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Abstract: In power systems the system frequency is a good indicator of the networks resilience
to major disturbances. In many deregulated markets, e.g. the Nordic power market, the system
operator controls the system frequency manually by calling off bids handed in to a market,
called the balancing power market.
In this paper we consider the problem of optimal bid call-off on the balancing market, that the
system operator is faced with each operating period. We formulate the problem as a stochastic
optimal control problem of impulse type.
When searching for numerical solutions a complicating factor is the structure of the balancing
power market, where the overall marginal price applies to all bids. To retain numerical
tractability we propose computationally efficient upper and lower bounds for the value function
in the dynamic programming algorithm.
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1. INTRODUCTION

We consider the problem of tracking the demand for elec-
tric power in power system operation, known as frequency
control. The frequency control is a multi-layer control
system where, in a fully deregulated setting, the top layer
is incorporated through a market called the balancing
power market van der Veen and Hakvoort [2016]. The
deregulation of electricity markets has, in this context,
often led to a more inflexible generation control as inde-
pendent system operators do not, themselves, operate the
production units. A bid to the balancing market is a block-
bid on alteration of injected power at a given price per MW
of produced power, that is binding in a specific operation
period. One example is the Nordic market with operating
periods of one hour, where the balancing market for each
operating period closes 45 minutes before the start of the
period.

In this setting the problem of finding an economically
efficient frequency control scheme is a problem of timing
(when to call-off a bid) and choosing the optimal bid
to call-off. The problem is further complicated by the
structure of the balancing power market, where the market
price of upward and downward balancing power equals the
corresponding marginal prices. That is, the marginal price
of the most expensive upward (downward) bid that has
been called off during the period is assigned to all upward
(downward) bids that were called off.

As will become apparent later the operator’s problem is a
stochastic optimal control problem of switching type. The
general optimal switching problem (sometimes referred to
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as starting and stopping problem) has been thoroughly
investigated in the last decades after being popularised
in Brennan and Schwartz [1985]. In Djehiche et al. [2009]
existence of a unique solution to the multi-modes optimal
switching problem was shown.

Although some work on optimal bid call-off in real-
time operation of power systems exist (see Perninge and
Söder [2014, 2012], Perninge [2015]), the main focus has
been on maintaining power flow feasibility. Exceptions
are Perninge and Eriksson [2017a], where the market
model is limited by not allowing reversion of call-offs
and Perninge and Eriksson [2017b, 2018] where the struc-
ture of the balancing power market is not fully modelled.

The aim of the present article is to close this gap by for-
mulating an optimal call-off problem for a general market
model with the possibility of reversing call-offs. As the
resulting problem is of high dimension a straightforward
application of dynamic programming is prevented by in-
flated computational times and memory requirements. To
remedy this we propose computationally tractable upper
and lower bounds for the value function to the operators
problem.

The lower bound is based on using a coarser discretization
of the state and the upper bound is based on a reduction
of the dimension of the state-space.

2. FREQUENCY CONTROL IN DEREGULATED
POWER SYSTEMS

The frequency control in power systems is generally a
multi-layered control structure where the first layer, de-
noted primary control, is an automated control system un-
der which the production of certain power plants respond
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to changes in system frequency by altering the production
output proportionally to the deviation of the frequency
from its nominal value. To this is sometimes added a
second layer of automated reserves (called secondary con-
trol) designed to keep transmission on tie-lines within
acceptable bounds. In a completely deregulated setting, for
example in the Nordic power system, a third layer consists
of a manual control where the system operator controls
the output in a set of units manually by calling-off bids
handed in to the balancing power market. The objective of
this layer, termed tertiary control, is to restore the reserves
in the primary and secondary controls, thus restoring the
system frequency to its nominal value.

Bids handed in to the balancing power market can be
either upward balancing bids, which correspond to an
increase in injected power, or downward balancing bids
that, if called-off, have the effect of reducing the injected
power.

During operation the system operator has the opportunity
to, at any time, contact actors responsible for bids on
the balancing market to purchase the power specified in
the contract. This is what we refer to as calling-off the
bid. Furthermore, the system operator can reverse any
prior call-offs. Call-offs can thus be made of several bids
simultaneously and each bid can, due to the possibility
of reversing call-offs, be called-off several times during
one operation period. Similar to the ahead markets (day
ahead and intra-day trading), the price of electricity on
the balancing market is set by the marginal price of the
most expensive accepted bid.

In this setting the problem of finding an economically
efficient frequency control scheme can be formulated as
a multi-modes optimal switching problem.

