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Abstract: The research field of effective coverage of a certain area has received considerable
attention, especially in exploration tasks. The ability of robots to localize themselves in a map
and to plan elaborated motions are the basics of many coverage approaches. Cooperative,
multiple robots can be employed in order to accelerate exploration missions. Over the past
years, many methods have been investigated for this purpose. However, either the robots know
the obstacle locations or they are not capable of identifying their environment completely. In this
study, we propose a sensor-based framework to cover a given space simultaneously with multiple
mobile agents in a cooperative fashion without any prior knowledge of the environment. With
our approach, the agents are capable of avoiding collisions with different shaped obstacles and
autonomously constructing a map of the whole area by identifying inaccessible domains in the
map.
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1. INTRODUCTION

Efficient area coverage with multiple, autonomous robots
(areal, underwater or ground vehicles) or mobile sensor
networks is significant for various applications such as
environmental monitoring, floor cleaning, data collection
in certain environments, surveillance and reconnaissance
(Ma et al., 2018). In addition, space mining, map creation
of unknown areas, discovery and exploration of certain
regions on a planet are other tasks requiring area coverage.

Deployment of multi-agent systems for area exploration
increases the efficiency and success in many missions. How-
ever, decentralized coordination of multiple agents requires
the ability to communicate, algorithms for cooperative mo-
tion and decision-making through information exchange.

There are several approaches for area coverage with single
or multiple agents. Some of these methods are based on
optimal control (Nguyen et al., 2016), game theory (Ra-
maswamy and Marden, 2016) and reinforcement learning
(Adepegba et al., 2016). In dynamic area coverage, mobile
agents have limited sensor ranges. Therefore, efficient mo-
tion planning is the key for mission success. In anti-flocking
algorithms, agents try to move away from each other to
improve coverage and explore new spaces in contrast to
flocking behavior of swarming agents (Miao et al., 2010).

In order to maximize area coverage, the so-called anti-
flocking algorithms for mobile sensor networks were pro-
posed (Yuan et al., 2018b,a; Semnani and Basir, 2014).
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These algorithms distribute agents spatially in a system-
atic way. Combination of anti-flocking with potential field
approach enables agents to detect targets in a large area
with local communication and to avoid obstacles (Gan-
ganath et al., 2016, 2018). Due to battery limitations,
energy efficiency is an issue in area coverage tasks that
were considered in studies (Yuan et al., 2018c; Koval et al.,
2019).

Area coverage can be performed with decomposition-based
approaches through partitioning of the exploration do-
main. These methods include Voronoi diagram (Kennedy
et al., 2019; Papatheodorou et al., 2018; Miah et al., 2018),
Boustrophedon decomposition (Koval et al., 2019) and
Morse decomposition (Acar and Choset, 2002). Further-
more, there are ergodicity-based frameworks that consider
target probability distribution (Salman et al., 2017; Ayvali
et al., 2017; Ivić et al., 2016).

Autonomous agents utilize different kinds of path planning
techniques for area coverage. One approach is global path
planning, which requires prior knowledge of the environ-
ment. Another method is local path planning, which obli-
gates the robot to plan its motion solely based on its sensor
measurements. The advantage of this method is that the
agent can be operated in any unknown environment with-
out having prior information.

In our study, we consider a group of mobile agents with
limited communication bandwidths and sensing perfor-
mance. As a result, they can communicate only with
the agents within their communication range and detect
objects in their sensing range. The main contribution of
this paper is cooperative identification and coverage of an
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unknown environment with multiple autonomous agents.
Our approach builds upon the anti-flocking algorithm
(Ganganath et al., 2016) and extends it with an improved
obstacle avoidance and recognition of inaccessible areas.
Through local information exchange and judicious path
planning for the recognition of restricted areas inside of
obstacles in the exploration domain, agents are able to
identify their environment fully autonomously in a safe
and efficient way.

The outline of this paper is organized as follows: In
Section 2, preliminaries for the proposed framework are
briefly introduced. Section 3 describes the problem in
sensor-based area coverage. In Section 4, our cooperative
area exploration and identification scheme is presented.
The proposed exploration scheme is evaluated through
simulation scenarios in Section 5. Finally, the conclusion
of this study is presented in Section 6.

