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Abstract: The burden of control adjustment of shaking table is increasing with the background
of lack of skilled operators. With such background, there is a strong demand for a method to
achieve desired control performance regardless of the operator’s skill. The data-driven control is
a promising approach to meet this requirement. However, even though an actual controller has
an input limit, the data-driven control cannot handle it. Therefor, we proposed a novel method
that considers the input limit based on data-driven prediction and an optimal problem with
a penalty function. We verified the effectiveness of the proposed method through experiments
using a small shaking test device.
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1. INTRODUCTION

Shaking tables (Ogawa (2000)) are testing devices used to
evaluate the structural vibration-resistance performance
and understand the destruction process of the structures.
The performance of such a test system largely depends
on how accurately the shaking table can reproduce a
desired test pattern. In other words, it can be said that
the control performance of the shaking table determines
the performance of the test system.

Generally, PID control (Ang (2005)) is used to control
the conventional shaking table, and operators adjust the
parameters to satisfy required performance by trial and
error. This adjustment method is based on the experience
of each operator, and the know-how is accumulated in
individuals. For this reason, there is a problem that the
control performance of the shaking table greatly depends
on the skill of the operator. Further, since the shaking table
is activated many times for control adjustment, it takes
time and cost. With such background, there is a strong
demand for the development of control methodology that
ensures control performance with fewer adjustment steps
and does not depend on the skills of the operator. Fur-
thermore, the number of workers with little experience in
control design is increasing due to the shortage of workers.
Therefore, there is also a strong demand for developing
control method that can be applied as simply as possible.

As a general control design, a mathematical model of a
control target is derived using first principal modeling or
system identification (Ljung (1999)). Then, controller is
designed by using this mathematical model. Such a design
method is widely known as MBC (Model-Based Control).
In some previous studies(Seki (2008, 2009)), mathematical

models have been obtained by simplifying the dynam-
ics including a specimen. However, MBC approaches are
effective only when accurate models are available. The
specimen is selected by the user, so the control designer
cannot know physical quantity of specimen in advance.
Furthermore, properties such as mass and inertia of the
specimen are not always the same. So, MBC approach may
not be able to provide sufficient control performance when
the mathematical model has some uncertainties. For this
reason, we considered that MBC approach was not always
the best method for controlling the shaking table.

Therefore, in this research, we decided to control the shak-
ing table not by MBC but by data-driven control (Lecchini
(2002); Kaneko (2011, 2013)) that uses experimental data
directly for control design. When data-driven control is
used, the control parameters are automatically adjusted,
so that it is possible to provide control performance that
does not depend on operator skill. So, the data-driven
control is a promising method. However, it is not easy to
apply it directly for controlling the shaking table.

In this paper, we first introduce the operation method
of shaking table, and introduce the issues for applying
data-driven control based on this. After that, we propose
an appropriate shaking table operation to overcome this
problem. In addition, the controller of shaking table has
input limit, but existing data-drive control cannot handle
the input limit. Therefore, we proposed a novel method
that considers the input limit based on data-driven pre-
diction (Kaneko (2017)) and an optimal problem with a
penalty function. We verify the effectiveness of the pro-
posed method through experiments using a small test-bed
driven by an electric actuator.
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2. PROBLEMS ON CONTROLLING SHAKING
TABLE

2.1 On shaking table

In this section, we briefly explain the shaking table. Fig.1
shows outline of 1-axis shaking table.

Fig. 1. Outline diagram of shaking table

Shaking table is composed of a piston, an actuator, a
coupling, and a table. When conducting the evaluation
test, a miniature of structure (a specimen) is placed on the
table. The specimen is vibrated with a desired vibration
waveform by driving the piston with an actuator and
applying a force to the table via the coupling. In the case
of a 3-D shaking table, the number of axes increases, but
the basic configuration is the same as Fig.1. The purpose
of the designing control of shaking table is to control the
displacement of the table so that the specimen is vibrated
with a desired waveform.

