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Abstract: This paper develops a new event-triggering approach for a class of nonlinear systems.
This approach goes beyond the control of certain systems by developing sporadic feedback
control laws to solve unstructured uncertainty problem. It guarantees asymptotic stability of a
broad range of uncertain systems under sample and hold implementation while it efficiently
reduces the communication samples. Under the proposed scheme, in order to handle the
uncertain dynamics, the sampling time might become smaller than that in the approach of the
certain systems. Using linear matrix inequalities, the controller gains and the event triggering
parameters are obtained simultaneously. In addition to addressing new scheme for uncertain
systems, we propose another triggering mechanism for affine nonlinear systems. Simulation
results illustrate that the increase of triggered messages due to the nonlinearity and uncertainty
is kept small enough that can be neglected when compared with conventional event-triggering
policy.
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1. INTRODUCTION

An important aspect in the implementation of net-
worked control systems is the data congestion due to the
controller-plant communication. Several practical applica-
tions concerning event triggering control have appeared
in literature, see Hendricks et al. (1994); Heemels et al.
(1999); Henningsson and Cervin (2009). In recent years,
event and self triggering are investigated for real time con-
trol over networks, see Zhang et al. (2019) and references
therein. Under event-triggering, the state is transmitted
when some error exceeds a predefined certain threshold
Tabuada (2007). Many researchers considered this idea
in a similar manner for probabilistic contained filtering
of nonlinear systems Tian et al. (2019). Although sev-
eral theoretical aspects of event-triggered control have
been studied extensively, see Henningsson et al. (2008);
Miskowicz (2006), relatively few results exist that treat
the robustness behavior under event-triggered control, see
Xing et al. (2016); Wang and Han (2016); Xing et al.
(2018).

Compared with classical time-triggered control, event-
based control methodologies are more preferred since sig-
nals are transmitted through the network only when a
certain condition is violated Zhang and Yang (2019). Due
to its complexity, it is less preferable from synthesis and
analysis standpoints particularly for uncertain dynamics
Huang and Liu (2019). Typically, obtaining an event-
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triggering policy for a pre-designed stabilizing controllers
wastes the robustness of the control law. On the other
hand, designing a controller that depends on the event-
triggered policy is an awkward task that increases the
restrictions on stabilizing controllers. In addition, it usu-
ally decreases the synthesis flexibility which is essential for
perturbed systems.

The challenging problem of implementing event-triggering
control for uncertain systems appears when the triggering
policy and the control law are designed simultaneously.
Moreover, the available results about designing such con-
trollers might not provide flexible structure and may lead
to a unacceptable increase in the number of transmitted
signals through the network Abdelrahim et al. (2018).
A robust stabilization methodology of nonlinear systems
using event-triggered output feedback is investigated in
Abdelrahim et al. (2017). In addition, choosing an appro-
priate event triggering mechanism for nonlinear systems is
also difficult and cumbersome even for certain systems.
In this regard, it might be better to consider alterna-
tives to the classical triggering mechanisms in order to
handle a wide range of plant structures effectively. Extra
transmissions may become inevitable to stabilize uncertain
systems. This allows us to make a trade off between the
communication congestion on the one hand and robustness
on the other hand.

It is worth mentioning that most of the prior work about
event-triggering methodologies concentrates on designing
controllers for certain systems Heemels et al. (2015); Zhang
et al. (2016); Liuzza et al. (2016). Only few results have
been dedicated to study the robustness of event-triggered
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control systems, see Abdelrahim et al. (2017) and the refer-
ences therein. This motivates us to investigate a new event-
triggering policy based on linear matrix inequality (LMIs).
Moreover, the majority of research on event-triggering is
based on the same structure of event-triggering policy
turns out to be a special case of the proposed one in this
paper. To truly realize the attractive advantages of the
new mechanism, one would need a remote controller, in
which the controller-gain and its event policy are solely
obtained by simple LMIs conditions based on the uncer-
tainty structure and plant dynamics.

This paper considers continuous time-invariant dynami-
cal systems that compromises unstructured uncertainties.
The proposed approach provides an improvement to the
event-triggering mechanism to efficiently control uncertain
plants. The problem under consideration makes full sense
for plant being controlled over networks, where event-
triggering can be used. Moreover, theoretical results are
established for affine nonlinear systems. Simulation results
emphasized that the increase of triggered messages is kept
small enough that can be neglected when compared with
conventional event-triggering policy.

