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Abstract: In this paper we focus on estimation for nonlinear plants that can be rewritten under
the form of quasi-linear parameter-varying systems with bounded unknown parameters. Moving-
horizon estimators are proposed to estimate the state of such systems according to two different
formulations, i.e., “optimistic” and “pessimistic.” In the former case, we perform estimation
by minimizing the least-squares moving-horizon cost w.r.t. both state variables and parameters
simultaneously. In the latter, we minimize such a cost w.r.t. the state variables after picking
up the maximum w.r.t. the parameters. Under suitable assumptions, the stability analysis of
the estimation is proved in both cases. A simple numerical example is provided to compare the
proposed approaches.
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1. INTRODUCTION

Linear parameter-varying (LPV) systems have received a
special attention from the control community in recent
times. Such an interest is motivated by the fact that
a linearized model may fail in describing the nonlinear
behavior of the underlying real system. A reasonable com-
promise between complexity and precision can be reached
by resorting to an LPV approximation by preserving the
linear structure of the state space and using a scheduling
parameter vector to account for the nonlinearity in plant.
In this paper, we investigate the possibility of apply-
ing moving-horizon estimation (MHE) to nonlinear plants
rewritten under the form of quasi-LPV discrete-time sys-
tems with unknown parameters by focusing on two differ-
ent formulations, which will be referred to as “optimistic”
and “pessimistic” MHE. As shown later in the paper,
the considered class of systems encompasses more general
families of plants, namely systems with parameter uncer-
tainties, Takagi-Sugeno systems, systems with Lipschitz
nonlinearities, LPV systems with known parameters, etc.
For instance, the class of quasi-LPV systems investigated
in this paper may be obtained by exact transformation of
a nonlinear system or by applying the differential variant
of the mean value theorem. For such reasons, the proposed
MHE strategies are valid for a large class of nonlinear
systems.

MHE is pretty popular for its excellent performance in
terms of precision and especially when one has to estimate
the state of a plant subject to uncertainties and/or non-
linearities. The classical approaches based on the Kalman
filter may undergo performance degradation due to poor
modeling and insufficient information on the statistics of

the noises affecting the dynamic and measurement equa-
tions [Jazwinski, 1970, Gelb, 1974, Anderson and Moore,
1979]. First ideas on MHE have been proposed for linear
estimation [Rao et al., 2001, Alessandri et al., 2003]. Next
developments of MHE have regarded nonlinear systems
[Rao et al., 2003, Alessandri et al., 2008, 2011]. Later on,
MHE has been extended to switching systems [Ferrari-
Trecate et al., 2002, Alessandri et al., 2005b, Guo and
Huang, 2013]. Uncertainties have been explicitly consid-
ered in several works [Alessandri et al., 2012, Fagiano
and Novara, 2013, Alessandri and Awawdeh, 2016, Wan
et al., 2016]. Distribution and decentralization have been
recently investigated in Farina et al. [2010b,a], Haber and
Verhaegen [2013], Schneider et al. [2015].

The combination of the MHE and LPV paradigms has
been treated in Xue et al. [2012], where estimation is
performed by using a moving horizon strategy and taking
into account the loss of information within a stochas-
tic framework, i.e., regarding the probabilities of input
and output packet dropouts as time-varying parameters.
Similarly, packet dropouts and quantization are dealt all
together in Liu et al. [2013] by using MHE.

As compared with the approaches reported in the litera-
ture on observers for LPV systems, MHE requires to ex-
plicitly include the unknown parameters in the estimation
criterion. In this respect, observers and filters for LPV sys-
tems are usually constructed by treating such parameters
as polytopic uncertainties [Chebotarev et al., 2015, Wang
et al., 2015, Krebs et al., 2018, Marx et al., 2019, Ellero
et al., 2019] and using linear matrix inequalities (LMIs)
[Boyd et al., 1994] for the purpose of design to ensure the
stability of the estimation error. In this paper, we regard
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such parameters as other state variables or by consider-
ing their effect separately in the worst case. In practice,
the two formulations correspond to either minimizing the
least-squares MHE cost w.r.t. both state variables and
parameters simultaneously or minimizing the worst-case
least-squares MHE cost w.r.t. the state variables (i.e., after
picking up the maximum w.r.t. the parameters). Such for-
mulations based on “optimistic” and “pessimistic” point
of view will be studied for what concerns the stability of
the estimation error and compared through simulations.