3. PROBLEM FORMULATION

3.1 Net demand profile

The demand to be tracked by the tertiary control is the
net demand, (Xt : 0 ≤ t ≤ T ), that is the total demand
minus the planned production. We will assume that X
is the strong solution to a stochastic differential equation
(SDE) as follows (see e.g. Perninge and Eriksson [2017a],
Nowicka-Zagrajek and Weron [2002], Olsson et al. [2010]
for motivation of the model)

dXt = a(t,Xt)dt+ σ(t,Xt)dWt, t ∈ [0, T ],

X0 = x0

where (Wt; 0 ≤ t ≤ T ) is a one-dimensional Brownian
motion that generates the completed filtration (Ft; 0 ≤ t ≤
T ), x0 ∈ R and a : [0, T ]× R→ R and σ : [0, T ]× R→ R
are two continuous functions that satisfy

|a(t, x)− a(t, x′)|+ |σ(t, x)− σ(t, x′)| ≤ C|x− x′|,
for some constant C > 0.

For all t ∈ [0, T ] and x ∈ R we define the process
(Xt,x

s ; 0 ≤ s ≤ T ) as the strong solution to

dXt,x
s = a(s,Xt,x

s )ds+ σ(s,Xt,x
s )dWs, ∀s ∈ [t, T ],

Xt,x
s = x, ∀s ∈ [0, t].

3.2 Tertiary frequency control

We will assume that prior to the start of the specific
operating period [0, T ] a sequence {Bi}ni=1 of bids has been
handed in to the balancing market. Here, each bid can be
summarized by the 4-tuple Bi = (Voli, c

off
i , c

g
i ), where:

• Voli ∈ R \ {0} is the volume of bid i,
• coff

i > 0 is a fixed cost 1 associated with reversing a
call-off of bid i,

• cgi :∈ R is the marginal production cost 2 of bid i.

We let 3 J up := {j ∈ {1, . . . , n} : Volj > 0} and
J down := {j ∈ {1, . . . , n} : Volj < 0}, so that J up and
J down are the sets of indexes for upward and downwards
bids, respectively.

The state of the tertiary frequency control is a process
(ξt : 0 ≤ t ≤ T ), referred to as the operating mode, that
take values in I := {0, 1}n. We will let the ith component
of ξt represent the state of the ith bid, with 0 and 1
representing “off” and “on” respectively.

A control strategy for the operator will be of the type
u = (τ1, . . . , τN ;β1, . . . , βN ), where τj is the time of the
jth intervention (we refer to the call-off of a bid or the
reversion of a prior call-off as an intervention) and βj ∈
I−βj−1 (with I−b := I \ {b}) indicates which bids that
are in the “on”-mode following the jth intervention. The
number of interventions N is random and decided as part
of the control.

The control defines the operating mode as 4

ξbt := b1[0,τ1)(t) +

N∑
j=1

βj1[τj ,τj+1)(t)

where b := (b1, . . . , bn) ∈ I is the initial operating mode
and using the convention that τN+1 = ∞. From the
operating mode we can easily extract the production in
the different units corresponding to the bids as the Rn-
valued process (∆Pb

t : 0 ≤ t ≤ T ) with

∆Pb
t := diag(Vol)ξbt .

where diag(Vol) is the n × n-diagonal matrix with
[diag(Vol)]ii = Voli.

To define the operation cost we need to keep track of
the total amount of electricity produced by upward and
downward bids respectively. To obtain this we let Γ be
the 2× n matrix with Γij := Volj1[(−1)i+1Volj>0]. We then

introduce the controlled process Zb
s given by

Zb
t :=

∫ t

0

Γξbr dr,

so that [Zb
t ]1 is the total amount of electricity produced by

upward balancing bids during [0, t], and [Zb
t ]2 is the total

1 Although there is usually no explicit cost for reversing a call-off,
we may assume that there is a implicit cost as frequent reversions
may lead to a reluctance for producers to participate in the balancing
market.
2 Generally we have cgi > 0 for upward balancing bids and cgi < 0
for downward balancing bids.
3 Throughout we use := to emphasise when the left-hand-side is
defined to equal the right-hand-side.
4 We let 1A denote the indicator function for the set A.
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amount of electricity produced by downward balancing
bids during the same period.

