 4) provides
an example of when both half spheres are necessary for a
continuous representation of the robot orientation.

3. CONTROL ALGORITHM

In this section, we augment the controller in (Karlsson
et al., 2017a, 2018) to incorporate orientation in Cartesian

space. The resulting algorithm can also be seen as a tem-
porally coupled version of the Cartesian DMPs proposed
in (Ude et al., 2014). The pose in Cartesian space consists
of position and orientation. The position control in this
paper is the same as described in (Karlsson et al., 2017a,
2018), except that it is also affected by the orientation
through the shared time parameter τa in this paper.

Similar to the approaches in (Ude et al., 2014; Ude, 1999),
we define a difference between two quaternions, q1 and q2,
as

d(q1q̄2) = 2 · Im[log(q1q̄2)] ∈ h (2)

where h is the orientation difference space, defined as the
image of d, and Im denotes the imaginary quaternion
part, assuming for now that q1q̄2 6= (−1, 0, 0, 0). This is
elaborated on in Sec. 6. Further, we will use a shorter
notation, so that for instance

dcg = d(qcq̄g) = 2 · Im[log(qcq̄g)] (3)

represents the difference between coupled and goal orien-
tations. This mapping preserves the contractibility con-
cluded in Sec. 2, as established by Theorem 3.

Theorem 3. The orientation difference space h is con-
tractible.

Proof: The mapping

d : H \ (−1, 0, 0, 0)→ h (4)

has the properties necessary to qualify as a homeomor-
phism. It is one-to-one (Ude, 1999) and onto, continuous
(since the point (−1, 0, 0, 0) has been removed), and its
inverse (division by 2 followed by the exponential map)
is also continuous. Further, its domain H \ (−1, 0, 0, 0) is
contractible (see Theorem 2), and therefore its image h is
contractible (see Lemma 3). �

Using the function d, a coupled DMP pose trajectory is
modeled by the dynamical system

τaż = αz(βz(g − yc)− z) + fp(x) (5)

τaẏc = z (6)

τaω̇z = αz(βz(−dcg)− ωz) + fo(x) (7)

τaωc = ωz (8)

Here, z and ωz are velocities scaled by τa, and x is a phase
variable that evolves as

τaẋ =− αxx (9)

Further, fo(x) is a virtual forcing term in the orientation
domain, and each element i of fo(x) is given by

f io(x) =

∑Nb

j=1 Ψi,j(x)wi,j∑Nb

j=1 Ψi,j(x)
x · di(qg q̄0) (10)

where each basis function, Ψi,j(x), is determined as

Ψi,j(x) = exp

(
− 1

2σ2
i,j

(x− ci,j)2
)

(11)

Here, σ and c denote the width and center of each
basis function, respectively. The forcing term fp(x) is
determined accordingly, see (Karlsson et al., 2017a, 2018).
Further, the parameters of f(x) can be determined based
on a demonstrated trajectory by means of locally weighted
regression (Atkeson et al., 1997), as described in (Ijspeert
et al., 2013).

All dimensions of the robot pose are temporally coupled
through the shared adaptive time parameter τa. Denote by
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ya the actual position of the robot, and by qa the actual
orientation. The adaptive time parameter τa is determined
based on the low-pass filtered difference between the actual
and coupled poses as follows.

ėp = αe(ya − yc − ep) (12)

ėo = αe(dac − eo) (13)

e = [eTp eTo ]T (14)

τa = τ(1 + kce
T e) (15)

This causes the evolution of the coupled system to slow
down in case of configuration deviation; see (Ijspeert et al.,
2013; Karlsson et al., 2017a). Moreover, the controller
below is used to drive ya to yc, and qa to qc.