Notations: In the sequel, Rn denote the n-dimensional
vector space equipped with the Euclidean norm. We use
WT and W−1 to denote the transpose and the inverse
of any square matrix W , respectively. We use W > 0
to denote a symmetric positive definite matrix W and
I to denote the n × n identity matrix. Matrices, if their
dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations. In symmetric block
matrices or complex matrix expressions, we use the symbol
• to represent a term that is induced by symmetry.

Fact 1. Mahmoud (2011): For any positive definite matrix
Z and any real matrices X and Y , with appropriate
dimensions,

XTY + Y TX ≤ XTZX + Y TZ−1Y

Fig. 1. ”Remote controller” and ”Event generator” dia-
gram

2. PRELIMINARIES

Consider the event triggering scheme depicted in Fig.
1, where the plant dynamics is given by the following
nonlinear time invariant system:

ẋ = f(x, u) (1)

where x ∈ R
n is the state and u ∈ R

m is the control.
Let the control law in (1) of the remote controller be
given by u(t) = k(x̂(t)) where x̂(t) = x(tk) denotes the

last transmitted state via the network at t = tk and
k(.) : Rn → R

n is a static mapping that defines the remote
control structure. Let the error between the actual and the
transmitted state be e(t) = x(t)−x̂(t), then the closed loop
system can be rewritten as follows:

ẋ = f(x, k(x− e)) (2)

Theorem 2. Khalil and Grizzle (2002): Consider the sys-
tem ẋ = f(x, u), where f(x, u) is Lipschitz in x and u. Let
V (t, x) be a continuously differentiable function. Then the
system is input to state stable if there exist positive definite
function W (.) and a class K functions α1(.), α2(.), and
ρ(.) such that the following conditions

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (3)

∂V

∂t
+

∂V

∂x
f(x, u) ≤ −W (x), ∀‖x‖ ≥ ρ(‖u‖) ≥ 0

are satisfied ∀(t, x, u) ∈ {[0,∞),Rn,Rm}

Definition 3. : A continuously differentiable positive defi-
nite function V (x) is a control Lyapunov function (CLF)
for the system ẋ = f(x) + g(x)u if

∂V

∂x
g(x) = 0, x 6= 0 =⇒

∂V

∂x
f(x) < 0

Control Lyapunov Function (CLF) and Sontag’s formula
will be used to generate the control law for affine nonlinear
systems. The existence of a CLF ensures that its time
derivative is negative when the control law vanishes. The
following theorem is a well-known method used to stabilize
affine nonlinear systems.

Theorem 4. (Sontag (1989)). : Let V (x) be a CLF for the
dynamical system in Definition (3), then the origin can be
stabilized by the following control law

u(x) =



























−

∂V
∂x

f +
√

(∂V
∂x

f)2 + (∂V
∂x

g)4

∂V
∂x

g(x)
,
∂V

∂x
g 6= 0

0,
∂V

∂x
g = 0

To this end, Taylor expansion and error bounds of the
prescribed control law are needed to design the triggering
policy. However, traditional notations for partial deriva-
tives become rather cumbersome for derivatives of order
higher than two, and they make it rather difficult to write
Taylor’s theorem in an intelligible fashion. However, a
multi-index notation, which is now in common usage in
the literature of partial differential equations, is available.
A multi-index is an n-tuple of nonnegative integers. Multi-
indexes are generally denoted by the Greek letters α or β:
α = (α1, α2, ..., αn), where αj ∈ {0, 1, 2, ...}. For any n-
dimensional multi-index α, we define
|α| = α1 + α2 + ...+ αn,
α! = α1!α2!...αn!,
x = (x1, x2, ..., xn) ∈ R

n, and

∂αf = ∂α1

1 ∂α2

2 ...∂αn

n f =
∂|α|f

∂α1

x1
∂α2

x2
...∂αn

xn

For example, ∂(4,0,3)f = ∂7f
∂x1

4∂x3
3 and ∂(0,4,0)f = ∂4f

∂x4

2

.