2. PRELIMINARIES

In this section, we introduce the dynamics of the mobile
agents for the exploration-oriented path planning. We
consider the agents as point-masses and the dynamics are
based on potential functions. The agents receive virtual
repulsive forces by following the gradient of a potential
field. The state of each agent is defined by (pi,vi) ∈ Rm×
Rm, which represent the position and velocity of the i-th
agent in m dimensional space, respectively. The dynamics
of a group of n agents are given by the following system
of differential equations:

ṗi = vi,

v̇i = ui,
(1)

for i = 1, . . . , n, n ∈ N. If the Euclidean distance between
two agents is less than r, they are called neighbors. The
neighborhood of agent i is defined as

Ni = {j ∈ V : ‖pj − pi‖ < r}, (2)

where V = {1, . . . , n} is a set of all agents. The dynamics
of agent interactions are defined by distance-dependent
potential functions. In order to ensure the differentiability
of these functions at z = 0, a mapping, the so called σ-
norm (Olfati-Saber, 2006), is introduced as follows:

‖z‖σ =
1

ε
[
√

1 + ε‖z‖2 − 1] (3)

with a fixed parameter ε > 0. In addition, we define the
following bump function as in (Olfati-Saber, 2006):

ρh(z) =


1, z ∈ [0, h)
1

2
[1 + cos(π

z − h
1− h

)], z ∈ [h, 1)

0, otherwise

(4)

where h ∈ (0, 1). The function (4) is a smooth steadily
dissipative function and we use it later to weight the
adjacency matrix

aij(p) = ρh

(‖pj − pi‖σ
rα

)
∈ [0, 1], j 6= i (5)

with rα = ‖r‖σ. If the corresponding distance between
agent i and j greater than rα, then ‖aij‖ = 0.

3. PROBLEM DESCRIPTION

In this study, we assume that every agent has only a
range sensor with a limited measuring range. In addition,

Inaccessible

area

Fig. 1. Illustration of the identification issue in an explo-
ration task. Green-colored cells represent identifiable
areas of the obstacle.

it can only measure the relative position of its neighbors
and exchange information only with other agents within
its limited communication bandwidth. The measurement
noise and sensor uncertainties are neglected. For dealing
with noisy measurements, the reader is referred to dis-
tributed Kalman Filter (Olfati-Saber, 2007). Moreover,
each agent is able to localize itself in the map.

Over the years, various sensor-based approaches have
been proposed to cover an area with multiple agents.
Most of them are based on information exchange to plan
an optimal coverage motion without overlapping of the
sensing regions. In grid-based methods that divide the
exploration area into very fine cells such as in (Ganganath
et al., 2018, 2016; Yuan et al., 2018b), the coverage task is
accomplished completely, when the agent has sensed and
identified each cell in the exploration area.

In real-life applications, area boundaries are usually given
for the search task and obstacle locations are not known.
The agents should autonomously identify each cell in
the virtual map. However, some cells in the area are
inaccessible due to obstacles or some other restrictions in
the domain (Fig. 1). Hence, they cannot be sensed by the
agents and remain unidentified.

4. COOPERATIVE EXPLORATION SCHEMA

In order to address the described issue in Section 3, we
propose an exploration method which consists of four com-
ponents: Motion planning, anti-flocking with local commu-
nication, obstacle recognition and circumnavigation.

4.1 Motion Planning of Mobile Agents

The considered system in this study has the following
double-integrator dynamics:

ṗi = vi,

v̇i = uαi + uβi + uγi ,
(6)

where uαi is the control input for the inter-agent collision

avoidance, uβi is for the obstacle avoidance and uγi is for
the tracking of a target point. Each agent can receive the
position of other agents within the communication range
rc and also the relative position of the closest point on an
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obstacle within its sensor range rs. In this way, each agent
can identify the set of neighboring agents

Nα
i = {j ∈ V : ‖pj − pi‖ < rc}, (7)

and the set of detected obstacle points

N β
i = {p̂i,k

∣∣ ‖p̂i,k − pi‖ < rs}, (8)

at a given time, where p̂i,k is the position of the closest
point on the obstacle k detected by the agent. The control
input to keep a safe distance da to other agents is given
by

uαi = cα1
∑
j∈Nα

i

φα(‖pj − pi‖σ)nij + cα2
∑
j∈Nα

i

aij(p)(vj − vi),

(9)

where nij = σε(pj − pi) =
pj − pi√

1 + ε‖pj − pi‖2
a vector

from pj to pi and ε ∈ (0, 1).