ÿr = kp(yc − ya) + kv(ẏc − ẏa) + ÿc (16)

ω̇r = −kpdac − kv(ωa − ωc) + ω̇c (17)

This can be seen as a pose PD controller together with
the feedforward terms ÿc and ω̇c. Here, ÿr and ω̇r denote
reference accelerations sent to the internal controller of
the robot, after conversion to joint values using the robot
Jacobian (Spong et al., 2006). We let kp = k2v/4, so
that (16) – (17) represent a critically damped control
loop. Similarly, βz = αz/4 (Ijspeert et al., 2002). The
control system is schematically visualized in Fig. 3. We
model the ’Robot’ block as a double integrator, so that
ÿa = ÿr and ω̇a = ω̇r, as justified in (Karlsson et al., 2018)
for accelerations with moderate magnitudes and changing
rates. In summary, the proposed control system is given
by

ÿ = −kp(y − yc)− kv(ẏ − ẏc) + ÿc (18)

ω̇a = −kpdac − kv(ωa − ωc) + ω̇c (19)

ė = αe

([
[y − yc]T dTac

]T
− e
)

(20)

τa = τ(1 + kce
T e) (21)

τaẋ = −αxx (22)

τaẏc = z (23)

τaż = α(β(g − yc)− z) + fp(x) (24)

τaωc = ωz (25)

τaω̇z = α(β(−dcg)− ωz) + fo(x) (26)

We introduce a state vector ξ as

ξ =



y − yc
ẏ − ẏc
dac

ωa − ωc

e

x

yc − g
z

dcg

ωz


∈ R22 × h3 (27)

4. EXPERIMENTS

The control law in Sec. 3 was implemented in the Julia
programming language (Bezanson et al., 2014), to control
an ABB YuMi (ABB Robotics, 2019) robot. The Julia
program communicated with the internal robot controller
through a research interface version of Externally Guided

Robot
∑PD

controller
DMP

[
yc
qc

] [
ya
qa

][
ÿr
ω̇r

]

Feedback

Feedforward
[
ÿc
ω̇c

]

Fig. 3. The control structure for temporally coupled Carte-
sian DMPs. The block denoted ’Robot’ includes the
internal controller of the robot, together with trans-
formations between Cartesian and joint space for low-
level control. The ’DMP’ block corresponds to the
computations in (5) – (15). The PD controller and the
feedforward terms are specified in (16) – (17). This
forms a cascade controller, with the DMP as outer
controller and the PD as the inner.

(a) (b)

Fig. 4. Photographs of a trial of Setup 1. The robot was
initially released from the pose in (a), with an offset
to the goal pose. In (b), the goal pose was reached.

Motion (EGM) (Bagge Carlson and Haage, 2017) at a
sampling rate of 250 Hz.

Three different setups were used to investigate the be-
havior of the controller. As preparation for each setup, a
temporally coupled Cartesian DMP had been determined
from a demonstration by means of lead-through program-
ming, which was available in the YuMi product by default.
In each trial, the temporally coupled DMP was executed
while the magnitudes of the states in (27) were logged.

Perturbations were introduced by physical contact with
a human. This was enabled by estimating joint torques
induced by the contact, and mapping these to Cartesian
contact forces and torques using the robot Jacobian. A
corresponding acceleration was then added to the reference
acceleration ÿr as a load disturbance. However, we empha-
size that this paper is not focused on how to generate the
perturbations themselves. Instead, that functionality was
used only as an example of unforeseen deviations, and to
investigate the stability properties of the proposed control
algorithm.

A video of the experimental arrangement is available in
(Karlsson, 2018). The setups were as follows.

Setup 1. This setup is visualized in Fig. 4. Prior to
the experiment, a test DMP that did not perform any
particular task was executed, and the robot then converged
to the goal pose, i.e., to ya = yc = g and dac = dcg = 0.
Thereafter, the operator pushed the end-effector, so that
the actual pose deviated from the coupled and goal poses.
The experiment was initialized when the operator released
the robot arm. The purpose of this procedure was to
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(a) (b)

(c) (d)

Fig. 5. Photographs of a trial of Setup 2. The DMP
was executed from the home position (a), and was
perturbed twice on its way toward the goal (b). It
recovered from these perturbations (c), and reached
the goal at the work object (d).

examine the stability of the subsystem in (18) – (20). A
total of 100 perturbations were conducted.