Lemma 5. (Taylor’s Theorem in Several Variables): Sup-
pose f : Rn → R is of class Ck+1, i.e. it is continuously
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differentiable function up to order of k + 1, on an open
convex set S. If x ∈ S and x+ e ∈ S, then

f(x+ e) =
∑

|α|≤k

∂αf(x)

α!
eα +Rx,k(e)

where the remainder is given in Lagrange’s form:

Rx,k(e) =
∑

|α|=k+1

∂αf(x+ ce)
eα

α!
, for somec ∈ (0, 1)

Corollary 6. : If f : Rn → R is of class Ck+1 on S and
|∂αf(x)| ≤ M for x ∈ S and |α| = k + 1, then the
remainder function is bounded by the following inequality

|Rx,k(e)| ≤
M

(k + 1)!
‖e‖k+1

w ,

where ‖e‖w = |e1|+ |e2|+ ...+ |en|

3. MAIN RESULTS

Transmitting states is considered to decrease the commu-
nication congestion in distributed control systems. Since it
activates the transmission depending on a certain condi-
tion/rule, in our case the rule is defined in terms of the sign
of a predefined mapping φ(x, e) with specific properties. If
the function φ(x, e) becomes negative a transmission is
required in order to maintain it positive. The following
assumption is made to identify the characteristics of the
proposed event triggering policy.

Assumption 7. The event triggering rule φ(x, e) satisfies
the following

• φ(x, 0) ≥ 0 ∀x ∈ R
n

• There exists a class K∞ function ρ(.) such that ‖x‖ ≥
ρ(‖e‖) whenever φ(x, e) ≥ 0, i.e. there exists a
positive scalar γ such that the following inequality
holds:

‖x‖ − ρ(‖e‖) + γφ(x, e) ≥ 0

for all x, e ∈ R
n.

• The state transmission is activated when the event
triggering rule φ(x, e) becomes negative

Remark 8. The triggering φ(x, e) described in Assumption
7 generalizes the triggering-policy in literature, and they
become equivalent if the negativity of φ(x, e) violates ‖x‖ ≥
ρ(‖e‖). In general, ‖x‖ ≥ ρ(‖e‖) does not imply that
φ(x, e) ≥ 0. This means that transmission may be still
activated even if the time derivative of the Lyapunov
function in Theorem 2 is negative. The generalized form
allows us to use the cross terms between the state and
the transmission error which is difficult even if it is not
possible using the special case. Despite of the fact that
the new criteria might increase the number of transmitted
samples to handle unmodeled dynamics, it increases the
robustness and flexibility of the controllers as can be seen
in the sequel.

The following result is established:

Lemma 9. Consider the triggering rule φ(x, e) and assume
that Assumption7 holds. Then, if there exist positive def-
inite functions V (x) and W (x) and a class K∞ function
ρ(.) such that the broadcasting error e(t) satisfies the fol-
lowing conditions

tk+1 = inf{t > tk : φ(x, e) ≤ 0} (4)

∂V

∂x
f(x, k(x−e)) ≤ −W (x)−φ(x, e), ∀‖x‖ ≥ ρ(‖e‖) ≥ 0

Then system (2) remains asymptotically stable.

Proof: Let V (x) be a Lyapunov function candidate. Using
Assumption 7 and Equation (4), the event triggering
rule φ(x, e) is always maintained to be positive, and the
following inequality holds

V̇ (t) =
∂V

∂x
f(x, k(x− e)) ≤ −W (x), ∀‖x‖ ≥ ρ(‖e‖) ≥ 0

which is simply the time derivative of V (x) along the
trajectory (2). Then it follows by Theorem (2) that the
stability is guaranteed. ✷

3.1 Event-triggering for affine nonlinear systems

Consider the following single input affine dynamical sys-
tem:

ẋ(t) = f(x) + g(x)u(x) (5)

where x(t) ∈ R
n and u(x) : R

n → R. It is assumed
that the state x(t) is measurable and transmitted with
a single packet. In addition, the sensor is event driven
while the controller is time driven with zero order hold.
The purpose of this note is to design a nonlinear event-
triggerd controller, such that the dynamics of (5) becomes
asymptotically stable. Sontag’s formula can not be applied
directly to event driven systems since the event mechanism
may lead the dynamics to instability. Obviously, checking
the sign of ∂V

∂x
g as an event triggering condition does not

guarantee the stability. In addition, the formula itself is
somehow complicated to generate a triggering condition.
With this in mind, a slightly change to the control law
is needed to facilitate our design methodology. Similar to
Sontag’s theorem, let V (x) be any CLF function such that
the control law u(x) is given by the following:

u(x) =



















−
∂V
∂x

f(x) + k1x
Tx

∂V
∂x

g(x)
,
∂V

∂x
g 6= 0

0,
∂V

∂x
g = 0

(6)

then the time derivative of the Lyapunov function becomes

V̇ (x) =
∂V

∂x
[f(x) + g(x)u(x)] = −k1x

Tx (7)

V̇ (x) becomes negative if k1 is strictly positive.

