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Abstract: The use of soft robotics offers opportunities which cannot be achieved with
conventional rigid robots, including adaptive interactions with humans (Kim et al. (2013)). This
article presents the state estimation and tracking control for a soft robotic hand with 12 degrees
of freedom (DOF). In the work, we achieve orientation estimation of phalanges and palm using
a Multiplicative Extended Kalman-Filter (MEKF) yielding an average mean absolute error of
less than 3.5°. Additionally, we use the estimated orientations for a tracking control for the
finger poses. Experiments show that the estimated control variable can follow a sine trajectory
as well as small precise step trajectories with an estimated control error of less than 3° which
we consider sufficient to precisely target objects or copy gestures in real-time.
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1. INTRODUCTION

Research in the field of soft robotics has increased vastly
in the last decade. Laschi et al. (2016) identify soft robots
as a gateway towards more advanced or more efficient
robot abilities that were not possible before with rigid
robots. They name numerous benefits for the compliance
of soft robots, e.g. their conformance to surfaces or objects,
physical robustness and human safe operation at poten-
tially low cost. The soft robot used for this article has
been inspired by one of nature’s most elaborate tools: the
human hand. The Festo Bionic Learning Network recently
introduced the BionicSoftHand, a pneumatically actuated
hand with 12 DOF. This soft robotic hand with mounted
sensor units is pictured in Figure 1. The BionicSoftHand
was built with the goal of mimicking the human hand’s
grasping abilities. Potential applications are human robot
interaction or remote control manufacturing using gesture
imitation. This work focuses on tracking control to obtain
precise finger movement and disturbance compensation.
State reconstruction requires a state estimation algorithm,
in this case, using Inertial Measurement Units (IMUs) and
magnetometers.

1.1 State of the art

State Estimation using IMUs and Magnetometers  The
state estimation presented in this work bases on the work
of Kok et al. (2017). Where Kok et al. (2017) describe the
algorithm and probabilistic models for state estimation
using inertial sensors and magnetometers, they do not
apply state estimation for multiple sensor units at one
timestep, or even finger poses, and thus their work differs
from our work.

In the following, we show work on state estimation for
fingers using IMUs and magnetometers which is mostly
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Fig. 1. (a) Upper part of the BionicSoftHand with sensor
units on fingers and palm, (b) placement of the body
frame on the sensor unit and the stationary navigation
frame, (c) body frames and sensor units on the hand.

located in the field of medicine and biology, with applica-
tions in motion analysis of human hands or gesture recog-
nition. A big part of solutions are wearables as described
in Hammond et al. (2014). Due to its low computational
complexity, the Madgwick algorithm by Madgwick et al.
(2011) is implemented by Lin et al. (2017), Lin et al. (2018)
and Valtin et al. (2018) for finger pose estimation with
IMUs and magnetometers. An Extended Kalman Filter
(EKF) using IMU and magnetometer data for human
finger pose estimation is implemented in Kortier et al.
(2014) and Hsiao et al. (2015). Kortier et al. (2014) extend
a multiplicative EKF (MEKF) by a plausibility check of
sensor data and by the inclusion of kinematic constraints
caused by the morphology of the hand as artificial mea-
surements. Kaczmarek and Tomczynski (2016) estimate
the pose of a robot finger using a model which accounts
kinematic constraints of joints. In experiments they com-
pare estimates of Madgwick algorithm to EKF estimates.
They state that EKF estimates resulted in lower errors,
especially for movements faster than 30°/s.
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Control of Soft Robots In general the control of soft
robots and especially soft continuum manipulators is still
an open topic as stated in Rus and Tolley (2015) who
give an overview of design, fabrication, modeling and
control of different soft robot structures. According to
George Thuruthel et al. (2018) model-based static con-
trollers are currently the most widely used strategy for
control of continuum/soft robots, where the majority of
works rely on the constant curvature (CC) approximation.
They also describe that for multi-section manipulators,
each constant curvature section can be stitched together
to provide the piecewise CC (PCC) model, as used e.g.
in Marchese and Rus (2016) for the control of a soft
spatial fluidic elastomer manipulator. Falkenhahn (2017)
presents model-based tracking control of actor coordi-
nates for continuum manipulators. A numerically exact
approach for soft robotic modeling and control bases on
finite element analysis (FEM) as presented by Coevoet
et al. (2019), and Katzschmann et al. (2019) who design a
dynamically closed-loop controlled soft robotic arm using
model order reduction. Della Santina et al. (2018) describe
a dynamic formulation of a soft robotic structure similar to
fingers under the assumption that the piecewise constant-
curvature approach is applicable. Deimel and Brock (2016)
present an underactuated compliant robot hand, where
fingers are realized as pneumatic continuum-actuators be-
ing modeled using a CC approach. They implement feed
forward control for finger poses but do not measurefin-
ger orientations. For more information on recent control
strategies for soft robotic manipulators, we refer to the
survey of George Thuruthel et al. (2018) who present
work on model-based, as well as model-free, and hybrid
controllers.