Detailed dynamics of the shaking table have been analyzed
in the literature Seki (2008, 2009). Even without giving
detailed mathematical model, we can easily imagine that
the mass and inertia of the specimen have great influences
on the behavior of the shaking table. As we described
above, since the specimen is selected by the user, the
control designer cannot know the value of that. This is why
it is difficult to apply MBC approach to control design of
shaking table.

2.2 Data acquisition for data-driven control

Data driven control can automatically adjust control pa-
rameters using a single set of input/output experimental
data. VFRT (Virtual Reference Feedback Tuning (Lecchini
(2002))) and FRIT (Fictitious Reference Iterative Tun-
ing(Kaneko (2011, 2013))) are known as control methods
classified as data driven control. Both methods use one-
shot experimental data to adjust the control parameters
so that the difference between the reference output and
the output after control adjustment is reduced. Then, the
obtained control parameters are applied to the controller
to confirm the improvement effect of the control perfor-
mance. In other words, these methods assume that at least
two experiments are possible. However, the shaking table
can be used to confirm the destruction process of the spec-
imen. If the specimen is destroyed in the first experiment
to obtain experimental data for control adjustment, the
second experiment cannot be performed.

Therefore, in order to apply data drive control to the
shaking table, the data acquisition method itself needs to
be devised.

2.3 Control input limitation

As with many devices, the shaking table has upper and
lower limits for control input. And, some models have
an interlock function that stops operation to protect the
equipment when the control input continues to maintain
the limit value. For this reason, control rule that consider
the limit of input is required.

MPC (Model predictive control Maciejowski (2000)) is well
known as a method that can take into account input limit.
However, MPC is one of a MBC approach and requires
accurate mathematical model. And, conventional data-
driven control cannot consider the upper limit of input.
If a saturation function is used for the control input
generated by the conventional method, the upper and
lower limits of the input are satisfied, but the optimality
is not guaranteed. Therefore, we need to develop a new
data driven control considering the upper limit of input
explicitly.

3. DEVELOPMENT OF NEW CONTROL FOR
SHAKING TABLE

3.1 Structure of proposed control system

The conventional controller performs displacement control
only by Feed-Back (FB) control as shown in the Fig.2,
where r is reference signal, u is control input, and y
is output. We assume that plant model P (s) is linear
and time-invariant, single-input and single-output(SISO)
system. In most cases, FB control, which is defined by
C(s), is implemented with PID control.

Fig. 2. Conventional controller configuration

Since the actuator receives reaction force from the shaking
table, we need to design the FB control to be robust.
However, it is not easy to improve both responsiveness
and robustness with FB control alone. So, we will consider
2DoF controller shown in Fig.3. F (ρ, s) is Feed-Forward
(FF) controller. Following the general design method, we
will design FB controller C(s) to improve robustness and
FF controller F (ρ, s) to improve responsiveness.

Fig. 3. New controller configuration

FF controller is defined by following

F (ρ, s) =
ρn+msm + · · ·+ ρn+1s+ ρn

sn + ρn−1sn−1 + · · ·+ ρ1s+ ρ0
, (1)

where tuning parameter ρ is given by

ρ = [ρ0 ρ1 · · · ρn+m] . (2)
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In this study, we consider a method to adjust the param-
eters of the FF control in Fig.3 using the experimental
data set (u, y) which are obtained with the conventional
configuration in Fig.2.

3.2 FF controller tuning by ERIT

In this subsection, we briefly introduce Estimated Refer-
ence Iterative Tuning (ERIT) proposed by Kaneko et. al.
(Kaneko (2018)).

Suppose that the transfer function of the desired closed-
loop system is given by Td(s). Then, the desired output yd
is given by

yd = Td(s)r. (3)

ERIT calculates the FF control parameter ρ so as to
minimize the following cost function Jo(ρ)

Jo(ρ) = ∥yd − y(ρ)∥2N , (4)

where N is size of the experimental data.