Theorem 10. Let V (x) be a CLF for the dynamical system
(5), and the triggering samples are given by the following
rule:

tk+1 = inf{t > tk : k2‖e(t)‖+ k3‖e(t)‖
2
w > β‖x‖2} (8)

where

k2 = max
x∈Ω

{

∂V

∂x
g(x)‖

∂u

∂x
‖

}

k3 = max
x∈Ω

{

∂V

∂x
g(x)

}

M

2

∂2u(x) ≤ M.
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If there exists a positive constant k1 such that 0 < β < k1
then the control law:

u(x̂) =



















−
∂V
∂x

f(x̂) + k1x̂
T x̂

∂V
∂x

g(x̂)
,
∂V

∂x
g(x̂) 6= 0

0,
∂V

∂x
g(x̂) = 0

(9)

asymptotically stabilizes the dynamical system (5).

Proof: Taking the time derivative of V (x) alongside the
system (5), we obtain

V̇ (x) =
∂V

∂x
[f(x) + g(x)u(x̂)]

=
∂V

∂x
[f(x) + g(x)u(x)] +

∂V

∂x
g(x) [u(x̂)− u(x)]

(10)

Substitute equation (7) in (10) and replace x̂ by x − e to
get the following

V̇ (x) ≤ −k1x
Tx+

∂V

∂x
g(x) [u(x− e)− u(x))] (11)

Applying the multi-variable Taylor series on u(x) with
k = 1 as illustrated in Theorem. 5 and Corollary. 6 gives:

V̇ ≤−k1x
Tx+

∂V

∂x
g(x)

[

∂u

∂x
e+Rk,x(e)

]

≤−k1x(t)
Tx(t) + k2‖e(t)‖+ k3‖e(t)‖

2
w

≤−(k1 − β)‖x‖2 − β‖x‖2 + k2‖e‖+ k3‖e‖
2
w (12)

The proposed event triggering policy maintains −β‖x‖2+
k2‖e‖+ k3‖e‖

2
w to be negative, then

V̇ ≤ −(k1 − β)‖x‖2

Since 0 < β < k1, then V̇ is strictly negative which
completes the proof.

4. LINEAR TIME INVARIANT SYSTEMS

Using the event-triggering strategy presented in the pre-
vious section, we specialize it to linear systems. Consider
the following linear-time-invariant system

ẋ(t) = Ax(t) +Bu(t) (13)

where x ∈ R
n and u ∈ R

m with appropriate matrices A
and B. It is assumed that the system is controllable. Let
the control law is a static feedback of the last transmitted
state, that is, u(t) = Kx̂(t). The control system in (13)
could be rewritten as

ẋ(t) = (A+BK)x(t)−BKe(t) (14)

where e(t) is the transmission error between the last
transmitted signal and the actual one, i.e. e(t) = x(t) −
x̂(t). An event-triggering rule using the general policy
indicated in Assumption (7) can be cast into the quadratic
form:

φ(x, e) =
[

xT eT
]

[

M L

LT N

] [

x
e

]

(15)

It must be kept in mind that this quadratic policy is much
more general than the old version presented in Tabuada
(2007) due to the existence of cross terms between the error
and states. Although cross term is considered in Heemels
et al. (2012), the rule is still not general since it does not
introduce a new variable. Therefore the appearance of L-
matrix in Equation (15) makes it more general and much
more flexible to chose appropriate controller parameters.
On the other hand, the number of events increases since an
interaction exists between the error and plant’s states that
may cause a change in the event condition sign . Moreover,
the quadratic structure can be replaced by another policy
to overcome this problem but the change may increase
the complexity of controller design. A brilliant strategy
is to use the structure of quadratic form along side with
decreasing the interaction effect, that is, decreasing the
maximum singular value of the matrix L, to get red of the
increase in transmitted signals.

The following theorem characterizes the usefulness of the
quadratic event triggering policy. The theorem uses a set
of LMIs to obtain an appropriate controller gain that
stabilizes plants in event-triggered environment (1).