The cost for trading on the balancing power market is then

JTC(u) := E

γ(β1, . . . , βN )Zb
T +

N∑
j=1

Kβj−1,βj

 ,
where

γ(b1, . . . ,bl) :=

 max
j∈{1,...,l}

max
i∈J up

bji c
g
i

min
j∈{1,...,l}

min
i∈J down

bji c
g
i

>
is the vector of market prices for upward and downward
balancing power given the sequence b1, . . . ,bl of interven-
tions by the operator and

Kb,b′ :=

n∑
i=1

1[b′
i
<bi]c

off
i

are the switching costs.

3.3 System frequency

On the time-scale that we are interested in, the system
frequency, f , can be seen as a continuous function of the
net imbalance, Xt − ∆P (t). When Xt − ∆P (t) = 0 the
system is at nominal frequency f = f0.

To incentivize an efficient frequency control we assume
that frequency deviations, f−f0, are penalized. We assume
that the penalization takes the form of an additional cost

JF(u) := E

[∫ T

0

ψξbt (Xt)dt+ hξb
T

(XT )

]
where for all b ∈ I the running cost ψb : R → R and
the terminal cost hb : R → R are both locally Lipschitz
continuous and of polynomial growth. For example, we
may take ψb(x) = (x−

∑n
i=1[diag(Vol)b]i)

2 and hb(x) =
(x−

∑n
i=1[diag(Vol)b]i)

2 for quadratic penalization.

3.4 The optimization problem

Putting the above costs together yields the following cost
functional for our problem:

Jb(u) := E
[ ∫ T

0

ψξbt (Xt)dt

+ γ(b, β1, . . . , βN )Zb
T

+ hξb
T

(XT ) +

N∑
j=1

Kβj−1,βj

]
,

where β0 := b. Furthermore, we assume that for all b ∈ I
hb(x) < min

b′∈I−b
{Kb,b′ + hb′(x)},

for all x ∈ R.

The set of admissible controls, U , is the set of all u :=
(τ1, . . . , τN ;β1, . . . , βN ), where τ1 ≤ τ2 ≤ · · · ≤ τN are
(Ft)0≤t≤T –stopping times and βj is Fτj–measurable. We
get the following problem:

Problem 1. Find u∗ ∈ U , such that

Jb(u∗) = inf
u∈U

Jb(u). (1)

4. SOLUTION BY DYNAMIC PROGRAMMING

To arrive at a dynamic programming equation for Problem
1 we need to introduce state space models for Z and γ. We
thus let Zt,b,zs be given by

Zt,b,zs := z +

∫ s

t

Γξbr dr

and define, for each c = [c1 c2] ∈ ∪b∈Iγ(b),

γc(b1, . . . ,bl) :=

[
max(c1, [γ(b1, . . . ,bl)]1)
min(c2, [γ(b1, . . . ,bl)]2)

]>
.

For c ∈ R2 we define Ic := {b ∈ I : [γ(b)]1 ≤
c1, [γ(b)]2 ≥ c2}, so that Ic is the subset of I with
corresponding marginal costs not exceeding c. We note
here that if, at time t, we have γ(b, β1, . . . , βNt) = c
(where Nt := max{j : τj ≤ t}), then Zb

t takes values
in Dzc (t) := [0, tmaxb∈Ic Γ1b] × [tminb∈Ic Γ2b, 0], where
Γi is the ith row of the matrix Γ, for i = 1, 2.

For each pair (b, c) in the extended set of modes 5 Ī :=
∪b′∈I{b′} × ∪b′′≥b′{γ(b′′)} we then define the extended
cost functional for Problem 1 as

Jb,c(t, x, z;u) := E
[ ∫ T

t

ψξbs (Xt,x
s )ds

+ γc(β1, . . . , βN )Zt,b,zT

+ hξb
T

(Xt,x
T ) +

N∑
j=1

Kβj−1,βj

]
,

for all (t, x, z) ∈ Dc := ∪∈[0,T ]{t} × R×Dzc (t).

For each (b, c) ∈ Ī, we define the value function vb,c :
Dc → R as

vb,c(t, x, z) := inf
u∈Ut

Jb,c(t, x, z;u), (2)

where Ut := {(τ1, . . . , τN ;β1, . . . , βN ) ∈ U : τ1 ≥ t}.
With the above assumptions, the results of Perninge [2018]
trivially extend to the present case and show that for each
(b, c) ∈ Ī, the value function vb,c exist as a member of
C(Dc → R) and is of at most polynomial growth in x.
Furthermore, the family (vb,c)(c,b)∈Ī satisfies the recursion

vb,c(t, x, z) = ess inf
τ∈Ts

E
[ ∫ τ∧T

t

ψb(Xt,x
s )dr + 1[τ≥T ](

c(z + (T − t)Γb) + hb(Xt,x
T )) + 1[τ<T ] min

β∈I−b

{
Kb,β + vβ,γc(β)(τ,X

t,x
τ , z + (τ − t)Γb)