We have to predict y(ρ) without using the plant model
P (s) to consider the above optimization problem. From
the Fig.2, we can express the output data y obtained by
the experiment as

y =
P (s)C(s)

1 + P (s)C(s)
r. (5)

On the other hand, we can also express the output data
y(ρ) from the Fig.3 as

y(ρ) =
P (s) (C(s) + F (ρ, s))

1 + P (s)C(s)
r. (6)

Then, we can derive following equation by using eq.(5) and
eq.(6),

y(ρ) =
C(s) + F (ρ, s)

C(s)
y

= y + F (ρ, s)

(
1

C(s)

)
y. (7)

We can confirm eq.(7) does not include the plant model
P (s). FB control C(s) is known because it is designed
by ourselves. As long as FB control is designed with PID
control, 1/C(s) is a proper transfer function. F (ρ, s) can be
also a known transfer function by using ρ which is obtained
in each step of optimization. Therefore, we can predict y(ρ)
accurately using experimental output data y if there is
no observation noise. This technique is called data-driven
prediction(Kaneko (2017)).

After predicting y(ρ), optimal FF control parameter ρ∗

can be calculated by applying off-line optimization.

3.3 Strategy for applying Data-driven control

ERIT has been proposed assuming that the plant model
is linear and time-invariant (LTI) system. If the closed
loop dynamics is LTI, when the reference signal r is
multiplied by an arbitrary scaling factor Sc, the output
is also multiplied by Sc. In other words, the output for the
scaled reference r̄ = Scr is given by

ȳ = Scy. (8)

Using eq.(7) and eq.(8), we can predict scaled output by,

ȳ(ρ) = ȳ + F (ρ, s)

(
1

C(s)

)
ȳ. (9)

From eq.(4) and eq.(9), we can confirm that the parameter
ρ for minimizing the cost function Js(ρ), which is defined
by using scaled experimental data ȳ, is same for minimiz-
ing original cost function Jo(ρ),

Js(ρ) = ∥Td(s)r̄ − ȳ(ρ)∥2N
= ∥Td(s) (Scr)− {Scy(ρ)}∥2N
= S2

cJo(ρ). (10)

In other words, the same ρ can be obtained even with
ERIT using scaled data ȳ. So, all we have to do is collecting
experimental data by selecting a scaling parameter Sc that
is small enough not to break the specimen.

If the scaling parameter Sc is too small, the dynamic
characteristics of the closed loop may not appear in the
output data ȳ. In actual operation of the shaking table,
preliminary experiments are performed with an amplitude
1/10 ∼ 1/20 times the maximum amplitude before the
actual test. So, we select a scaling parameter as Sc = 1/10
in this research.

3.4 ERIT considering input limitation

In previous subsection, we have shown that ERIT can be
applied to control the shaking table by using the scaled
experimental data. However, ERIT cannot handle the limit
of control input u. Therefore, we derive a new ERIT is
derived in consideration of the input limit in this section.

From the same discussion as in the previous section, we
can express the control input data u obtained by FB only
experiment as

u =
C(s)

1 + P (s)C(s)
r. (11)

we can also express the control input u(ρ) from the Fig.3
as following,

u(ρ) =
C(s) + F (ρ, s)

1 + P (s)C(s)
r. (12)

Then, we can derive following equation by using eq.(11)
and eq.(12),

u(ρ) = u+ F (ρ, s)

(
1

C(s)

)
u. (13)

Therefore, we can also predict u(ρ) using output data u
obtained by the experiment. The above equation also holds
when using scaled experimental data ū = Scu as

u(ρ) =

(
1

Sc

){
ū+ F (ρ, s)

(
1

C(s)

)
ū

}
. (14)

We can predict whether the control input u(ρ) exceeds the
limit ulim by using eq.(14) in advance. Therefore, we define
a function that gives a penalty when the predicted input
u(ρ) exceeds the limit ulim as

Pi(ui(ρ), ulim) =

{
0, ∥ui(ρ)∥ ≤ ulim

α(ui(ρ)− ulim)
2 ,

(15)

where i is index number of date and α is tuning parameter.
Then, we modified original cost function Js(ρ) as

Jp(ρ) = ∥Td(s)r̄ − ȳ(ρ)∥2N +

N∑
i=1

Pi(u(ρ), ulim). (16)
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When the control input u(ρ) exceeds the limit ulim, the
value of the cost function Jp(ρ) increases abruptly. There-
fore, such an adjustment parameter ρ will not be selected.
This is the same idea as the penalty function in MPC.
If you want to find a parameter ρ that strictly satisfies
the constraint condition, you can use a barrier function
Bi(ui(ρ), ulim) instead of eq.(15).

