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Abstract: This paper continues the research devoted to the design of numerically stable square-
root implementations for the maximum correntropy criterion Kalman filtering (MCC-KF). In
contrast to the previously obtained results, here we reveal the first robust (with respect to round-
off errors) method within the Cholesky factorization-based approach. The method is formulated
in terms of square-root factors of the covariance matrices, i.e. it belongs to the covariance-type
filtering methodology. Additionally, a numerically stable orthogonal transformation is utilized
at each iterate of the algorithm for accurate propagation of the Cholesky factors involved.
The results of numerical experiments illustrate a superior performance of the novel MCC-
KF implementation compared to both the conventional algorithm and its previously published
Cholesky-based variant.
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1. INTRODUCTION

One of the most recent solution to the problem of “dis-
tributionally” robust filtering (i.e. when the actual distri-
bution deviates from the “nominal” one) is obtained un-
der the so-called maximum correntropy criterion (MCC).
More precisely, when the classical state-space models are
examined, the “nominal” distribution is assumed to be
Gaussian, and the goal is to enhance the underlying filter
performance in terms of estimation accuracies in a case
of the presence of outliers. The obtained MCC-based esti-
mators with the Kalman filtering (KF) like structure (i.e.
the first two moments are computed, only) are derived for
both the linear stochastic systems in Liu et al. (2007);
Chen et al. (2014, 2015); Cinar and Pŕıncipe (2011, 2012);
Izanloo et al. (2016); Chen et al. (2017); Liu et al. (2017b);
Kulikova (2017); Fakoorian et al. (2019) and the nonlinear
state-space models in Liu et al. (2016); Kulikov and Ku-
likova (2018a); Liu et al. (2017a); Qin et al. (2017); Wang
et al. (2017, 2016); Kulikov and Kulikova (2020). One of
the obtained estimators is called the maximum correntropy
criterion Kalman filter (MCC-KF) as proposed in Izan-
loo et al. (2016). This estimation method is widely used
for solving practical problems; e.g., see Yang and Huang
(2017, 2018) and many other studies.

Recently, the numerical robustness issues of the mentioned
MCC-KF estimator have been investigated in Kulikova
(2019). The key problem in this research area is to derive a
stable (in a finite precision arithmetic) square-root MCC-
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KF implementation methods, which are demanded for
solving applications with high reliability requirements as
discussed in Grewal and Kain (2010); Grewal (2019) and
many other works. In this paper, we focus on the tradi-
tional square-root strategy that is based on the Cholesky
factorization applied to covariance matrices involved in the
filter; see Kailath et al. (2000); Simon (2006); Grewal and
Andrews (2015). Unfortunately, the previously discovered
Cholesky-based MCC-KF method in Kulikova (2019) is
shown to possess a poor performance in ill-conditioned
state estimation scenario. Thus, the goal of this research
is to answer a question whether it is possible or not to
find a more reliable MCC-KF implementation within the
discussed class of Cholesky factorization-based algorithms.
We answer positively this question and derive the first
stable square-root MCC-KF method that outperforms for
estimation accuracy both the conventional MCC-KF algo-
rithm and its previously published Cholesky-based variant.

More precisely, the novel estimator is designed in terms
of the lower triangular Cholesky factors of the error
covariance matrices, i.e. it is of covariance-type filtering
methodology. Additionally, stable orthogonal rotations are
utilized as far as possible for propagating the involved
Cholesky factors. The performance of the examined MCC-
KF implementation methods are studied by using a sixth-
order radar tracking system example.