The paper is organized as follows. The problems we will
address are formulated in Section 2. The stability of the
estimation error for the proposed approaches is analyzed
in Section 3. Simulation results are reported in Section 4.
Finally, conclusions and prospect of future work are given
in Section 5.

Given a generic matrix M , as norm of M we rely on

|M | :=
(
λmax(M>M)

)1/2
. For a real vector v, |v| :=(v>v)1/2

denotes its Euclidean norm. Given two real vectors x
and y, let us define (x, y) :=

[
x>, y>

]>
. Given the vectors

vi, vi+1, . . . , vj for i < j, we define vji := (vi, vi+1, . . . , vj).
Finally, let us denote by en(i) a vector of dimension n with
all zeros except a 1 in the ith position.

2. MHE FOR QUASI−LPV SYSTEMS

2.1 Model description

Consider the quasi–LPV system described by the following
set of equations:

xt+1 = A (p(xt)) xt +B (p(xt)) ut + wt (1a)

yt = C (p(xt)) xt + vt (1b)

where t = 0, 1, . . . is the time instant, xt ∈ Rn is the state
vector, ut ∈ Rq is the control vector, wt ∈ Rn is the system
noise vector, yt ∈ Rm is the vector of the measures, and
vt ∈ Rm is the measurement noise vector. The matrices
in (2) depends on a set of time-varying parameters that
in turn depend on xt with the mapping x 7→ p(x) ∈ Rr

unknown. However, we assume to know the image of such
a mapping, namely, the compact set P ⊂ Rr to which the
parameters belong (i.e., p(xt) ∈ P for all t = 0, 1, . . .).
Thus, in principle we may rely also on such information
for the purpose of estimation.

The systems given by (1) include many families of plants
and dynamic processes such as those briefly described
in the following to highlight the potential advantage as
compared with the estimation methods reported in the
literature for LPV systems.

Uncertain linear systems Linear systems with parameter
uncertainties can be viewed as a particular case of (1).
Such a family of systems is often encountered in the
literature because it leads to complicated stabilization
problems, as discussed in Zemouche et al. [2017]. The
proposed MHE approach enables to address such issues by
estimating simultaneously the uncertain parameters and
the state variables.

Multi-model systems The family of multi-model systems
under the Takagi-Sugeno fuzzy structure [Guerra et al.,
2015] is widely investigated in the literature, especially in

the research area of fault diagnosis [Ichalal et al., 2018].
Such systems can be regarded as beloging to a particular
class of plants that can be written under the form (1) with
bounded unknown parameters. Such unknown parameters,
in fuzzy systems, are called premise variables. Generally
speaking, when the premise variables are unmeasurable,
the estimation and stabilization problems become com-
plicated and from the LMI point of view, the resulting
conditions are very conservative. Using the proposed MHE
approach, such premise variables can be estimated and
then used for the purpose of stabilization.

Lipschitz nonlinear systems One of the major advan-
tages of handling the class of systems given by (1) is the
fact that such a class includes nonlinear Lipschitz systems
often studied in the context of nonlinear observer design.

2.2 Formulation of MHE problems

Depending on our trust on P, we may formulate either “op-
timistic” or “pessimistic” MHE problems by considering a
least-squares cost, where such a cost is taken in the best
case (by minimizing w.r.t. the parameters) or worst case
(by maximizing w.r.t. the parameters). In both cases, we
will study the stability of the estimation error, i.e., we will
prove the exponential boundedness in the presence of the
bounded system and measurement noises. For the sake of
notational simplicity, from now on we drop the dependence
on the control input as, instead of (1), we refer to

xt+1 = A (pt) xt + wt (2a)

yt = C (pt) xt + vt (2b)

where pt := p(xt). Based on the aforesaid, we will consider
the following problem at t = N,N + 1, . . . with given
x̄t−N |t ∈ Rn and µ ≥ 0.