Bi(ui(ρ), ulim) =
1

α

1

{ui(ρ)− ulim}2
(17)

4. EXPERIMENTAL TRIAL

4.1 On test-bed

In order to confirm the effectiveness of the proposed
method, we build a simple shaking test-bed. Fig.4 shows
picture of the shaking test-bed. Although not shown in
Fig.4, there is a controller that calculates the control input.
This test-bed is configured with only an actuator and a
piston, and does not include coupling, table, and specimen.
We will implement the table part in future modifications.

Fig. 4. Picture of test-bed

Fig.5 shows functional diagram of the shaking test-bed.

Fig. 5. Functional diagram of shaking test-bed

We explain the configuration of the test-bed using Fig.5.
The controller accepts the displacement or acceleration
command generated by the signal generator as reference
signal r. Generally, a shaking table is driven by displace-
ment control. Therefore, in the case of an acceleration
command, it is converted into a displacement command
using an input integration circuit that performs second-
order integration. The control input u calculated by the
controller is transmitted to the servo amp, and the electric
motor is driven by the current value output from the servo
amp. There are restrictions on the control input to protect
the servo amplifier and the electric motor. The linear actu-
ator connected to the electric motor expands and contracts

by switching the rotation direction of the electric motor
depending on whether the current is positive or negative.
This expansion/contraction movement of movable parts
corresponds to the piston of the shaking table. A mag-
net is attached to the tip of the movable part, and the
displacement of the linear actuator can be detected by a
magnetostrictive displacement meter. The signal detected
by the magnetostrictive displacement meter is transmitted
to the controller as an output y via the sensor amp.

4.2 Experimental result

In this paper, we decided to use JMA KOBE(JMA (web))
as a test pattern. JMA KOBE is a test pattern commonly
used in Japan. JMA KOBE is an acceleration date of
a large earthquake that occurred in Hyogo prefecture in
1995, and is widely used to evaluate the seismic perfor-
mance of structures. In this experiment, we use displace-
ment signal which is converted from JMA KOBE acceler-
ation signal by applying the input integration circuit.

First, we acquired experimental data using only FB con-
trol enabled for data-driven control design. FB control is
PID control, and PID gain was determined by trial and
error. We did not optimize PID control, assuming that
an unskilled operator adjusted the control. In this exper-
iment, we set the amplitude to be 1/10 of the maximum
excitation, that is, the scaling parameter is designed as
Sc = 1/10. The upper part of Fig.6 shows the whole experi-
mental result, and the lower part shows an enlarged part of
the experimental result. We normalized the experimental
result so that the maximum amplitude of the reference r
is 100%. The blue line shows the scaled reference r̄ = Scr
and red line shows the output ȳ.

Fig. 6. Experimental result of scaled reference

We can confirm that the displacement response ȳ is de-
layed from reference r̄.

We performed following three experiments with actual
amplitude(Sc = 1) :
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(1) Only FB control
This is a comparison target to verify the effectiveness
of FF control.

(2) Conventional ERIT
This experiment is performed to confirm the output
response u(ρ) without considering the input limit.

(3) Proposed ERIT
This experiment is performed to confirm the effective-
ness of proposed control.

We set the limit of control input ulim slightly lower than
the limit depending on the actual equipment. In addition,
we disabled the interlock function in order to conduct the
experiment (2).

We design a conventional ERIT, which does not consider
input constraints. We design the FF control F (ρ, s) by
using scaled experimental output ȳ and cost function
Js(ρ). We use the following third-order transfer function
for FF control

F (ρ, s) =
ρ0s

3 + ρ1s
2 + ρ2s+ ρ3

s3 + ρ4s2 + ρ5s+ ρ6
, (18)

where ρi(i = 0, · · · , 6) is designed by conventional ERIT.
We used “fminsearch” command of Matlab R⃝to calculate
optimal ρ.