1.2 Contribution and Road Map

The fingers in this work do not have firm joints but a soft
structure. We do renounce a classical kinetic derivation
of model equations. Our work differs from presented work
on control of soft robots in that we do not derive model
equations, and do not use any of the presented concepts.
We show in experiments, that our straightforward control
approach leads to results which we consider sufficient
to precisely target objects and copy gestures in real-
time. The presented work on state estimation differs in
the application for human hands: with one exception, all
introduced literature uses data gloves or systems mounted
directly on the hands, often human bone structure is
directly used for computation. Further, estimated poses
from stated work are not used for control but e.g. for
motion analysis.

The contribution of this work is the implementation and
development of a tracking control including state estima-
tion for a novel humanoid soft robotic hand. To the best
knowledge of the authors, this has not been done before.
Previous approaches either exclusively focused on state
estimation or implemented feed forward control.

We present the problem formulation, hardware and theo-
retical background in Section 2. Section 3 deals with our
solution approach, including probabilistic models, state
estimation and tracking control. In Section 4 we show
and discuss experimental results, and Section 5 gives a
conclusion.

2. PROBLEM FORMULATION
2.1 Hardware with focus on sensor units

The BionicSoftHand, introduced by Festo AG & Co. KG
(2019), is a pneumatically actuated hand with 12 DOF.
Its fingers consist of elastomer bellows, which are enclosed
in a special 3D knitted textile cover.

Increasing air pressure inside the elastomer bellows leads
to finger bending, decreasing pressure leads to a stretched
position. Each finger features two DOF, realized by two
air chambers in the bellows. Thumb and index finger each
feature a third DOF, implemented as swivel module, which
allows them to perform lateral movements. As the fingers’
motions strongly remind of human phalanges’ movements,
we use the term lower and upper phalanx to describe the
fingers’ air chambers. The pressure control is performed
by a digitally controlled valve terminal.

The BionicSoftHand is equipped with a total of 11 Bosch
BNOO055 sensor units. Each of them consists of an IMU
with accelerometer and gyroscope and a magnetometer.
One sensor unit is placed on the palm, the other units
are placed on the phalanges. The Bosch BNOO055 sensor
units integrate a proprietary sensor fusion algorithm for
orientation estimation. We compare the results of our
approach to the Bosch BNOO055 estimates. Measurements
at time step t consist for each sensor unit on phalanx s
of measurements from accelerometer Ya,t,5, Magnetometer

Ym,t,s and gyroscope Y +,s-
2.2 Theoretical Foundation

For the description of coordinate frames, we use the
convention presented in (Kok et al., 2017, p. 9 f.) and
define a body coordinate frame b as well as a stationary
navigation coordinate frame n. A superscript describes
which frame a vector is represented. Vectors can be rotated
between coordinate frames using quaternions or rotation
matrices, which we indicate by a double superscript, e.g.
v* = R"™vP (Kok et al., 2017, p. 10). The b-frame is
placed on the moving sensor unit, where we define one b-
frame for each sensor unit as illustrated in Figure 1(b). We
define the b-frames used for orientation estimation of the
fingers as in Figure 1(c) and describe sensor measurements
in the respective b-frame. The n-frame is a local geographic
coordinate frame, stationary and defined relative to the
earth, with the z-axis pointing north. For orientation
estimation, the orientation of each b-frame with respect
to the n-frame R is computed.