Setup 2. See Fig. 5. The task of the robot was to reach a
work object (in this case a gore-tex graft used in cardiac
and vascular surgery) from its home position. A DMP
defined for this purpose was executed, and the operator
introduced two perturbations during the robot movement.
The purpose of this setup was to investigate the stability
of the entire control system in (18) – (26). A total of 10
trials were conducted.

Setup 3. See Fig. 6. The task of the robot was to hand
over the work object from its right arm to its left. The
movement was specifically designed to require an end-
effector rotation angle of more than π, thus requiring
both the upper and the lower halves of the quaternion
hypersphere (see Fig. 10), and not only one of the halves
which is sometimes used (LaValle, 2006). Such movements
motivate the search for the largest possible contractible
subset of H in Sec. 2. Similar to Setup 2, the purpose was
to investigate the stability of (18) – (26), and 10 trials were
conducted.

5. RESULTS

Figures 7–10 display data from the experiments. Figure 7
shows the magnitude of the states during a trial of Setup 1,
and it can be seen that each state converged to 0 after the
robot had been released. Similarly, Figs. 8 and 9 show
data from Setup 2 and 3 respectively, and it can be seen
that the robot recovered from each of the perturbations.
Further, each state subsequently converged to 0. All trials
in a given setup gave similar results. Further, these results
suggest that the control system (18) – (26) is exponentially
stable.

Figure 10 shows orientation data from Setup 2 (left) and
Setup 3 (right). The upper plots show quaternions for the
demonstrated paths, qd, determined using lead-through

(a) (b)

(c) (d)

Fig. 6. Photographs of a trial of Setup 3. The robot started
its movement from the configuration in (a). The end-
effector was rotated as indicated by the red arrows,
which resulted in a rotation larger than π from start to
goal. The robot was perturbed twice by the operator
(b), recovered and continued its movement (c), and
accomplished the handover (d).

0 1 2 3 4
0

0.5

1

1.5

Time [s]

||ya − yc|| [m]

||ẏa − ẏc|| [m/s]

||dac|| [rad]

||ωa − ωc|| [rad/s]

||e|| [1]

Fig. 7. Data from a trial of Setup 1. The notation ‖ ·‖ rep-
resents the 2-norm, and the unit symbol [1] indicates
dimensionless quantity. The experiment was initial-
ized with some position error ya − yc and orientation
error dac. The operator released the robot at t = 0. It
can be seen that each state converged to 0.

programming prior to the experimental trials, relative to
the goal quaternions qg. The middle plots show coupled
orientations qc relative to qg. It can be seen that the paths
of qd and qc were similar for each of the setups, which was
expected given a sufficient number of DMP basis functions.
The perturbations can be seen in the bottom plots, which
show qa relative to qc. Though qaq̄c was very close to
the identity quaternion for most of the time, it deviated
significantly twice per trial as a result of the perturbations.
Setup 3 is an example of a movement where it would not
be possible to restrict the quaternions to the upper half
sphere, without introducing discontinuities. This is shown
in Fig. 10, as quaternions were present not only on the
upper half sphere, but also on the lower, for Setup 3.

6. DISCUSSION

In each of the experiments, the robot recovered from the
perturbations and subsequently reached the goal pose,
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Fig. 8. Data from a trial of Setup 2. Consider first the
upper plot. The two perturbations are clearly visible,
and these were recovered from as the states converged
to 0. In the lower plot, it can be seen that the
time evolution of the states was slowed down in the
presence of perturbations. It can further be seen that
each of the states converged to 0.

which was the desired behavior. Further, the behavior cor-
responded to that in (Karlsson et al., 2017a, 2018), except
that orientations in Cartesian space are now supported.
Most of the discussion in (Karlsson et al., 2017a, 2018) is
therefore valid also for these results, and is not repeated
here.