We consider the problem of estimating xt according to
moving-horizon strategies that consist in deriving an es-
timate x̂t of xt at time t by using the information
given by P, the measures yt−N , . . . , yt, and the inputs
ut−N , . . . , ut−1. More specifically, in line with [Alessandri
et al., 2003, 2005a, 2008] we aim to estimate xt−N , . . . , xt
on the basis of such information and of a “prediction”
x̄t−N |t of the state xt−N at the beginning of the moving
window. We denote the estimates of xt−N , . . . , xt at time
t by x̂t−N |t, . . . , x̂t|t, respectively.

Problem 1. Find x̂tt−N |t ∈ Rn×(N+1) and p̂tt−N |t ∈ P
N+1

that minimize

J1
(
xtt−N , p

t
t−N

)
= µ

∣∣xt−N − x̄t−N |t ∣∣2
+

t∑
i=t−N

|yi − C(pi)xi|2 (3)

under the constraints

xi+1 = A(pi)xi , i = t−N, . . . , t− 1 . (4)

In practice, Problem 1 consists in finding x̂tt−N |t, p̂
t
t−N |t

such that

J1

(
x̂tt−N |t, p̂

t
t−N |t

)
≤ J1

(
xtt−N , p

t
t−N

)
for all xtt−N ∈ Rn×(N+1) and ptt−N ∈ PN+1 subject to (4).
As an alternative to Problem 1, a worst-case problem can
be formulated as follows.
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Problem 2. Find x̂tt−N |t ∈ Rn×(N+1) that minimizes

J2
(
xtt−N

)
= max

pt
t−N
∈PN+1

µ
∣∣xt−N − x̄t−N |t ∣∣2

+

t∑
i=t−N

|yi − C(pi)xi|2 (5)

under the constraints

xi+1 = A(pi)xi , i = t−N, . . . , t− 1 .

Section 3 will concern the investigation of exponentially
boundedness of the estimation error provided by Problem
1 and Problem 2.

3. STABILITY ANALYSIS OF THE MHE

First of all, we need some assumptions as follows.

Assumption 1. The mappings p 7→ A(p) ∈ Rn×n and
p 7→ C(p) ∈ Rm×n are continuous.

We suppose that all the trajectories of the system lie in a
compact set.

Assumption 2. There exists a compact set X ⊂ Rn such
that xt ∈ X for all t = 0, 1, . . ., and let rx := maxx∈X |x|.

Finally, the disturbances are assumed to be bounded.

Assumption 3. There exist rw, rv > 0 such that |wt| ≤ rw
and |vt| ≤ rv for all t = 0, 1, . . ..

Based on the aforesaid, first we deal with Problem 1,
which is solved at each t and hence we need to choose
the prediction x̄t−N |t. Likewise in Alessandri et al. [2003,
2005a, 2008, 2012], a possible choice is

x̄t−N+1|t+1 = A(p̂t−N |t) x̂t−N |t , t = N,N + 1, . . . (6)

with a given initial x̄0|N in (3) at time t = N .

To study the stability of the estimation error that results
from the solution of Problem 1 together with the predic-
tion update in (6), we have to account for the system
evolution over time and introduce some additional assump-
tions related to observability. Toward this end, note the
following:

ytt−N+1 = F
(
ptt−N

)
xt−N +H

(
ptt−N

)
wt−1

t−N
t = N,N + 1, . . . (7)

where

F
(
ptt−N

)
:=


C(pt−N )

C(pt−N+1)A(pt−N )
...

C(pt)

N∏
i=1

At−i



H
(
ptt−N

)
:=



0 . . . 0
C(pt−N+1) . . . 0

C(pt−N+2)A(pt−N+1) . . . 0
...

. . .
...

C(pt)

N−1∏
i=1

A(pt−i) . . . C(pt)


.

Concerning observability, we assume the following.

Assumption 4. The constant

δ := min
pt
t−N
∈PN+1

λmin

(
F
(
ptt−N

)>
F
(
ptt−N

))
(8)

is strictly positive.

Before stating the first theorem providing a solution to
Problem 1, we need to introduce the following definition.