Theorem 11. Consider the event triggering structure (15).
It stabilizes the linear system (13) asymptotically if there
exist a set of matrices Y > 0, S > 0, W > 0, U > 0,
R ≥ 0, V ≥ 0, and X ∈ R

m×n such that the following
LMIs are feasible,

[

Π V −BXT

• −W

]

≤ 0 (16)

[

−W V
• −U

]

< 0 (17)

Π = SAT + SA+R+XBT +BXT + Y (18)

Moreover, the control gain K = XTS−1, and the event-
triggering rule is given by

φ(x, e) =
[

xT eT
]

[

S−1Y S−1 S−1V S−1

• −S−1WS−1

] [

x
e

]

(19)

Proof: Consider a quadratic Lyapunov function V (x) =
xTPx. Simple manipulation on the event triggering policy
φ(x, e) and using fact (1), it becomes

φ(x, e) = xTMx+ xTLe+ eTLTx+ eTNe

≤ xT (M + Z)x+ eT (LTZ−1L+N)e (20)

where Z is any positive definite matrix. To satisfy assump-
tions in Assumption 7, the following inequalities must be
hold

M ≥ 0,

[

N LT

• −Z

]

< 0 (21)

Multiply both sides of (21) by diag[S, S] and use a new
variable U = SZS gives the following inequality

[

−W V
• −U

]

< 0

which corresponds to (17). Using the Lyapunov function
V (x) = xTPx, it follows from Lemma 9 that

xT (ATP + PA+Q+KTBTP + PBK +M)x

−2eTPBKx+ 2eTLTx+ eTNe ≤ 0 (22)
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To convexify (22), we substitute the following S = P−1,
X = SKT , R = SQS, Y = SMS, V = SLS, W = −SNS
alongside with simple manipulation and using (20), then

xT (SAT + SA+R+XBT +BXT + Y )x

+2xT (V −BXT )e− eTWe ≤ 0 (23)

This inequality is equivalent to (16). This completes the
proof. ✷

4.1 Uncertain systems with event-triggering

This section concerning about the stability of uncertain
plants remotely. One of the challenges that faces the con-
trol of plants using event triggered policies is the uncer-
tainty that corrupts in plant models. In the sequel, we
direct attention to stabilize uncertain dynamical systems
using the quadratic policy (7). Consider uncertain linear
dynamical system

ẋ(t) = (A+∆A)x(t) + (B +∆B)u(t) (24)

where the uncertain part of the system is written as

[ ∆A ∆B ] = EF (t) [D0 D1 ] , FT (t)F (t) ≤ 1

The main result is established by the following theorem:

Theorem 12. The dynamical system (24) is robustly stable
under event triggering policy if there exist a set of matrices
Y > 0, S > 0, W > 0, U > 0, R ≥ 0, and X ∈ R

m×n

such that the following LMIs are feasible,











Π+ ρEET V −BX D̄0 D̄1 D̄2

• −W 0 0 0
• • −λ1I 0 0
• • • −λ2I 0
• • • • −λ3I











≤ 0

[

−W V
• −U

]

≤ 0

where

Π = SAT + SA+R+XBT +BXT + Y,

D̄0 =

[

SD0 0
0 0

]

, D̄1 =

[

XD1 0
0 0

]

,

D̄2 =

[

0 0
XD1 0

]

, ρ = λ1 + λ2 + λ3

Moreover, the control gain K = XTS−1, and the event-
triggering rule is (19)

Proof: Let

Φ =

[

Π V −BXT

• −W

]

≤ 0

then Equation (16) with the uncertainty of system (24)
becomes

Φ + Φa +ΦT
a ≤ 0 (25)

where

Φa =

[

E
0

]

F
[

D0S +D1X
T −D1X

T
]

(26)

Simple manipulations alongside with Fact 1 and Schur
complements complete the proof. ✷

Remark 13. The feasibility of the LMIs in Theorem (11)
and Theorem (12) depends on the system’s dynamics as
well as on the LMI variables. To decrease the conserva-
tiveness of the freely chosen variables. Introducing new
variables is crucial to obtain event-triggering controllers.
One of the new variables introduced in this note is the
cross term in the event triggering rule, i.e. the matrix
L. If L is assumed to be zero, the LMI conditions might
become infeasible or leads to a unacceptable increase in
the data transmissions depending on the dynamics and the
uncertainty of the system.