Orientation in this work is parametrized by rotation ma-
trices R or quaternions q. The used notation follows the
convention introduced in Kok et al. (2017). We employ a
method described in (Kok et al., 2017, p. 21) to represent
orientation for estimation algorithms. An orientation q?b

is described as linearization point (unit quaternion gi* or

rotation matrix R}P) and orientation deviation (rotation
vector 1), where the subscript ¢ describes the time step.
Thus with quaternion multiplication ® and the quaternion
representation 1 of n we have

nb __ ifr’l ~nb __ i? ~nb 1
g =exp (5 ) Oq7 =expg | 5 )07 (1)
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where |
] cos |12
= . 2
exp (1) <77I23mf,7|2> ) (2)
and where we use the mapping

g=exp,(n), exp,:R®— {qeR* |ql=1}. (3)

For the derivation of equation (1) we refer to (Kok et al.,
2017, p. 19).

2.3 Problem Formulation

The goal of this work is the implementation of an estima-
tion and tracking control for fingers of a pneumatically
actuated robot hand with 12 DOF. Each DOF d is a
rotation of one phalanx i around the z-axis for the third
DOF on index finger and thumb or the y-axis for all
other DOF of the reference coordinate frame. Elements
gt,q of the controlled variable q; describe the rotation of
phalanges with respect to palm for lower phalanges or
with respect to adjacent phalanges for upper phalanges
around the respective axis for each DOF d. The problem
formulation in this work can be split into two problems:

Problem 1. (State Estimation). The estimated controlled
variable g;4 should be determined from given measure-
ments Ya +,s, Ym,t,s> Yo t,s, 50 that ideally at each time step
t for each sensor unit s and each DOF d we have ¢; ¢ = g 4.

Problem 2. (Tracking Control). Using the reconstructed
state @i q, the controlled variable g should follow the
given reference variable w; g, so that ideally at each time
step ¢ for each DOF d we have q; ¢ = w; 4. Thus our goal is
to minimize the control error e; 4, where e; g = Wy q—qt,q4-

3. SOLUTION APPROACH
3.1 Probabilistic Models

We show the state model used for orientation estimation
for all sensor units k = 1, ..., K on a single finger including
palm &k = 1. We assume that the sensors do not travel
over significant distances compared to the size of the
earth. Additionally, earth rotation and linear acceleration
of the sensor units are assumed to be negligibly small. We
assume that time steps ¢ in which states are defined, are
in accordance with the sensor’s sampling times. Further,
we assume that the magnetometer only measures the
earth’s magnetic field and that constant offsets in sensor
measurements are eliminated during calibration. Then the
state model is defined as

n n T
@Y1, = g7 © exp, (Q(yw,t,k - m,t)) ;o (4a)

Yoo = —RILG" + Tat, (4b)
Y, = REM® + Ty, (4c)
with gravitational acceleration vector g = [0,0,9.81]"
and earth magnetic field m® = [cosd,0,sind]" where &

describes the dip angle. Equations (4b) to (4c) describe
the measurement models with Yy, ¢ ks Ya,t ks Ym 1.6 € R3¥
and vy, ¢ ~ N(0, ), 70t ~ N(0, 2,), Pyt ~ N (0, ).
In this context X, = 0'3)1—3, Y = 0121113, 3, = agIg7
represent measurement noise as well as model uncertain-
ties, where Z3 is the identity matrix. For the derivation

of equations (4a), (4b), (4c) we refer to (Kok et al., 2017,
p. 30 f.).

For initialization of q?ﬁc we implement the QUEST algo-
rithm introduced in (Kok et al., 2017, p. 27 f.).