2. PROBLEM STATEMENT

Consider a linear discrete-time state-space model

xk =Fk−1xk−1 +Gk−1wk−1, k ≥ 1, (1)

yk =Hkxk + vk (2)

where the system matrices Fk ∈ Rn×n, Gk ∈ Rn×q, Hk ∈
Rm×n and the noises’ covariancesQk ∈ Rq×q (Qk > 0) and
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Rk ∈ Rm×m (Rk ≥ 0) are known. The vectors xk ∈ Rn

and yk ∈ Rm are, respectively, the hidden dynamic state to
be estimated and the available measurement vector. The
random variables x0, wk and vk are assumed to satisfy

E {x0} = x̄0, E
{
(x0 − x̄0)(x0 − x̄0)

⊤} = Π0,

E {wk} = E {vk} = 0, E
{
wkx

⊤
0

}
= E

{
vkx

⊤
0

}
= 0,

E
{
wkv

⊤
k

}
= 0, E

{
wkw

⊤
j

}
= Qkδkj ,

E
{
vkv

⊤
j

}
= Rkδkj

where the symbol δkj is the Kronecker delta function, and
the initial mean x̄0 and error covariance Π0 ≥ 0 are known.

The minimum linear expected mean square error (MSE)
estimator derived for the examined state-space model (1),
(2) is known as the Kalman filter (KF); see Theorem 9.2.1
in Kailath et al. (2000). In case of Gaussian uncertainties in
the model, the minimum expected MSE estimate belongs
to a class of linear functions and, hence, being a linear
estimator the KF provides the optimal estimate in the
MSE sense; e.g., see Aravkin et al. (2017). However,
in non-Gaussian settings, the classical KF exhibits only
sub-optimal behavior under the minimum expected MSE
estimation criterion.

The concept of correntropy (that is a similarity measure
of two random variables) has become a very popular tech-
nique in the past few years in the realm of designing the
“distributionally” robust estimators, i.e. when the actual
distribution deviates from the “nominal” one. For the
examined state-space models, the “nominal” distribution
is assumed to be Gaussian, and the goal is to enhance the
classical KF performance in a case of outliers appearance.
One of the resulted estimators is called the maximum cor-
rentropy criterion Kalman filter (MCC-KF) as proposed
in Izanloo et al. (2016). In general, the maximum corren-
tropy cost function is used in the related estimation prob-
lem as follows, e.g., see the details in Chapter 5 in Com-
miniello and Pŕıncipe (2018): an estimator of unknown
state X ∈ R can be defined as a function of observations
Y ∈ Rm, i.e. X̂ = g(Y ) where g is solved by maximizing

the correntropy between X and X̂, i.e.

argmax
g∈G

V (X, X̂) = argmax
g∈G

E
{
kσ

(
X − g(Y )

)}
(3)

where G stands for the collection of all measurable func-
tions of Y , kσ(·) is a kernel function and σ > 0 is the
kernel size (bandwidth). As mentioned above, the “nom-
inal” distribution is assumed to be Gaussian and, hence,
we explore the Gaussian kernel in the related estimation
problem given as follows:

kσ(X − X̂) = exp
{
−(X − X̂)2/(2σ2)

}
. (4)

It is not difficult to see that the MCC cost (3) with

kernel (4) reaches its maximum if and only if X = X̂.

In summary, the discussed MCC-KF technique for esti-
mating the unknown dynamic state x̂k|k in the state-space
model (1), (2) with the Gaussian kernel kσ(·) from (4) is
derived by maximizing the following cost function:

J(k) = kσ(∥x̂k|k − Fk−1x̂k−1|k−1∥P−1
k|k−1

)

+ kσ(∥yk −Hkx̂k|k∥R−1
k
). (5)

The stated optimization problem has been solved by Cinar
and Pŕıncipe (2012); Izanloo et al. (2016) where the
arisen nonlinear equation was resolved with respect to
x̂k|k by utilizing a fixed point rule with one iterate, only.
More precisely, this approach yields the following filtering
recursion:

x̂k|k = Fk−1x̂k−1|k−1 +Kk(yk −Hkx̂k|k−1) (6)

where the gain matrix is computed by

Kk = λk

(
P−1
k|k−1 + λkH

⊤
k R−1

k Hk

)−1

H⊤
k R−1

k (7)

and λk is a scalar adjusting weight as suggested in Izanloo
et al. (2016)

λk =
kσ(∥yk −Hkx̂k|k−1∥R−1

k
)

kσ(∥x̂k|k−1 − Fk−1x̂k−1|k−1∥P−1
k|k−1

)
. (8)

Finally, the recursion for the state estimate in (6) is
combined with the symmetric Joseph stabilized formula
for calculating the filter error covariance matrix, which
has been derived for the classical KF; e.g., see Kailath
et al. (2000); Simon (2006); Grewal and Andrews (2015).
The pseudo-code in Algorithm 1 summarizes the discussed
MCC-KF suggested in Izanloo et al. (2016).