Definition 1. A sequence of vector {vt} is said to be
exponentially bounded if there exist a ∈ (0, 1) and b > 0
such that

|vt| ≤ |v0|at + b, t = 0, 1, . . . . (9)

Now, we consider the stability of the estimation error given
by the solution of Problem 1.

Theorem 1. The estimation error et−N given by the solu-
tion of Problem 1 is exponentially bounded with

a = a1(µ) :=
36µ

3µ+ 2δ
(10)

b = b1(µ) :=
6
(
c+ µ∆2

Ar
2
x + µr2w

)
3µ+ 2δ

(11)

if µ is chosen such that a1(µ) < 1, where c > 0 and

∆A := max
p,q∈P

|A (p)−A (q)| . (12)

Proof 1. . For the sake of brevity, here we adopt the
simpler notations Ft−N :=F

(
ptt−N

)
, Ht−N :=H

(
ptt−N

)
,

F̂t−N :=F
(
p̂tt−N

)
, Ĥt−N :=H

(
p̂tt−N

)
, and x̂i := x̂i|t, p̂i := p̂i|t,

i = t−N, . . . , t.

Let us consider the optimal cost that results from the
solution of Problem 1, namely,

J1
(
x̂tt−N , p̂

t
t−N

)
= µ

∣∣ x̂t−N − x̄t−N |t ∣∣2
+
∣∣∣ytt−N+1 − F̂t−N x̂t−N

∣∣∣2 . (13)

The proof consists in deriving lower and upper bounds on
such a cost, which can be combined to bound the norm
on the estimation error. The derivations of such bounds is
only sketched for space limitation.

Following [Alessandri et al., 2008, 2012], after defining

∆F := max
pt
t−N

,qt
t−N
∈PN+1

∣∣∣F (ptt−N)− F (qtt−N) ∣∣∣ .
and

rH := max
pt
t−N
∈PN+1

∣∣∣H (ptt−N) ∣∣∣ ,
we obtain∣∣Ft−N xt−N − ytt−N+1

∣∣2 ≤ 2r2H(N + 1)2r2w + 2(N + 1)2r2v
and hence∣∣∣ytt−N+1 − F̂t−N x̂t−N

∣∣∣2 ≥ 1

3

∣∣∣F̂t−N (xt−N − x̂t−N )
∣∣∣2

−
∣∣∣(F̂t−N − Ft−N

)
xt−N

∣∣∣2 − ∣∣∣Ft−N xt−N − ytt−N+1

∣∣∣2
≥ δ

3
|xt−N − x̂t−N | − c1, (14)

where

c1 := ∆2
F r

2
x + 2r2H(N + 1)2r2w + 2(N + 1)2r2v .
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Thus, we obtain the lower bound

J1
(
x̂tt−N , p̂

t
t−N

)
≥ µ

2
|xt−N − x̂t−N |2 − µ|xt−N − x̄t−N |t|2

+
δ

3
|xt−N − x̂t−N | − c1 . (15)

Concerning the upper bound of the cost, we have

J1
(
x̂tt−N , p̂

t
t−N

)
≤ J1

(
xtt−N , p

t
t−N

)
=
∣∣ytt−N+1 − Ft−N xt−N

∣∣2 +
∣∣ytt−N+1 − Ft−N xt−N

∣∣2
+ µ |xt−N − x̄t−N |t|2

= µ |xt−N − x̄t−N |t|2 +
∣∣Ht−N wt−1

t−N + vtt−N
∣∣2

≤ µ |xt−N − x̄t−N |t|2 + 2
∣∣Ht−N wt−1

t−N
∣∣2 + 2

∣∣vtt−N ∣∣2
≤ µ |xt−N − x̄t−N |t|2 + c2, (16)

where
c2 := 2 r2H(N + 1)2r2w + 2(N + 1)2r2v .