}]
(3)

where Tt is the set of {Ft}0≤t≤T -stopping times τ ≥ t.
From this relation an optimal feedback control for Problem
1 can then be extracted as:

τ∗j := inf{s ≥ τ∗j−1 : vβ∗
j−1

,γ(b,β∗1 ,...,β
∗
j−1

)(s,Xs, Z
b
s ) =

min
β∈I

−β∗
j−1

{Kβ∗
j−1

,β + vβ,γ(b,β∗1 ,...,β
∗
j−1

,β)(s,Xs, Z
b
s )}}

and

5 That is, Ī is the set of all pairs (b, c), where b ∈ I and c is a
possible vector of marginal prices for balancing power given that we
have visited mode b.
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β∗j ∈ arg min

β∈I
−β∗

j−1

{Kβ∗
j−1

,β

+ vβ,γ(b,β∗1 ,...,β
∗
j−1

,β)(τ
∗
j , Xτ∗

j
, Zb

τ∗
j
)}}.

Of importance to obtaining numerical algorithms is the
following result that, due to its relevance, we state as a
proposition:

Proposition 1. For each (b, c) ∈ Ī the function (t, x, z)→
vb,c(t, x, z) is concave in z.

Proof. Fix (t, x, z) ∈ Dc and let u� be an optimal control
in (2) that we know exists and satisfies

Jb,c(t, x, z;u�) = inf
u∈Ut

Jb,c(t, x, z;u).

For each z′ ∈ R2 we have that

vb,c(t, x, z
′) ≤ Jb,c(t, x, z′;u�)

= Jb,c(t, x, z;u�)

+ E
[
γc(β�1 , . . . , β

�
N�)
]
(z′ − z).

We thus have that vb,c(t, x, z
′) is bounded from above by a

hyperplane passing through the point vb,c(t, x, z) and the
assertion follows. 2

5. NUMERICAL APPROXIMATION

In this section we will consider numerical approximation
of the recursion in (3). To obtain numerical schemes we
assume that interventions are restricted to the times 6

Π := {t1, . . . tNΠ}, where tk = (k − 1)∆t and tNΠ = T .
We get the discrete time cost functional

J̄b,c(tk, x, z;u) := E
[NΠ−1∑

j=k

ψ̂ξbs (Xtk,x
tj )∆t

+ γc(β1, . . . , βN )Ztk,b,zT

+ hξb
T

(Xtk,x
T ) +

N∑
j=1

Kβj−1,βj

]
for each u ∈ Ūtk := {u ∈ Utk : τj ∈ Π, ∀j ∈
{1, . . . , N}}, where ψ̂b := ∆tψ, and the corresponding
Bellman equation

v̂b,c(T, x, z) = hb(x) + c>z

v̂b,c(tk, x, z) = min
b′∈I
{ψ̂b′(x) +Kb,b′

+ E[v̂b′,γc(b′)(tk+1, X
tk,x
tk+1

, z + Γ̂b′)]}, (4)

where Γ̂ := ∆tΓ. As the literature on estimating the condi-
tional expectation in (4) when the uncertainty is modelled
by an SDE is vast (see e.g. Carmona and Ludkovski [2008],
Aı̈d et al. [2014] for results in the context of multi-modes
optimal switching), focus will be on the role of the z
variable.

5.1 An exact scheme

We can obtain an exact solution scheme by noting that in
the extended mode (b, c) ∈ Ī the random variable Ztk can
only take values in the discrete set
6 An investigation of the error convergence rate for time discretiza-
tion in optimal switching problems was carried out in Aı̈d et al.
[2014].

D̂zc (tk) := ∪
(b1,...,bk−1)∈Ik−1

c

{
k−1∑
j=1

Γ̂bj}.

Now, as the cardinality of the set D̂zc (tk) is bounded by
N2

Π2n an exhaustive algorithm can be implemented to
solve (4). The numerical complexity of such a scheme
is O(23nN3

Π). Although, ad-hoc rules can be applied to
substantially reduce the number of modes (e.g. always
activating the cheapest available bid to restore frequency)
the cubic complexity in NΠ still prevents implementation.