5. SIMULATION RESULTS

In this note, the proposed method has been tested on a
four-cart coupled with soft mass spring system as shown
in Figure 2. The nonlinearity is considered as a norm
bounded uncertainty and its linearized model is used to
obtain the control law and the event triggering rule. The
first order model of the considered nonlinear mass-spring
system is given in Wang and Lemmon (2010); Chen et al.
(1995).

Fig. 2. Four carts coupled with soft springs.

ẋ(t) = (A+∆A)x(t) + (B +∆B)u(t) (27)

where

A =















0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0















, B =















0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1















and the uncertainty matrices are given by:

E =















0.4 0 0 0 0 −0.1
0 0 0 0 0 0
0 0.2 0 0 0 0
0.1 0 0 0 0.1 0
0 0 0.1 0 0 0
0.2 0 0 0 0 0















D0 =















0 0.1 0 0 0 0
0.1 0 0.3 0 0 0
0 0 0 0 0 −0.1
0.3 0 0 0.2 0 0
0 0 0 0.1 0 0
0 −0.5 0 0 0.1 0















D1 =















0.1 0 0
0 0 0.2
0 0.2 0.1
0 0 0
0.1 0.2 0
0 0 0.2
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Solving the LMIs (16) and (17) in Theorem 11 gives the
following gain matrix:

K =

[

−3.736 −3.919 −2.301 −1.706 −1.887 −1.066
−2.654 −1.763 −3.935 −4.065 −2.243 −1.506
−1.785 −1.125 −2.314 −1.658 −2.934 −3.724

]

Consider the initial condition x0 = [−0.1, 1.5, 2, 0.5,−2, 1].
Using the triggering mechanism (19) and the gain matrix
K, then the uncertain system (27) is asymptotically sta-
ble. Figure 3 shows the the evolution of the states and
Figure 4 plots the sample intervals that are generated by
the proposed robust event triggered scheme. The smooth
trajectories of the simulated example demonstrates the
effectiveness of the developed strategy. The control laws of
this system are shown in Figure 5. It can be seen that the
inputs are constants between any two consecutive samples
due to the the zero order hold.

To demonstrate the importance of the new event triggering
structure, assume the cross term L in the event triggering
rule to be zero. The same procedures in Theorem (12)
are considered in order to extract the variables of the
controller and the event-triggering rule. The LMIs problem
might becomes infeasible in some cases when the cross
term L is zero. However, for this simulation example, given
L = 0 leads to an increase of samplings, 83 triggers when
L = 0 compared to 52 samples only using our proposed
scheme. This indicates that the traditional event triggering
policy is worse and might be deficient for specific systems
especially for uncertain systems.

Another simple simulation example is devoted for affine
nonlinear system. Consider the following first order non-
linear system

ẋ = x2 + xu

then V (x) = x2 is clearly a control Lyapunov function.

Fig. 3. States evolution of the four-cart dynamical system.

Applying theorem 10 for initial conditions ‖x(t0)‖ ≤ 2
gives the constants: M = 0, k3 = 0, and k2 = 8. We choose
periodic checking of the event condition with sampling
period less than 0.01 second. Since k1 = 1 let β = 0.5 < k1.
The number of samples when k1 = 1 equals to just 15
samples. The transmission error and the state response
are shown in Fig 6 and 7, respectively.
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Fig. 4. Triggering instants and release intervals for the
uncertain coupled cart.

Fig. 5. The control laws of the four-cart system
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Fig. 6. Transmission error of the affine nonlinear system.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4947



0 100 200 300 400 500 600 700 800 900 1000

Time (0.01s)

0

0.2

0.4

0.6

0.8

1

1.2

S
ta

te
 m

ag
ni

tu
de

Fig. 7. State evolution of the closed loop affine nonlinear
system

6. CONCLUSIONS

A novel event-triggering control scheme is proposed for
uncertain and nonlinear systems. The proposed scheme is
more general than the traditional event triggering pre-
sented in literature and more fixable to obtain control
laws. By using linear matrix inequality, the controller
gains and the event triggering parameters are obtained
simultaneously. Simulation results using an example of
four-cart system demonstrate the ability of the proposed
method to stabilize uncertain systems while it decreases
the transmitted samples sufficiently. Another nonlinear
example is given to test the stability of the triggering
scheme.
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