Using (15) and (16), we have(
µ

2
+
δ

3

)
|xt−N − x̂t−N |2 ≤ 2µ |xt−N − x̄t−N |t|2

+ c1 + c2 (17)

and let us focus on the term |xt−N − x̂t−N | in the r.h.s. of
(17). It follows that

|xt−N − x̄t−N |t| = |A(pt−N−1)xt−N−1 + wt−N−1

−A(p̂t−N−1) x̂t−N−1|
= |(A(pt−N−1)−A(p̂t−N−1))xt−N−1

+A(p̂t−N−1) (xt−N−1 − x̂t−N−1)

+ wt−N−1|
≤ |(A(pt−N−1)−A(p̂t−N−1))xt−N−1|

+ |A(p̂t−N−1) (xt−N−1 − x̂t−N−1)|
+ |wt−N−1|

and with a little algebra, we get

|xt−N − x̄t−N |t|2 ≤ 3|(A(pt−N−1)−A(p̂t−N−1))xt−N−1|2

+ 3|A(p̂t−N−1) (xt−N−1 − x̂t−N−1)|2

+ 3|wt−N−1|2 .
Using the definition in (12) and rA := maxp∈P |A (p)|, the
previous inequality yields

|xt−N − x̄t−N |t|2 ≤ 3∆2
Ar

2
x + 3r2w

+ 3r2A|xt−N−1 − x̂t−N−1|2. (18)

If we substitute (18) in (17), we finally obtain

|xt−N − x̂t−N |2 ≤
36µ

3µ+ 2δ
|xt−N−1 − x̂t−N−1|2

+
6
(
c+ µ∆2

Ar
2
x + µr2w

)
3µ+ 2δ

(19)

where c := c1 + c2, which concludes the proof.

Now let us focus on the stability analysis of the estimation
error given by the solution of Problem 2.

Theorem 2. The estimation error et−N given by the solu-
tion of Problem 2 is exponentially bounded with the same
definitions of a2(µ) in (10) and b2(µ) in (11) if µ is chosen
such that a2(µ) < 1.

Proof 2. It is straightforward to follow the same steps of
the proof of Theorem 1 by using the cost function

J2(x̂tt−N |t) = J1

(
x̂tt−N |t, π̂

t
t−N |t

)

where π̂t
t−N |t ∈ P is the maximizer in the r.h.s. of (5)

and with related definitions such as Ft−N :=F
(
πt
t−N

)
,

Ht−N :=H
(
πt
t−N

)
, and so on.

Remark 1. As compared with alternative estimation meth-
ods for LPV systems, MHE is able to provide estimates of
both system states and unknown parameters, even when
such parameters affect the system matrices nonlinearly. In
fact, the matrices A and C in (2) may depend nonlinearly
on the parameter pt. Although owing to the boundedness
of the parameters, it is always possible to avoid such
nonlinearities by introducing a new extended parameter
vector, p̄t, with higher dimension and rewrite A and C
with linear dependence on p̄t, this would increase the size
of the new parameter p̄t. If such a parameter increases
significantly, it may happen also to lose the detectability
and stabilizability conditions when augmenting the size of
the unknown parameter vector as well as the infeasibility
of LMI conditions ensuring the stability of the estimation
error for the current methods reported in the literature.
Moreover, LMI-based techniques may require additional
conservative conditions to guarantee existence of an ob-
server. This is the case of adaptive observers with strong
equality constraints [Cho and Rajamani, 1997] or unknown
input observers with restrictive rank conditions based on
singular systems theory [Dai, 1989].

It is worth noting that the bounds of Theorems 1 and 2 are
different and conservative in general. Therefore, for a fair
evaluation of the effectiveness of the proposed approaches,
Section 4 will be focused on a simple simulation example.

4. SIMULATION RESULTS

Consider the discrete-time oscillator model presented in
[Turner, 2003, p. 107, (37)], i.e.,

xt+1 = A(p)xt
where xt ∈ R2 and

A(p) =

(√
1− p2 p

−p
√

1− p2

)
with p ∈ [0.5, 1] and having at disposal the measurements
of the first state variable, i.e., C = (1 0).

In each simulation run, the initial state and the system and
measurement noises have been generated with Gaussian
distributions centered at zero and covariances equal to
I, 0.01I, and 0.1. Each simulation run is made of 200
time steps. The unknown parameter p is initially randomly
generated in interval [0.5, 1] and is subject to an additive,
zero-mean Gaussian noise with variance 0.01, which is
lower or upper saturated in case it goes out of the interval
[0.5, 1].