5.2 A lower bound

To get a lower bound we introduce a less dense discretiza-
tion of the domain of Ztk that we denote by D̂zc (tk). We

assume that a triangulation of D̂zc (tk) partitions Dzc (tk)
and set

vb,c(tk, x, z) = min
b′∈I
{ψ̂b′(x) +Kb,b′

+ E[vb′,γc(b′)(tk+1, X
tk,x
tk+1

, z + Γ̂b′)]}, (5)

where vb,c(tk, x, ·) is extended to Dzc (tk) by linear interpo-
lation on (vb,c(tk, x, zj))zj∈D̂c(tk).We have:

Proposition 2. For each (b, c) ∈ Ī, k = 1, . . . , NΠ and
(x, z) ∈ R×Dc(tk),

vb,c(tk, x, z) ≤ v̂b,c(tk, x, z).

Proof. Note that, since v̂b,c(T, x, z) is linear in z, the
inequality holds trivially for k = NΠ. Now assume that
the inequality holds for tk for some k ∈ {1, . . . , NΠ}, then

vb,c(tk−1, x, z) = min
b′∈I
{ψ̂b′(x) +Kb,b′

+ E[vb′,γc(b′)(tk, X
tk,x
tk+1

, z + Γ̂b′)]}
= min

b′∈I
{ψ̂b′(x) +Kb,b′

+ E[

3∑
j=1

αj(b
′)vb′,γc(b′)(tk, X

tk,x
tk+1

, zj(b
′))]}

≤ min
b′∈I
{ψ̂b′(x) +Kb,b′

+ E[

3∑
j=1

αj(b
′)v̂b′,γc(b′)(tk, X

tk,x
tk+1

, zj(b
′))]}

where zj(b
′) ∈ D̂zγc(b′) and

∑3
j=1 αj = 1. By the above

and concavity of v̂ in z we thus have

vb,c(tk−1, x, z) ≤ min
b′∈I
{ψ̂b′(x) +K ′b,b′

+ E[v̂b′,γc(b′)(tk, X
tk,x
tk+1

, z + Γ̂b′)]}
= v̂b,c(tk−1, x, z)

and the result follows by backward induction. 2

5.3 An upper bound

We will now exploit the linearity of the terminal cost in z
to build a computationally efficient upper bound for the
value function. First, note that the cost functional can be
written
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Jb,c(t, x, z;u) := E
[ ∫ T

t

(ψξbs (Xt,x
s )

+ E[γc(β1, . . . , βN )|Fs]Γξbs )ds

+ γc(β1, . . . , βN )z

+ hξb
T

(Xt,x
T ) +

N∑
j=1

Kβj−1,βj

]
. (6)

In a backward induction scheme, as that employed
in dynamic programming, the running cost ψb(x) +
E[γc(β1, . . . , βN )|Ftk ]Γb is known in step NΠ − k as it
only depends on forward quantities. We can thus compute

the optimal feedback control, ξ̂, in (4) as

ξ̂b,ctk,x,z ∈ arg min
b′∈I

{ψ̂b′(x) + γ̂
b′,γc(b′)
tk,x,z

(z + Γ̂b′) +Kb,b′

+ E[ṽb′,γc(b′)(tk+1, X
tk,x
tk+1

, z + Γ̂b′)]},

where γ̂b,ctk,x,z
:= E[γc(β̂1, . . . , β̂N̂ )|(X,Z, ξ)tk = (x, z,b)]

and ṽb′,γc(b′) is the cost to go in (6) under the optimal
control

ṽb,c(T, x, z) = hb(x)

ṽb,c(tk, x, z) = ψ̂ξ̂b,ctk,x,z
(x) + γ̂

ξ̂b,ctk,x,z
,γc(ξ̂b,ctk,x,z

)

tk,x,z
Γ̂ξ̂b,ctk,x,z

+Kb,ξ̂b,ctk,x,z
+ E[ṽξ̂b,ctk,x,z,γ

c(ξ̂b,ctk,x,z
)(tk+1, X

tk,x
tk+1

, z + Γ̂ξ̂b,ctk,x,z)].