3.2 State estimation

For orientation estimation with given sensors, we imple-
ment a MEKF, a subgroup of the EKF. We parametrize
orientation as orientation deviation from a linearization
point. The linearization point ' is defined as the last
step estimate. Deviation from that linearization point m}
constitutes the state vector in the MEKF'. As the deviation
from the linearization point is normally very small, it
can be parametrized as rotation vector without loss of
information as no singularities occur. Thus the state to
estimate one sensor unit’s orientation has 3 dimensions
instead of 4 dimensions with quaternion representation,
leading to less computational costs. We use the MEKF
algorithm introduced in (Kok et al., 2017, p. 39 ff.).

State dynamics of n" are given with steps size T by
77?+1 = ft(n;flv Yu,ty Tw,t) -

b T
2log (equ(n;,t) oY 0 equ(g(yw,t —Tut)) © qu[r‘l) .
(5)
We describe the steps of the MEKF algorithm as follows.
In the Time Update step, we use gyroscope measurements
to update the linearization point and covariance matrix P.
During the Measurement Update, the state and covariance
matrix are updated using accelerometer and magnetome-
ter measurements. In the Relinearization step, we update
the linearization point ' and reset the state n} .

Filter Design ~ We implement one MEKF per fin-
ger. Thus, in total, for orientation estimation on the
BionicSoftHand we use 5 MEKF. One MEKF estimates
the orientation of palm h, lower f; and upper phalanx fy
with respect to the n-frame for one finger f, g"*", ¢~ fr,

~nbf: g
g,

Plausibility Check  Measurement values are checked for
plausibility before being used for state estimation, adapted

from Kortier et al. (2014). For each sensor unit s we
consider the following criteria:

(1) Calibration status of respective measurement

of angular velocity norm

Deviation of accelerometer measurements’ norm on
one phalanx to norm on adjacent phalanx on same
finger

(2) Deviation of magnetometer measurements’ norm at
time step ¢ from norm at time step ¢t = 1
(3) Spikes in gyroscope measurements
(4) Presence of linear acceleration, judged by observation
)

(5

The accepted measurements are appended to the measure-
ment vector y;. In case no measurement is accepted in
this step, the prediction is not corrected. For gyroscope
measurements used in the prediction step applies the fol-
lowing: If the measurement on one phalanx is rejected, but
the measurement on the adjacent phalanx accepted, we
use this adjacent measurement for both sensors. If both
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phalanges’ measurements are rejected, we artificially set
the values to ¥, .t = [0,0,0] .

3.8 Tracking Control

The control of the BionicSoftHand is realized in a cascade
structure. This structure enables a detached design of the
two components, the underlying pressure control and the
overlying position tracking control. This work focuses on
position tracking control, where positions of phalanges
should follow given setpoint trajectories.

Setpoint Specification  As setpoint for each DOF d at
each time step ¢ a target angle is specified. We transform
angles to quaternions. Transformed setpoint values enter
the control loop as reference variable wy.

System Characteristics The BionicSoftHand fingers have
a soft structure and low mass. Fingers do not have strict
joints. Movement is realized by modifying air pressure in
the bellow structures. On the upper thumb phalanx, no
sensor unit is mounted due to hardware reasons. Thus we
cannot conclude on its orientation. This means that the
state describing the rotation of the upper thumb phalanx
is not observable. For this reason, no feedback control
is possible for the position of the upper thumb phalanx.
Instead, we use an empirically fitted pressure-angle-curve
for feed forward control.

Design of Tracking Controller  For tracking control we
use a decentralized control concept. We assume that the
DOF are decoupled. The plant consists of the underlying
pressure control and of fingers equipped with sensor units.
A disturbance z; acts on the plant, thus the controlled

variable q: = [q:1, Q1.2 - - - ,qt,u]T depends on the control
signal u; and the disturbance z;. As control signal u;, at
each time step t a pressure vector p; with in total 12 values
is returned to the pressure controller, u; = p;. From the
estimated controlled variable §; and the specified reference
variable w; the control error e; can be computed at each
time step.