We formulate the following control input to avoid collision
with obstacles and to keep a safe distance do:

uβi = cβ1
∑
k∈Nβ

i

φβ(‖p̂i,k−pi‖σ)n̂i,k+cβ2
∑
k∈Nβ

i

bi,k(p)(v̂i,k−vi),

(10)
with

n̂i,k =
p̂i,k − pi√

1 + ε‖p̂i,k − pi‖2
, bi,k(p) = ρhβ

(‖p̂i,k − pi‖σ
dβ

)
,

where v̂i,k is the projection of the vi onto the edge of
the obstacle k. Moreover, bi,k(p) describes the weighted
adjacency between agent i and obstacle k. The repulsive
potential forces are defined with the bump function (4) as
follows:

φα(z) = ρhα(z/dα)(σ1(z − dα)− 1), (11)

φβ(z) = ρhβ (z/dβ)(σ1(z − dβ)− 1), (12)

where dβ < rβ with dβ = ‖do‖σ, rβ = ‖rs‖σ and
dα = ‖da‖σ. Finally, the control term for the navigation is
defined as

uγi = −cγ1(pi − pti)− c
γ
2vi, (13)

where pti ∈ Rm represents the target position of agent
i at time instant tk > 0. Here, cνη are positive constant
parameters for all η = 1, 2 and ν = α, β, γ.

4.2 Anti-flocking and Collective Map Creation

In order to maximize the identified domains, we apply
the anti-flocking algorithm presented in study (Ganganath
et al., 2016). First, similar to (Yuan et al., 2018b) the
exploration area (EA) is divided into equal-sized cells and
each agent generates its own information map Mi, which
is considered as a matrix. The elements of the matrix
Mi = [mi(xµ,ν)] represent the identified (mi(xµ,ν) = 1),
unidentified (mi(xµ,ν) = 0), and occupied (mi(xµ,ν) =
−1) cells. mi(xµ,ν) ∈ {0, 1,−1} is also called the sensing
information. xµ,ν denotes the coordinates of a cell center.
µ and ν represent the rows and the columns of the
information map Mi, respectively.

According to the anti-flocking algorithm, the target posi-
tion pti of an agent is calculated, evaluating the benefit
function given by

ξi = (1− |mi(xµ,ν)|)(ργ + (1− ργ)λi(xµ,ν)), (14)

Fig. 2. Visual representation of area sensing. The yellow-
colored cells are identified by the agent.

where ργ is a constant. The function λi is defined as

λi(xµ,ν) = exp(−κ1‖pi − xµ,ν‖ − κ2‖pti − xµ,ν‖) (15)

with positive constants κ1 and κ2. In this way, each cell
has a benefit value based on (14). The target position is
selected for the time instant tk + 1 as follows:

pti(tk + 1) = argmax
xµ,ν∈X̃i

ξi(xµ,ν , tk), (16)

where X̃i = {xµ,ν
∣∣xµ,ν ∈ X , ‖xµ,ν − pj‖ ≥ ‖xµ,ν −

pi‖ > rs, j ∈ Nα
i }. Here, X is the set of all cell center

points.

For each agent i, whose communication range is rc, the
information map is updated in the following way:

• In the beginning of the exploration (tk = 0), all cells
in the information map Mi are unidentified.
• Once an area is sensed, the cells mi(xµ,ν) with ‖xµ,ν−
pi‖ ≤ rs are defined as identified (Fig. 2). In addition,
if an obstacle is detected, the cell which includes the
sensed obstacle point p̂i is saved as occupied.
• If an agent j is in the communication range of the

agent i,

‖pj − pi‖ < rc,

the agents can exchange missing information and
complete each others maps,

Mi(tk) = Mj(tk).

In addition, pti is updated based on the recalculation
criteria (Ganganath et al., 2016) to reduce overlapping
sensing ranges and to minimize the traveling effort.

4.3 Obstacle Recognition

Obstacle recognition can be easily included into the anti-
flocking framework with a novel algorithm, which allows
agents to identify inaccessible areas on their own. The
proposed algorithm can categorize the shape of obstacles
and restricted areas. Each agent is capable of memorizing
the sensed obstacle points p̂i,k(tk) over the discrete time.