Algorithm 1. MCC-KF (conventional MCC-KF)

Initialization:(k = 0) x̂0|0 = x̄0 and P0|0 = Π0.
Time Update: (k = 1, N)

1 x̂k|k−1 = Fk−1x̂k−1|k−1;
2 Pk|k−1 = Fk−1Pk−1|k−1F

⊤
k−1 +Gk−1Qk−1G

⊤
k−1;

Measurement Update: (k = 1, N)
3 Compute λk by formula (8);

4 Kk = λk

(
P−1
k|k−1 + λkH

⊤
k R−1

k Hk

)−1

H⊤
k R−1

k ;

5 Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
⊤ +KkRkK

⊤
k ;

6 x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1).

Algorithm 1 is said to be of the covariance type presented
in the conventional form, because it recursively processes
the full error covariance matrices Pk|k−1 and Pk|k at each
iterate of the filter. Taking into account that any covari-
ance matrix is a symmetric matrix, it makes sense to
propagate only half of them. The traditional way utilized
in the KF community is the use of Cholesky factorization.
It implies the decomposition P = SS⊤ and, then, the
underlying filtering recursion is re-derived in terms of
propagating the Cholesky factor S, only; see Morf and
Kailath (1975); Park and Kailath (1995); Bierman and
Thornton (1977) and many other studies. This computa-
tional approach is also known to improve the numerical
stability of any conventional KF-like implementation in a
finite precision arithmetic, because it ensures the symmet-
ric form and positive (semi-) definiteness of the original
matrix P (while the recovering by backward multiplica-
tion SS⊤ = P ) despite the influence of roundoff errors;
see Kailath et al. (2000); Simon (2006); Grewal and An-
drews (2015). Recently, the Cholesky factorization-based
method has been derived in Kulikova (2019). However,
the numerical stability of the suggested method is still
poor as illustrated by the results of numerical experiments
presented in the cited paper. The question to be answered
in this paper is the following: whether it is possible or not
to find a more reliable MCC-KF implementation within
the discussed Cholesky-based class of methods.
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3. MCC-KF CHOLESKY-BASED FILTERING

We start our research with the MCC-KF square-root
method previously designed in Kulikova (2019). The goal
is to improve the method in terms of its stability with
respect to roundoff errors. It is worth noting here that
the first Cholesky factorization-based MCC-KF imple-
mentation derived in the cited paper is formulated in
terms of the upper triangular Cholesky factors. For read-
ers’ convenience, we first re-formulate it in terms of the
lower triangular matrices and, next, we propose its robust
alternative. More precisely, let’s consider the Cholesky
factorization of a symmetric positive definite matrix A
in the form A = A1/2A⊤/2 where the factor A1/2 is
a lower triangular matrix with positive diagonal entries.
The square-root MCC-KF algorithms imply the following
essential features: (i) the factorization is only performed
for Π0 > 0; (ii) the filtering equation in Algorithm 1 are
then re-derived for propagating the lower triangular ma-

trices P
1/2
k|k−1 and P

1/2
k|k ; (iii) numerically stable orthogonal

rotations are utilized for updating the involved Cholesky
factors that additionally provide the array form suitable
for parallel implementation. Finally, it is important that
the adjusting weight λk defined in (8) is a nonnegative
value and, hence, a square root exists.