We realize the tracking control as a 2-DOF control struc-
ture. Thus, the control signal u; consists of a signal de-
scribing feed forward control wy; and a signal describing
feedback control upg;. Both parts are designed indepen-
dently. The feed forward control is chosen to trace the
controlled variable as fast as possible to the reference
variable. The feed forward control improves performance
by using the reference signals. For this, we use an angle-
pressure-curve, that maps a pressure value to each angle
value. We generate this angle-pressure-curve by fitting
experimental values. We implement the feedback control
as PID controller and determine values for P-, D- and I-
parameters experimentally. The system’s stability thresh-
old can be determined experimentally. This is feasible, as
it is possible to run the process at the stability threshold
for a short time period. To guarantee the adherence to
control variable restriction, we include a saturation of
control signals. Additionally, we implement anti-windup,
turning off the integral part when saturation is reached.

Fig. 2. Different placements of the BionicSoftHand.

4. RESULTS AND DISCUSSION
4.1 State estimation

To test the implemented EKF for orientation estimation
of phalanges, we run three test rows with different se-
tups. One run with a certain setup is denoted experiment.
To survey estimation results, we use an optical reference
system: three Point Grey cameras of type BFLY-PGE-
13E4M-CS are mounted on a frame as illustrated in Fig-
ure 2. Infrared emitters are attached to sensor units on the
BionicSoftHand. We compute the deviation of orientation
estimates to orientations measured by infrared emitters.
Furthermore, we compare the estimation deviations from
the implemented EKF algorithm to the estimation devi-
ations from the BNOO055 internal orientation estimation
algorithm. In the following, experiment results from the
implemented EKF' algorithm are denoted by EKF, results
from the BNOO055 estimation algorithm are denoted by
BNO. We run all experiments with fully calibrated sensors.
In this article, we exemplary examine the Rotation RPPP™1
of the lower ring finger phalanx r; w.r.t. palm h with
coordinate frames br; and bh respectively.

In Test Row 1 we test the EKF without extensions, i.e.
no plausibility check to examine the basic functionality
of the implemented EKF. We run tests of the algorithm
in the three different placements of the BionicSoftHand
illustrated in Figure 2. Experiment 1.1 is run in placement
1, experiment 1.2 in placement 2 and 1.3 in placement
3. We consider different placements, as the EKF should
deliver reasonable results for all placements even though
the accelerometer can not measure rotation around the
axis pointing to the earth’s center. Each experiment is
run for 70 seconds. Additionally, we present estimation
errors for a longer time period to monitor drift of estimates
with time. Figure 3 shows the mean absolute error (MAE)
of EKF and BNO estimate in degree over a time period
of 70 (a) and 500 (b) seconds for hand placement 1.
The periodic small spikes are caused by the algorithm
of the reference system. Figure 4 shows the trajectories
from EKF and BNO estimates as well as measurements
from the reference system in quaternion representation
corresponding to results from figure 3(a).

Graphs for experiments 1.2 and 1.3 do not considerably
differ from the graph shown in Figure 3 and are thus
omitted. Table 1 summarizes results for Test Row 1 in
form of mean values of MAE per experiment for EKF and
BNO. Note that in each experiment the mean MAE EKF
are smaller than the mean MAE BNO.

In Test Row 2 the focus lies on the implemented exten-
sion of plausibility check as well as the repeatability of
experiment results. Experiments are conducted in hand
placement 1 and repeated five times. As graphs do not dif-
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ments (REF) for experiment 1.1 (70 s).

Table 1. Summary of results for Test Row 1, all 70s.

Experiment 1.1 1.2 1.3 Mean
Mean MAE EKF [deg] 3.610 2.168 3.453  3.077
Mean MAE BNO [deg] 5.102 2.553 3.802 3.819

fer significantly from the graph shown in Figure 3, figures
are omitted. Results for Test Row 2 are summarized with
execution time in Table 2. Mean MAE for EKF for Test
Row 2 is lower than mean MAE for the same placement
of hand in Test Row 1 (experiment 1.1).

Table 2. Summary of results for Test Row 2.