The obstacle classification is based on the rate of change of
tangential vectors. Hence, the agents calculate difference
vectors n̂(tk,tk+1) between consecutive sensed points as

n̂(tk,tk+1) =
p̂i,k(tk + 1)− p̂i,k(tk)

‖p̂i,k(tk + 1)− p̂i,k(tk)‖
. (17)

The cells, which include the sensed points, are marked in
the information map as occupied at the same time. Since
the distances between these sensed points are very short
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Quadrant IQuadrant II

Quadrant III Quadrant IV

(a) Recognition scheme for circles (b) Obstacle map

Fig. 3. Illustration of the circle recognition.

due to a small time step ∆t, difference vectors can be con-
sidered as approximated tangential vectors. An obstacle is
classified as a polygon if the consecutive difference vectors
are piecewise identical. However, if the rate of change of
difference vectors is not zero, the following scheme for
circle recognition is applied, which is illustrated in Fig.
3.

1) Primarily, for the algorithm, the circle is divided
virtually into quadrants.

2) Based on the sign change of components of the dif-
ference vectors {n̂(tk,tk+1), . . . , n̂(tk+n,tk+n+1)}, the
transitions between consecutive quadrants are de-
tected (see Table A.1).

3) After three transitions to different consecutive quad-
rants, the algorithm assumes that all four quadrants
were recognized by the agent and the next step is
performed. Note that the sign change of both com-
ponents of the difference vectors is alternating (see
Appendix A).

4) During circumnavigation, all sensed points Pi =
{p̂i,k(tk), p̂i,k(tk + 1), . . . , p̂i,k(tk + n)} are stored. In
order to define the diameter of the circle, we utilize
extrema of sensed points as follows:

pxmax = argmax
p̂i,z∈Pi

[
p̂Ti,z ·

(
1
0

)]
, pxmin = argmin

p̂i,z∈Pi

[
p̂Ti,z ·

(
1
0

)]

pymax = argmax
p̂i,z∈Pi

[
p̂Ti,z ·

(
0
1

)]
, pymin = argmin

p̂i,z∈Pi

[
p̂Ti,z ·

(
0
1

)]
The diameter of the circle is defined as d =
max(dx, dy), where

dx = (1, 0) · (pxmax − pxmin),

dy = (0, 1) · (pymax − pymin).

Furthermore, the circle origin is estimated as

pok =


1

2

(
pxmin + pxmax

)
if dx > dy,

1

2

(
pymin + pymax

)
if dx < dy.

5) All cells whose distance from center point to the origin
of the circle is less than the radius d/2 are defined as
occupied in the map.

Recognition of a polygon is described in the following and
Fig. 4 illustrates the recognition scheme.

1) The identified sides of a polygon are defined by the
tuples (sn,p

n) with n ∈ {1, . . . , N}. N ∈ N is the
number of the detected polygon sides. sn and pn

(a) Recognition scheme for poly-
gons

(b) Obstacle map

Fig. 4. Illustration of the polygon recognition. The gray
colored cells represent occupied areas.

denote the tangential vector of a side and first sensed
point on the side, respectively. The tangential vector
is equal to one of the difference vectors described in
(17). In this way, a list of tuples is created to describe
a polygon.

2) Polygons are two-dimensional objects that consist of
at least three sides. Hence, the list of tuples created
in the first step should include at least three different
difference vectors to interpret an obstacle as a closed
area.

3) Once the first clustered direction s1 is determined for
the second time, the next step of the algorithm is
performed.

4) With the help of the tuples {(s1,p1), (s2,p
2), . . . ,

(sN ,p
N )}, we define N straight lines as follows:

ln : x = pn + q · sn, q ∈ R
where x is an arbitrary point on the line. Then, we
determine the points of intersection of consecutive
lines in order to define the vertex points of the
polygon Ci = {c1, . . . cN}.

5) Furthermore, the section in the map (Fig. 4(b), blue-
colored frame) with the obstacle is considered closer
using the extreme coordinate values of vertex points

cxmax = argmax
cz∈Ci

[
cTz ·

(
1
0

)]
, cxmin = argmin

cz∈Ci

[
cTz ·

(
1
0

)]
,

cymax = argmax
cz∈Ci

[
cTz ·

(
0
1

)]
, cymin = argmin

cz∈Ci

[
cTz ·

(
0
1

)]
.