To design the mathematically equivalent analogue of Al-
gorithm 1, we factorize its equations as follows:

Pk|k−1 = Fk−1Pk−1|k−1F
⊤
k−1 +Gk−1Qk−1G

T
k−1 = AA⊤

= [Fk−1P
1/2
k−1|k−1, Gk−1Q

1/2
k−1][Fk−1P

1/2
k−1|k−1, Gk−1Q

1/2
k−1]

⊤

where an orthogonal rotation, say Q, is applied to get the
corresponding lower triangular post-array, R, by transfor-
mation AQ = R, i.e. we have

RR⊤ = (AQ)(AQ)⊤ = AA⊤ = [X, 0][X, 0]⊤ = Pk|k−1

and, hence, we conclude that X := P
1/2
k|k−1 is the resulted

square-root factor, which we are looking for. This value is
pulled out from the post-array, if required.

Next, the following formulas have been proved for the filter
gain Kk calculation in Kulikova (2017):

Kk = λkP̂k|kH
⊤
k R−1

k

= λk

(
P−1
k|k−1 + λkH

⊤
k R−1

k Hk

)−1

H⊤
k R−1

k . (9)

Kk = λkPk|k−1H
⊤
k R−1

e,k

= λkPk|k−1H
⊤
k (λkHkPk|k−1H

⊤
k +Rk)

−1. (10)

It is not difficult to see that the MCC-KF estimator
involves equation (9) for computing Kk in line 4 of Algo-
rithm 1. To derive the square-root form, we consider the
term in the brackets, i.e. P̂−1

k|k = P−1
k|k−1 + λkH

⊤
k R−1

k Hk,

and factorize it in the form AA⊤ where the post array is
obtained by transformation R = AQ. Thus, we get

AA⊤ = P−1
k|k−1 + λkH

⊤
k R−1

k Hk

= [P
−⊤/2
k|k−1 , λ

1/2
k H⊤

k R
−⊤/2
k ][P

−⊤/2
k|k−1 , λ

1/2
k H⊤

k R
−⊤/2
k ]⊤

= RR⊤ = P̂−1
k|k = [P̂

−⊤/2
k|k , 0][P̂

−⊤/2
k|k , 0]⊤.

When the resulted block [P̂
−⊤/2
k|k ] is read-off from the post-

array, the gain matrix is calculated as follows:

Kk = λkPk|kH
⊤
k R−1

k = λk

(
[P̂

−⊤/2
k|k ][P̂

−⊤/2
k|k ]⊤

)−1

H⊤
k R−1

k .

Finally, although the Cholesky factor P̂
1/2
k|k is already

available in the MCC-KF algorithm, the estimator im-
plementation implies its re-calculation by using the so-
called Joseph stabilized equation for updating the error
covariance matrix Pk|k at the last line of Algorithm 1. To
distinguish the matrix Pk|k used in the gainKk calculation
by formula (9) from the matrix obtained from the Joseph

stabilized equation, we use notation P̂k|k and Pk|k for these
two cases, respectively. It is worth noting here that the
Joseph stabilized formula ensures the symmetric form of
error covariance matrix Pk|k and, hence, it is recognized to
be the preferable implementation strategy of any conven-
tional filtering algorithm. In a similar way, we factorize

AA⊤ = (I−KkHk)Pk|k−1(I−KkHk)
⊤+KkRkK

⊤
k

= [(I−KkHk)P
1/2
k|k−1, KkR

1/2
k ]

× [(I−KkHk)P
1/2
k|k−1, KkR

1/2
k ]⊤

= RR⊤ = Pk|k = [P
1/2
k|k , 0][P

1/2
k|k , 0]⊤.

Having summarized the formulas above, we obtain the
following Cholesky-based square-root MCC-KF method.