We have solved Problem 1 by minimizing a cost func-
tion with µ = 1 via the general-purpose Matlab routine
fmincon. The solution of Problem 2 has been obtained
with fmincon that calls inside the fminbnd routine to
maximize. We will refer to the solution of Problem 1 as
optimistic MHE (OMHE) and to that of Problem 2 as
pessimistic MHE (PMHE). For both OMHE and PMHE,
the estimated parameters is taken constant over all the
moving horizon.
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wind. length RMSE
(x1)

RMSE
(x2)

RMSE
(x3)

comp.
time

N = 1 0.10774 0.18035 0.049345 0.010486
N = 2 0.10391 0.16046 0.037413 0.012381
N = 3 0.10131 0.13999 0.027378 0.012953
N = 4 0.09772 0.12650 0.023780 0.013960

Table 1. Medians of RMSEs and computa-
tional times of a single optimization round (in
s) for the OMHE with different window lengths

over 100 simulation runs.

wind. length RMSE
(x1)

RMSE
(x2)

RMSE
(x3)

comp.
time

N = 1 0.13120 0.50943 0.17122 0.08124
N = 2 0.20043 0.55501 0.17081 0.10850
N = 3 0.63928 0.70930 0.16873 0.11723
N = 4 0.83602 0.98305 0.16974 0.12239

Table 2. Medians of RMSEs and computa-
tional times of a single optimization round (in
s) for the PMHE with different window lengths

over 100 simulation runs.

The medians of RMSEs and computational times over
100 runs are summarized in Tables 1 and 2. The result
of a simulation run is depicted in Fig.s 1, 2, and 3. The
OMHE provides better performances not only in terms of
computational demand but also of precision. The RMSEs
given by the OMHE are lower and they become lower and
lower with an increasing window length N . By contrast,
the RMSEs of the PMHE degrades if N grows. The PMHE
provides an estimate of the time-varying parameter p that
corresponds to its “average” value, thus failing to follow
the variation of p (see Fig. 3).

0 20 40 60 80 100 120 140 160 180 200

time step

-4

-3

-2

-1

0

1

2

3

4
 x

1
 and its estimates

 x
1

 OMHE estim. of x
1

 PMHE estim. of x
1

Fig. 1. Plots of x1 and its OMHE and PMHE estimates
with MHE of length N = 2.

5. CONCLUSIONS

In this paper, we have presented a novel approach to
estimation for quasi-LPV system based on MHE. MHE is
accomplished by minimizing a least-squares cost function,
thus we may deal with the unknown parameters by either

0 20 40 60 80 100 120 140 160 180 200

time step

-4

-3

-2

-1

0

1

2

3

4
 x

2
 and its estimate

 x
2

 OMHE estim. of x
2

 PMHE estim. of x
2

Fig. 2. Plots of x2 and its OMHE and PMHE estimates
with MHE of length N = 2.
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0.75

0.8

0.85

0.9
 p and its estimate

 p
 OMHE estim. of p
 PMHE estim. of p

Fig. 3. Plots of p and its OMHE and PMHE estimates
with MHE of length N = 2.

regarding them as state variables (and hence minimizing
also w.r.t. them) or by considering them in the worst case,
i.e., by solving a min-max problem. We have referred to
the former as the “optimistic” one, while the latter is the
“pessimistic” one. The stability of the estimation error
given by the exponential boundedness is proved for both
of them. Simulation results have been provided that show
the effectiveness of the “optimistic” approach as compared
with the “pessimistic” one.

Since MHE enables to estimate the unknown parameters
belonging to a quasi-LPV structure for nonlinear systems,
a comparison with different other alternative estimation
methods is deserved, especially for what concerns the re-
laxation of the stability conditions. In the context of LMI-
based techniques, an LPV observer can be designed under
more or less conservative conditions to be evaluated. For
example, the state of Lipschitz systems may be estimated
by considering a constant-gain Luenberger observer, which
leads to an exponential number of LMIs to be solved
with the same gain. Such issues may be the subject of
future work. In addition, we will address the reduction
of the computational effort by using fast MHE techniques
[Alessandri and Gaggero, 2017]. Another direction of inves-
tigation may be the analysis of stochastic stability under
suitable assumptions on the statistics of the noises.
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