6) If a cell center point in the considered section is sur-
rounded by occupied cells in all x- and y-directions,
it is defined as occupied.

Remark 1. If an agent leaves the obstacle or changes its
direction of motion for a short time during the circum-
navigation, but then returns to the obstacle, one side
of the polygon might be considered more than once. In
order to eliminate this, the following case differentiation is
implemented:

sn =

{
−n̂(tk,tk+1), if

[
(1 , 0) · n̂(tk,tk+1)

]
< 0

n̂i,(tk,tk+1). otherwise
(18)

Remark 2. The presented scheme does not allow recog-
nition of irregular-shaped and hybrid obstacles, where a
subset of difference vectors indicate a circle and another
one a polygon.
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4.4 Circumnavigation

The proposed algorithm requires circumnavigation, which
means a complete navigation around an entire obstacle.
Our navigation concept with the continuous motion along
an obstacle surface is mainly inspired by the tangential
navigation scheme presented in (Brandão et al., 2013).

Once an obstacle is in the range of dtan (rs > dtan > do),
the circumnavigation is activated. In the first step, the
agent determines its rotation angle γ as follows:

γ =

{
β − α− 90◦, for β ≥ 0◦

β − α+ 90◦, for β < 0◦
(19)

where the angle α and β are the orientation of the agent
relative to the target position and the orientation to the
closest obstacle point, respectively (see Fig. 5). The angle
γ is used as a rotation angle for the projection of the
temporary target position ptti calculated as

ptti = pi +

[
cos(γ) −sin(γ)
sin(γ) cos(γ)

]
(pti − pi). (20)

The navigation of the agent is performed similar to (13)
as follows:

uγi = −cγ1
(
cn ·

pi − ptti
‖pi − ptti ‖

)
− cγ2vi, (21)

where cγ1 and cγ2 are positive constant weighting factors
to have a controlled acceleration during the tangential
navigation.

Once the distance between the agent and an obstacle holds
‖p̂i,k − pi‖ > dtan during surface following, the agent
switches to a new strategy utilizing the last sensed point
p̂i,e = p̂i,k(tk − 1) on the obstacle with ‖p̂i,k(tk − 1) −
pi‖ ≤ dtan. We define a new rotation angle δ > 0, through
which we set the temporary target point as follows:

ptti =


p̂i,e + dtan

[
cos(δ) −sin(δ)

sin(δ) cos(δ)

]
ni,e if β ≥ 0◦

p̂i,e + dtan

[
cos(δ) sin(δ)

−sin(δ) cos(δ)

]
ni,e if β < 0◦

(22)
with

ni,e =
pi − p̂i,e
‖pi − p̂i,e‖

,

where the p̂i,e is the reference point for the calculation (see

Fig. 5). Once the first ptti is reached (‖ptti −pi‖ < 0.7), the
agent sets a new temporary target position based on (22).
If a new point p̂i,k with ‖p̂i,k − pi‖ < dtan is sensed, the
navigation is performed based on (20). In the meantime,
the following condition should be satisfied to leave the
obstacle extremity:

|α| ≤ ω, (23)
where ω represents a tolerance angle range. In the absence
of a sensed point, the condition (23) helps the agent stop
setting new temporary positions if the deviation between
its motion vi and the vector from its current position pi
to the target position pti is in a certain range.

Remark 3. The presented circumnavigation approach can
be extended to overcome local minima due to concave ob-
stacles by integrating corner avoidance scheme presented
in (Brandão et al., 2013).

Fig. 5. Visual representation of the circumnavigation.

5. SIMULATION RESULTS

In this section, we evaluate the proposed online sensor-
based scheme. With the introduced approach, agents suc-
cessfully discover the unknown area in the simulated sce-
nario.

In the simulation, we consider a system of n = 3 agents
in the m = 2 dimensional plane. The agents are randomly
placed in the EA and their initial velocities vi(0) ∈ R2 are
(0, 0)T .