A mathematical proof that the proposed control system
is exponentially stable would enhance the contribution of
this paper, but remains as future research. Nevertheless,
it has now been shown that the topology of h does not
prohibit a globally exponentially stable control system.
One may object that this topological result is not directly
necessary for the control design in Sec. 3. However, it
is still useful because it rules out the otherwise possible
obstruction of a non-contractible state space. This result
is relevant not only for DMP applications, but for any
control application where quaternions are used to rep-
resent orientation. Furthermore, the experimental results
indicate exponential stability, since in practice the DMP
states converged to 0.

The magnitude of the difference between two quaternions,
||d(q1q̄2)||, corresponds to the length of a geodesic curve
connecting q1 and q2 (Ude, 1999). This results in proper
scaling between orientation difference and angular velocity
in the DMP control algorithm, as explained in (Ude et al.,
2014). This is the reason why the quaternion difference in
(2) was used in (Ude et al., 2014) and in this paper.

In Sec. 2, the largest possible contractible subset of H was
found as H\ q̃. Hence, it is not necessary to remove a large
proportion of the quaternion set, which is sometimes done.
For instance, sometimes the lower half of the quaternion
hypersphere is removed (LaValle, 2006), which is unnec-
essarily limiting. The results from Setup 3 show that this
proposed method works also when it is necessary to use

both half spheres, see Fig. 10. In Sec. 3, the removed point
q̃ was chosen as (−1, 0, 0, 0), which corresponds to a full 2π
rotation from the identity quaternion. A natural question
is therefore how to handle the case where (−1, 0, 0, 0)
is visited by qaq̄c or qcq̄g. In theory, almost any control
signal could be used to move the orientations away from
this point, and in practice a single point would never be
visited because it is infinitely small. However, in prac-
tice some care should be taken in a small region around
(−1, 0, 0, 0), because of possible numerical difficulties and
rapidly changing control signals.

In this paper, the same control gains were used in the
position domain as in the orientation domain. This was
done in order to limit the notation, but is not actually
required.

An interesting direction of future work is to use the pro-
posed controller to warm start reinforcement learning ap-
proaches for robotic manipulation. Reinforcement learning
with earlier DMP versions has been investigated in, e.g.,
(Stulp et al., 2011, 2012b,a; Li et al., 2018).

6.1 Unwinding and Motion Control

When the robot orientation is changed by more than π,
i.e., more than half of a full rotation, to reach a ref-
erence orientation, this is called unwinding. Then, the
robot has not done the shortest rotation possible to reach
its reference, disregarding limitations such as obstacles.
Because unwinding sometimes implicates unnecessarily
long movements, it is sometimes regarded as undesired.
However, there are examples where such unwinding is a
desired feature. Consider, for instance, Setup 3 and Fig. 6.
The clockwise rotation of the end-effector is larger than
π, and hence corresponds to unwinding. Disregarding all
obstacles, the goal configuration could have been reached
by a shorter, counter-clockwise, rotation. However, the
handover task required the graft to reach the receiving
robot arm from above. Furthermore, the demonstration
corresponded to a rotation larger than π, and it is natural
that the same rotation is performed during the execution.
For these two reasons, unwinding is desirable in this case,
and supported by the fact that almost the entire unit-
quaternion sphere can be used, rather than just one half
sphere. In programming by demonstration, it is common
that the executed movements should resemble the demon-
strated ones. Therefore, unwinding is desirable in many
applications related to programming by demonstration.

7. CONCLUSION

In this paper, it was first shown that the unit quaternion
set minus one point is contractible, thus allowing for
continuous and asymptotically stable control systems.
This was used to design a control algorithm for DMPs with
temporal coupling in Cartesian space. The proposed DMP
functionality was verified experimentally on an industrial
robot.

A video that shows the experiments is provided in (Karls-
son, 2018).
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Fig. 9. Data from a trial of Setup 3. The organization is
the same as in Fig. 8, and similar conclusions can be
drawn. In addition, the required rotation angle from
start to goal was larger than π in this setup, which
corresponds to ||dcg|| being larger than π initially.
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