Algorithm 1a. SR MCC-KF (Cholesky-based MCC-KF)

Initialization:(k = 0)

Apply Cholesky factorization: Π0 = Π
1/2
0 Π

⊤/2
0 ;

Set initial values: x̂0|0 = x̄0, P
1/2
0|0 = Π

1/2
0 ;

Time Update: (k = 1, N)
1 Compute x̂k|k−1 in line 1 of Algorithm 1;
2 Build the pre-array and lower triangularize it[

Fk−1P
1/2
k−1|k−1, Gk−1Q

1/2
k−1

]
︸ ︷︷ ︸

Pre-array A

Q1 =
[
P

1/2
k|k−1, 0

]
︸ ︷︷ ︸
Post-array R

;

Read-off from post-array the factor P
1/2
k|k−1;

Measurement Update: (k = 1, N)
3 Compute λk by formula (8);
4 Build the pre-array and lower triangularize it[

P
−⊤/2
k|k−1 , λ

1/2
k H⊤

k R
−⊤/2
k

]
︸ ︷︷ ︸

Pre-array A

Q2 =
[
P̂

−⊤/2
k|k , 0

]
︸ ︷︷ ︸
Post-array R

;

Read-off from post-array the factor [P̂
−⊤/2
k|k ];

5 Compute Kk = λk[P̂
−⊤/2
k|k ]−⊤[P̂

−⊤/2
k|k ]−1H⊤

k R−1
k ;

6 Calculate the state x̂k|k in line 6 of Algorithm 1;
7 Build the pre-array and lower triangularize it[

(I−KkHk)P
1/2
k|k−1, KkR

1/2
k

]
︸ ︷︷ ︸

Pre-array A

Q3 =
[
P

1/2
k|k , 0

]
︸ ︷︷ ︸
Post-array R

;

Read-off from post-array the factor P
1/2
k|k .

It is not difficult to see that the numerical behaviour of
Algorithm 1a heavily depends on a condition number of

matrices P
1/2
k|k−1 ∈ Rn×n and P̂

1/2
k|k ∈ Rn×n because their

inversion is required in Algorithm 1a. The method can be
improved by avoiding the matrix inversion operation.

We construct an alternative robust Cholesky-based variant
by using equation (10) for computing the gain matrix
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Kk. As a result, our new square-root method requires the

inverse of the lower triangular matrix R
1/2
e,k ∈ Rm×m, only.

Indeed, we factorize equation Re,k = λkHkPk|k−1H
⊤ +

Rk in a similar way as shown above and, then, utilize a
stable orthogonal transformation for updating the resulted
square-root factors, i.e. we get

AA⊤ = λkHkPk|k−1H
⊤ +Rk

= [λ
1/2
k HkP

1/2
k|k−1, R

1/2
k ][λ

1/2
k HkP

1/2
k|k−1, R

1/2
k ]⊤

= RR⊤ = Re,k = [R
1/2
e,k , 0][R

1/2
e,k , 0]

⊤,

and the gain matrixKk is then calculated by equation (10)

by using the available value [R
1/2
e,k ] as follows:

Kk = λkPk|k−1H
⊤
k R−1

e,k = λkPk|k−1H
⊤
k [R

1/2
e,k ]

−⊤[R
1/2
e,k ]

−1.

Thus, we summarize an alternative Cholesky-based imple-
mentation for the MCC-KF estimator.

Algorithm 1b. SR MCC-KF

Initialization: Repeat from Algorithm 1a.
Time Update: Repeat from Algorithm 1a.
Measurement Update: (k = 1, N)

1 Compute λk by formula (8);
2 Build the pre-array and lower triangularize it[

λ
1/2
k HkP

1/2
k|k−1, R

1/2
k

]
︸ ︷︷ ︸

Pre-array A

Q2 =
[
R

1/2
e,k , 0

]
︸ ︷︷ ︸
Post-array R

;

Read-off from post-array the factor [R
1/2
e,k ];

3 Compute Kk = λkPk|k−1H
⊤
k [R

1/2
e,k ]

−⊤[R
1/2
e,k ]

−1;
4 Compute x̂k|k by formula in line 6 of Algorithm 1;

5 Use formula in line 7 of Algorithm 1a to find P
1/2
k|k .

As can be seen, the suggested square-root Algorithm 2b

requires the innovation covariance matrix R
1/2
e,k inversion,

only. Thus, it is expected to possess a better numerical
behavior compared to the conventional implementation in
Algorithm 1 and the Cholesky-based Algorithm 1a. Next
section provides the results of numerical experiments.