The EA is defined in a domain [−50, 50] × [−50, 50] with
a cell size of [1 × 1]. The values of the anti-flocking
parameters, the weighting factors of the control terms
and the parameters for the circumnavigation are given in
Table 1. In the simulation, the input |uγi | is bounded by
|umax| = 8 to avoid too high accelerations. The priorities
of the control objectives are defined: Collision avoidance,

obstacle avoidance and tracking with cβ1 = cα1 > cγ1 .

Fig. 6 depicts the positions and trajectories of agents
during an exploration mission without using the obstacle
recognition scheme at the time instant t = 23 s. The
EA and the area coverage through all agents are also
illustrated in this figure. The EA contains one polygon
and one circular obstacle that are not known to agents
beforehand. The white triangles represent the positions
and the directions of motion of the agents. The yellow- and
blue-colored areas represent the identified and unidentified
regions, respectively. The gray-colored areas are occupied
or inaccessible domains identified by agents during the ex-
ploration. It is observed that the agents are in a continuous
circumnavigation mode and try to cover the inner areas of
obstacles.

Fig. 7 shows the positions and trajectories of the agents
for important time instants with obstacle recognition and
tangential navigation scheme. The EA includes one poly-
gon and one circular obstacle. In addition, the exchange
of information map enables the group to make optimal
decisions about the next target position for efficient ex-
ploration.

At t = 9 s, an agent detects the polygon-shaped obstacle
and another agent senses the circular one. After the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9760



−40 −20 0 20 40

−40

−20

0

20

40

x-Position (-)

y
-P

os
it

io
n

(-
)

Coverage: 90.72%

Fig. 6. Exploration task without obstacle recognition with
n = 3 agents at t = 23 s.

Table 1. Parameter Setting

Anti-flocking

rc rs dtan do
40 10 7 6
hα hβ ε da
0.2 0.9 0.08 12
κ1 κ2 ργ

0.04 0.01 0.2

Weighting of the control terms

cα1 cβ1 cγ1
60 60 30

cα2 cβ2 cγ2
2
√
cα1 2

√
cβ1 2

√
cγ1

Circumnavigation
δ ω cn

20◦ 10◦ 4

circumnavigation, the agents are able to identify the inner
area of the obstacles and define them as occupied domains.
It can be seen that the agents can avoid obstacles and
identify inaccessible areas on their own.

6. CONCLUSION

In this paper, we introduced a novel sensor-based ex-
ploration framework that allows agents to identify each
cell in the exploration area by recognizing inaccessible
domains autonomously. With the proposed scheme, mul-
tiple agents can efficiently explore an unknown area with
predefined boundaries as a group through local informa-
tion exchange. However, the main contribution is that
the agents are capable of identifying edged and circular
obstacles or restricted areas on their own without having
prior knowledge. Combination of the proposed obstacle
recognition with the circumnavigation approach makes it
possible for the agents to identify inaccessible areas by
evaluating only sensor data. Moreover, exploration can
also be easily performed in more complex environments
with concave obstacles by extending the circumnavigation
scheme. Future work will focus on the identification of
irregular-shaped obstacles.
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Fig. 7. Consecutive snapshots of an exploration task with n = 3 agents with obstacle recognition.
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Quadrant Curve parameter x y

I s ∈ (0, π
2

) < 0 > 0

II s ∈ (π
2
, π) < 0 < 0

III s ∈ (π, 3
2
π) > 0 < 0

IV s ∈ ( 3
2
π, 2π) > 0 > 0

Table A.1. Components of the tangential vec-
tors in the quadrants of a circle.

Appendix A. CIRCLE IN THE PLANE

A circle with the radius r is a continuously differentiable,
closed curve θ, which can be described with the following
parameterization in cartesian coordinates:

θ : [0, 2π]→ R2, θ(s) =

(
r cos(s)
r sin(s)

)
. (A.1)

The tangential vector τ (s) = (x, y)T , which lies at the
point p(s) = θ(s) on the circle, is given by

τ (s) = θ̇(s) =

(
−r sin(s)
r cos(s)

)
. (A.2)

The corresponding tangent is a straight line defined by
p(s) and τ (s). From (A.2) follows τ̇ (s) = θ̈(s) 6= 0 ∀s ∈
[0, 2π], the tangential vector defined as a function of the
curve parameter s is never constant. A transition from one
quadrant to the next yields either the change of the sign of
the x or the y component (Fig. 3(a)). This is summarized
in Table A.1.
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