Experiment 2.1 2.2 2.3 2.4 2.5 Mean
Time 70s 70s 70s 70s 500 s

Mean MAE EKF [deg] 3.151 3.970 3.812 2.586 3.734 3.451
Mean MAE BNO [deg] 3.912 3.888 3.526 4.030 3.764 3.824

Discussion  From Test Row 1 we conclude that the EKF
version without extensions gives reasonable estimates for
all hand placements. In Figure 3 (bottom) it can be ob-
served that EKF estimates do not drift over time, contrary
to BNO estimates. From experiment 1.1 we conclude, that
the EKF can correct initially wrong estimates over time
as the estimation error decreases in the first seconds. Test
Row 2 shows a lower mean EKF MAE than Test Row
1 for the same hand placement. This indicates that the
plausibility check improves orientation estimation. In sum-
mary, we conclude that the implemented EKF algorithm
reaches lower errors for phalanges’ orientation estimation
than the BNO internal orientation estimation algorithm.
The plausibility check extension reduces estimation errors.
The mean MAE EKF is below 3.5°.
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Fig. 5. Setpoint and estimated actual trajectories (top)
and respective control error (bottom).
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Fig. 6. Setpoint and estimated actual trajectories at ex-
ternal disturbance with (a) constant setpoint and
(b) sine function as reference input. The disturbance
period is marked on the respective x-axis.

4.2 Tracking Control

We show exemplary results of phalanx r; for representa-
tive setpoint trajectories and estimated actual trajectories
and the control error in Figure 5. In Figure 5(a) and
Figure 5(b) we show that the estimated control signal
follows the setpoint variable for small, precise movements.
In Figure 5(c) we define a step as setpoint trajectory. After
overshoot, the control error approaches zero. In Figure 6
we illustrate the disturbance response in two examples.
To cause disturbance, we manually moved and blocked
the finger for a certain period. On the upper graphs in
Figure 6, we plot the setpoint trajectory and estimated
actual trajectory over time and mark the disturbance. In
the bottom graphs, we show the control error. We observe
that after an overshoot period this error approaches zero.

Discussion  From results in Figure 5 we conclude that
the command input response is sufficiently well for the
application of the BionicSoftHand. The estimated control
variable can follow a sine trajectory as well as small
precise step trajectories with an estimated control error
of less than 3°. From the results shown in Figure 6, we
conclude that the 2-DOF controller reacts sufficiently well
to disturbances. We note that this is not only caused by the
implemented controller but also by the material stiffness
of the fingers.
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5. CONCLUSION AND FUTURE WORK

In this work, we realized a tracking control and position
estimation for the position of fingers on a soft robotic hand
with 12 DOF'. The state estimation was implemented using
one MEKF per finger. Additionally, we implemented a
plausibility check for sensor measurements which rejects
erroneous measurement values. The MEKF can estimate
the phalanges’ orientation with a mean absolute error less
than 3.5° for different placements of the hand and for
measurements over different time periods. We realized the
tracking control using a 2-DOF structure and a decentral-
ized control concept. As estimated actual control value
we used the estimated orientation of the phalanges. For
feed forward control, we experimentally fitted an angle-
pressure-curve. We demonstrated the functionality of the
tracking controller. The tracking control can be used to
precisely target objects or to copy gestures in real-time.

5.1 Future Work

A possible task to build on this work is the combination of
the implemented feedback position tracking control with
a feedback force control using a hybrid control concept.
In this context, the tactile force sensors, integrated in the
BionicSoftHand could be used to detect contact force. At
the occurrence of contact force, switching from position
to force feedback control would be possible. This could
help to not only guarantee the precise targeting of ob-
jects but also facilitate the gripping of objects. Because
of the hand’s soft structure, it is possible to grip sensi-
tive objects, e.g. vegetables, of different shapes. In this
case, the BionicSoftHand could be used in an industrial
environment. When combining the BionicSoftHand with a
collaborative robot arm, it might also be possible to use
the BionicSoftHand in a collaborative work environment
because of it’s soft, compliant structure.
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