4. NUMERICAL EXPERIMENTS

We first wish to justify a theoretical derivation of the
presented square-root MCC-KF Algorithm 1b.

Example 1. In the Radar Tracking Example from (Grewal
and Andrews, 2015, p. 227), the signals are processed by
the filter in order to determine the position of maneuvering
airborne objects. The system state is defined as follows:
xk = [rk, ṙk, U

1
k , θk, θ̇k, U

2
k ]

⊤ where rk is the range of
the vehicle at time tk, ṙk is the range rate of the vehicle at
time tk, U

1
k is the maneuvering-correlated state noise, θk is

the bearing of the vehicle at time tk, θ̇k is the bearing rate
of the vehicle at time tk, U

2
k is the maneuvering-correlated

state noise. The model dynamics is given as follows:

xk =


1 T 0 0 0 0
0 1 1 0 0 0
0 0 ρ 0 0 0
0 0 0 1 T 0
0 0 0 0 1 1
0 0 0 0 0 ρ

xk−1 +


0
0

w1
k−1
0
0

w2
k−1

 ,

where ρ = 0.5 is correlation coefficient and T = 10 is
the sampling period in seconds. The measurements are
provided by

yk =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
xk +

[
v1k
v2k

]
The MCC-KF estimators are tested in the presence of,
the so-called, impulsive noise scenario, which is used for
simulating the outliers in the examined Gaussian state-
space model:

wk ∼ N (0, Q) + Shot noise(20% are corrupted),

vk ∼ N (0, R) + Shot noise(20% are corrupted)

where the covariance matrices Q and R are given by

Q =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 σ2

1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 σ2

2

 and R =

[
σ2
r 0
0 σ2

θ

]

with σ2
r = (1000 m)2, σ2

θ = (0.017 rad)2, σ2
1 = (103/3)2

and σ2
2 = 1.3 × 10−8. Finally, the initial values for

each estimator to be examined are the following: x0 ∼
N (x̄0,Π0) where x̄0 = 0 and

Π0 =



σ2
r

σ2
r

T
0 0 0 0

σ2
r

T

2σ2
r

T 2
+ σ2

1 0 0 0 0

0 0 σ2
1 0 0 0

0 0 0 σθ
σθ

T
0

0 0 0
σθ

T

2σθ

T 2
+ σ2

1 0

0 0 0 0 0 σ2
2


.

To simulate the impulsive noise (the shot noise), we fol-
low the approach suggested in Izanloo et al. (2016). The
corresponding Matlab routine Shot_noise is also pub-
lished recently in Kulikova (2020). The magnitude of each
impulse is chosen randomly from the uniform discrete
distribution in the interval [0, 5]. The time instances where
the outliers occur are also chosen randomly on the in-
terval tk ∈ [21, 300] by using the uniform distribution.
When the ‘exact’ solution xexact(tk) and the measure-
ments yk = y(tk) are simulated on the examined interval
tk ∈ [1, 300], we solve the inverse problem, i.e. the dynamic
state is to be estimated from the observed signal y(tk)
by various filtering algorithms. They are all tested within
equal conditions, i.e. they utilize the same filters’ initials,
the same measurements and the same noise covariances.
Finally, the experiment is repeated for M = 100 times
and the root mean square error (RMSE) is calculated in
these Monte Carlo runs.

Fig. 1 illustrates the total RMSE in all six components
of the dynamic state averaged over M = 100 Monte Carlo
runs. As can be seen, all implementation methods produce
the same result, i.e. they work with the same estimation
accuracy. This substantiates an algebraic equivalence of
all MCC-KF algorithms under examination and the cor-
rectness of our theoretical derivations presented in Sec-
tion 3. Meanwhile, the difference in numerical behaviour
of the conventional Algorithm 1, the previously suggested
square-root Algorithm 1a and the newly derived square-
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Fig. 1. The total ∥RMSExi(tk)∥2 (i = 1, . . . , 6) calculated
for each MCC-KF estimator in case of radar tracking
scenario in Example 1.

root Algorithm 1b can be observed in ill-conditioned state
estimation scenario. For that, we consider Example 2.