Now, to get a numerically tractable algorithm we replace

Zb
tk

in the feedback control ξ̂b,c
tk,Xtk ,Z

b
tk

with an estimate

ζ̂b,c and get

v̄b,c(T, x) = hb(x)

v̄b,c(tk, x) = ψ̂ξ̄b,ctk,x
(x) + γ̄

ξ̄b,ctk,x
,γc(ξ̄b,ctk,x

)

tk,x
Γ̂ξ̄b,ctk,x +Kb,ξ̄b,ctk,x

+E[ṽξ̄b,ctk,x,γ
c(ξ̄b,ctk,x

)(tk+1, X
tk,x
tk+1

)],

where this time ξ̄ is a measurable selection of

ξ̄b,ctk,x ∈ arg min
b′∈I

{ψ̂b′(x) + γ̄
b′,γc(b′)
tk,x

(ζb,ctk,x
+ Γ̂b′) +Kb,b′

+ E[v̄b′,γc(b′)(tk+1, X
tk,x
tk+1

)]}.

We get that v̄b,c(0, x) = Ĵb,c(0, x, 0; ū) where ū is the
control corresponding to the operation mode ξ̄. We thus
trivially get the following:

Proposition 3. The functions v̄ bound v̂ from above at
time 0 in the sense that for each (b, c) ∈ Ī and x ∈ R
we have,

v̂b,c(0, x, 0) ≤ v̄b,c(0, x).

6. NUMERICAL EXAMPLE

In the numerical example we will study a situation where
the operator seeks an optimal call-off strategy for an
operating period of T = 60 minutes, with a balancing
market that has received ten bids (see Table 1). Note
that the negative production costs for Bids 6-10 lead to a
positive cost for downward regulation and is thus natural.
We will assume that the net load can be accurately
modelled as the solution to the linear SDE

dXt =

(
dm(t)

dt
+ α(m(t)−Xt)

)
dt+ σdWt, ∀t ∈ [0, T ]

X0 = m(0).

Table 1. Bids in the Example.

i Voli coff
i cg,i

1 150 200 2

2 125 200 3

3 100 150 4

4 75 100 4

5 50 100 3

6 −50 100 −2

7 −75 100 −3

8 −100 150 −2

9 −125 200 −1

10 −150 200 −1

with coefficients α > 0, σ > 0 and forecasted trajectory
(m(t) : 0 ≤ t ≤ T ) (for parameter estimation in this model
from actual consumption data see Perninge et al. [2011]).
We will try out the two different shapes of m(t) (denoted
m1(t) and m2(t)) plotted in Fig. 1. We will assume a
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Fig. 1. Different forecasts investigated in the example.

cost functional with quadratic penalization of frequency
deviations and let

JF (u) := E
[
cf

∫ T

0

(Xt − 1>∆Pb
t )2dt

+ cf,T (XT − 1>∆Pb
T )2

]
,

where 1 is a column-vector of 1’s. Parameters used
throughout the example are given in Table 2.

Table 2. Parameter values.

α σ cf cf,T
0.01 10 0.1 0.3

We will consider five different balancing power markets
M1, . . . ,M5, where market Mi contains the subset of bids,
{1, . . . , i, 11 − i, . . . , 10}. The problem will be solved by
discretizing time and state-space. We use a grid with 201
points to discretize the state space of Xt. For the time
discretization we use 121 grid points. When computing
the lower bound we used 10 equally spaced grid points for
each dimension of Z when computing M1, . . . ,M4, while
memory requirements prevented the use of more than 5
grid points for M5.

The prediction of Zb
t was taken to be

ζ̂b,ct :=

∫ t

0

 min(m+
i (s), max

b′∈Ic
Γ1b′)

max(−m−i (s), min
b′∈Ic

Γ2b′)

> ds.
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where mi = m+
i −m

−
i is the decomposition of mi into its

positive and negative parts.

Computation times on a standard Intel Core i5 laptop in
the different settings are given in Table 3.

Table 3. Computational times [s].

M1 M2 M3 M4 M5

v 16.4 69 451 2368 5272

v̄ 0.2 1.4 23 257 3240
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Fig. 2. The lower (blue) and upper (red) bounds on the
value function at time 0 in extended operation mode
(0, 0) for M1, . . . ,M5, with forecast m1.
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Fig. 3. The lower (blue) and upper (red) bounds on the
value function at time 0 in extended operation mode
(0, 0) for M1, . . . ,M5, with forecast m2.

7. CONCLUSION

In this paper we propose a stochastic control formulation
of the frequency control problem that the system operator
is faced with each operating period. Characteristics of the
problem are the multitude of bids available to the operator
and the market structure where the marginal price of the
most expensive bid to be called-off applies to all called-off
bids.

The main objective of the work is to overcome the nu-
merical tractability issues often encountered when trying
to solve high dimensional stochastic optimal control prob-
lems. To this purpose we develop computationally efficient
upper and lower bounds for the value function.
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