We design proposed ERIT, which can deal with control
input limit. We decided to use the same form of FF control
(18) in order to make a fair comparison. Then, we design
the FF control F (ρ, s) by using scaled experimental data-
set (ū, ȳ) and cost function Jp(ρ). In order to increase the
penalty cost when the control input u exceeds the input
limit ulim, we set the tuning parameter α = 10.

Fig.7 shows experimental result of FB control only test.
The upper part of figure shows the normalized displace-
ment output y of an enlarged part of the experimental
result, and the lower part shows the normalized control
input u.

Fig. 7. Only FB control

We can confirm that the displacement response y is de-
layed from reference r. We can also confirmed that wave-

form of Fig.6 and Fig.7 are almost similar. From this
result, we can confirm that dynamics of the test-bed can
be assumed as LTI. Furthermore, we can confirm that the
control input u has not reached the input limit (±100%).

Fig.8 shows experimental result of conventional ERIT. The
filled part at the lower part of the figure indicates where
the control input u reaches the input limit (±100%).

Fig. 8. Conventional ERIT

From Fig.8, we can confirm that delay of displacement
response y has been improved. However, the control input
u reaches the limit in some time. Therefore, a controller
with this FF control may not be applicable to an actual
vibration table.

Fig.9 shows experimental result of proposed ERIT.

Fig. 9. Proposed ERIT

We can confirm that the displacement response y is im-
proved compared to the experimental results of FB control
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only test. From the bottom of the Fig.9, it appears that
the normalized input u has reached 100% around 11.1
seconds, but in reality the normalized input u remains at
about 99%. We confirmed that the control input u did not
reach the limit ulim by applying modified cost function
Jp(ρ) which contains the penalty function. Therefore, the
controller that implements the proposed FF control can
be applied in practice.

Table 1 shows root mean square error (RMSE) and max-
imum overtime (MOT) of each experiment. RMSE is a
criterion given by

RMSE =

√√√√ 1

N

N∑
i=1

(ri − yi)2 (19)

where N is the number of experimental data. MOT is the
time that the normalized control input maintains the limit
value (±100%).

Table 1. RMSE of each control

PID Conventional ERIT Proposed ERIT

RMSE 14.49 9.37 11.15
MOT(s) - 0.08 -

We can confirm that the conventional ERIT shows the best
control performance. We can also confirm that the control
performance of the proposed ERIT is inferior to that of
the conventional ERIT. However, as we mentioned above,
the conventional ERIT cannot be applied in practice
because of the control input limitation. On the other hand,
the proposed ERIT can be applied in practice. So, our
proposed method can provide the best possible control.

It is clear from the results of this experiments, if a large
control input is allowed, the responsiveness is greatly
improved. However, such control may not be implemented
because the control input reaches the upper limit. The
proposed method solves this trade-off and is one of the
promising solutions that can be used easily by unskilled
operators.

5. CONCLUSION

In this research, we considered a technique of applying
data-driven control to a 1-axis shaking table with limited
control inputs. First, we proposed data acquisition tech-
nique using scaling parameter Sc. We have shown that
even when using the scaled experimental data (r̄, ȳ), it is
possible to calculate the same parameters ρ as when using
the actual experimental data (r, y). Next, we proposed a
new ERIT considering the limit of control input. The pro-
posed method is formulated by the optimal problem using
penalty function Pe(u(ρ), ulim), where u(ρ) is predicted
by data driven prediction. The proposed method has an
advantage in that the limits of the control input can be
considered even though the plant model P (s) is not used
explicitly. Finally, we confirmed the effectiveness of the
proposed method by experiments. We have confirmed that
the proposed method can improve the control performance
without the control input u reaching the limit ulim.

Our future task is to confirm robustness against sensor
noises because scaled experimental date (ū, ȳ) can be more
subject to noise than non-scaled data (u, y). In addition,

it is necessary to verify the influence of the reaction force
from the table by modifying the test-bed. Furthermore,
we plan to verify the effectiveness of the proposed method
using a large shaking table driven by hydraulic actuators
which can be nonlinear system. Finally, since the 3-D
shaking table is not SISO, our proposed method cannot be
directly applied. Therefore, we need to develop a control
method that can be applied for MIMO.
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