Example 2. Consider the radar tracking problem in Ex-
ample 1 with Gaussian uncertainties only, where the dy-
namic state is observed through the following measure-
ment scheme:

yk =

[
1 1 1 1 1 1
1 1 1 1 1 1 + δ

]
xk +

[
v1k
v2k

]
where x0 ∼ N (0, I6) and vk ∼ N (0, δ2I2). The parameter
δ is used for simulating roundoff effect, i.e. it is assumed to
be δ2 < ϵroundoff , but δ > ϵroundoff and ϵroundoff stands
for the unit roundoff error.

Measurement scheme in Example 2 allows for simulating
various ill-conditioned scenarios including the continuous-
discrete estimation methods as discussed in Kulikov and
Kulikova (2017, 2018b, 2019). More precisely, when the ill-
conditioning parameter δ tends to machine precision limit,
δ → ϵroundoff , we observe a degradation of the underlying
Riccati-type recursion. The discussed numerical instability
of the conventional filtering methods is arisen from the
matrix inversion Re,k that becomes almost singular after
a few filtering steps; see the third reason of the KF
divergence in (Grewal and Andrews, 2015, p. 288). Within
the square-root implementation approach, the inverse of
its triangular Cholesky factor is required instead.

Fig. 2 illustrates a degradation of the resulted estimation
accuracies when δ → ϵroundoff for each MCC-KF imple-
mentation under examination. As it was anticipated the
square-root MCC-KF Algorithm 1b is the most robust im-
plementation method among three algorithms examined.
We observe that all MCC-KF methods work equally accu-
rate and with small estimation errors in well-conditioned
scenarios, i.e. when δ is large, which corresponds to ill-
conditioned parameter δ = 10−1 and δ = 10−2. However,
while the problem ill-conditioning increases the conven-
tional Algorithm 1 and the square-root Algorithm 1a fail
to solve the stated problem. Indeed, for δ ≤ 10−4 they
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Fig. 2. The degradation of total RMSE for each MCC-KF
estimator under examination in case of ill-conditioned
radar tracking cases in Example 2.

both provide either a very large total RMSE or yield
NaN (it states for ‘Not a Number’ in MATLAB), which is
not plotted. It is worth noting here that the conventional
MCC-KF implementation in Algorithm 1 degrades even
a bit slower than the previously published square-root
Algorithm 1a. A possible explanation for such behaviour
is that the conventional MCC-KF implementation implies
the Joseph stabilized equation for the error covariance
matrix calculation. Indeed, the MCC-KF estimator in Al-
gorithm 1 fails at δ = 10−5 because the resulted accuracies
are very large, i.e. it means no correct digits in the obtained
estimates. Meanwhile, the square-root Algorithm 1a fails
a bit faster, i.e. at δ = 10−4. Finally, the newly-derived
square-root method in Algorithm 1b is the most stable
implementation method. It works accurately until the ill-
conditioned parameter δ = 10−13, i.e. it is able to manage
the ill-conditioned scenarios of Example 2. This is the only
one robust Cholesky-based implementation existed for the
MCC-KF estimator in engineering literature so far.

5. CONCLUSION

In this paper, the problem of designing the numerically
stable square-root methods for the maximum correntropy
criterion Kalman filter is discussed. The first robust (with
respect to roundoff errors) square-root MCC-KF algorithm
has been found within the class of Cholesky factorization-
based implementations. Nowadays, this is the only one
reliable Cholesky-based method existed for the MCC-
KF estimator in engineering literature. The square-root
solution is proposed for the MCC-KF filtering for a case of
the scalar adjusting parameter involved. The derivation of
a square-root solution within the Cholesky decomposition
for the MCC-KF methods with matrix-type adjusting
weights involved is an open question for a future research.
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