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Abstract: This article addresses the problem of extremum seeking of a continuous-time
dynamical system with a single input and a single output. First, a super-twisting-based gradient-
based optimization algorithm is proposed to compute the input that leads to the extremum
value of an unknown, convex objective function. Since the algorithm requires the input-output
gradient of the system’s response, a super-twisting based differentiator is proposed to compute
the gradient using the measured output and the controlled input. Feasibility of the extremum
seeking controller is demonstrated via closed-loop simulations over a microalgae production
photobioreactor.
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1. INTRODUCTION

Extremum Seeking Control (ESC) is a model-free, real-
time optimization tool applicable in situations where there
is a nonlinearity in the optimization problem and such
nonlinearity has a local minimum or maximum. The non-
linearity may be in the plant as a physical nonlinearity,
possibly manifesting itself through an equilibrium map; or
it may be in the control objective, via the cost functional
of an optimization problem (Ariyur and Krstic, 2003).

Classical ESC aims to find an optimum input for a
generally unknown objective function (or input-output
map) and uses a dither signal to probe the input-output
map so as to estimate an approximate gradient of this map
(Tan et al., 2013).

In this century, due to their robustness properties against
model uncertainties, sliding modes have been considered to
propose robust ESC algorithms. For example, Yu and Oz-
guner (2003) propose an extremum-seeking control scheme
enforced by a second order sliding mode control strat-
egy. Angulo (2015) proposes an extremum seeking con-
troller inspired in second order sliding modes to build an
optimization framework for uncertain dynamic systems
in which the variable to optimize is not measured and
needs to be estimated. Lara-Cisneros et al. (2015) present
an extremum-seeking control approach based on sliding
? This work is supported by University of Guanajuato via the
Institutional Project 358/2019.

modes to achieve the dynamic optimization of methane
outflow rate in anaerobic digestion processes. In turn, Var-
gas et al. (2015) propose a feedback controller for fed-batch
reactors that aims at regulating the substrate concentra-
tion at an optimum value, such that biomass production
is enhanced while by-product formation is not favored. A
virtual output is estimated using a bank of weighted super-
twisting observers to drive an output-feedback extremum-
seeking controller. Zeng et al. (2018) propose an extremum
seeking control with the sliding mode method for a mo-
tor driving system with dead zone nonlinearity. Another
interesting work is the article by Solis et al. (2019), in
which, the authors present a continuous-time optimization
method for an unknown convex function restricted to a dy-
namic plant with an available output including a stochastic
noise. In order to reject the undesirable uncertainties and
perturbations of the dynamic plant, the authors employ a
standard deterministic integral sliding mode control.

In this paper, a super-twisting-based ESC algorithm is
proposed to bypass the uncertainties in the input-output
map. The proposed strategy consists of a gradient-based
optimization algorithm coupled to a gradient estimator.
In this light, the paper is organized as follows: in Section
2 the problem is formulated. In Section 3 the proposed
super-twisting-based ESC algorithm is explained in detail,
by introducing first the gradient-based optimizer and
then the underpinning gradient estimator. In Section 4
the super-twisting-based ESC strategy is applied to a
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microalgae production photobioreactor and the results
are compared with the classical ESC. Finally, in Section
5 some conclusions regarding the proposed strategy are
presented.

2. PROBLEM FORMULATION

Let us consider a dynamic system described by the follow-
ing state space model

ẋ(t) = f(x, u)

y(t) = h(x, u)
(1)

where x ∈ Rn is the state vector, u ∈ R is a controlled
input and y ∈ R is the measured output.

In addition, let us consider an unknown function y = l(u),
with l : U ⊂ R → R, an unimodal function which maps
the input to the output in steady state, where U defines
the operating region. Thus, the optimization problem to
solve is stated as

max
u

l(u)

such that:

ẋ(t) = f(x, u)

y(t) = h(x, u).

(2)

We adopt the following consideration:

Assumption 1. The function l(u) is twice continuously dif-
ferentiable with respect to u and has an unique maximizer
u∗ in an open neighborhood N (Nocedal and Wright,
2000). Thus

∂l

∂u
(u∗) = 0,

∂2l

∂u2
(u∗) < 0.

The problem is then to propose an algorithm to find the
optimum controlled input u∗ in the neighborhood N , such
that the output y is maximized.

The optimization problem (2) can be solved by classical
extremum-seeking control (ESC), which can be summa-
rized as follows

u(t) = û(t) +Asin(ωt)

˙̂u(t) = kIξ(t)

ξ(t) = (y(t)− η(t))Asin(ωt)

η̇(t) = −ωhη(t) + ωhy(t) ,

(3)

where ξ is an approximation of the input-output map
gradient, û is the estimation of the optimum input, while
A, ω, ωh and kI are design parameters.

In this work a super-twisting-based ESC algorithm is pro-
posed to bypass the uncertainties in the input-output map.
First, information about the controlled input and mea-
sured output is used to estimate the gradient ∂y/∂u. Such
a gradient estimation is then used by a gradient-based
optimization algorithm to compute online the optimum
controlled input.

3. SUPER-TWISTING BASED ESC

In this section the super-twisting based ESC proposed is
developed in detail. We begin by presenting the gradient-

based optimization algorithm; then, the gradient estima-
tion algorithm is described.

3.1 Gradient-based optimization

In order to compute the input u that maximizes the output
y = l(u), beginning at u(0), gradient-based optimization
algorithms generate a sequence of iterates u(k), for k =
0, 1, 2, . . ., that terminate when either no more progress
can be made or when it seems that a solution value has
been approximated with sufficient accuracy. In deciding
how to move from one iterate u(k) to the next, the
algorithm avails of the gradient ∂l/∂u. It is the direction
along which the objective function l(u) grows most rapidly.
In general, gradient-based optimization algorithms use this
information to find a new iterate u(k + 1) which yields a
larger value of y than the one produced by u(k) (Nocedal
and Wright, 2000).

Thus, the new iterate u(k + 1) can be computed as

u(k + 1) = u(k) + αd
∂l

∂u
;αd > 0 , (4)

where αd is the distance to move along the gradient.

Let us define αd := α∆t, with ∆t := t(k + 1) − t(k). By
replacing it in (4) we have

u(k + 1) = u(k) + α∆t
∂l

∂u
or

∆u

∆t
= α

∂l

∂u
.

By applying the limit when ∆t → 0, the gradient-based
extremum-seeking algorithm is obtained

u̇(t) = α
∂l

∂u
;α > 0 . (5)

Let e(t) := l(u∗)− l(u(t)), which represents the difference
between the maximum output and the output at a time
t. Now, let us consider the following Lyapunov function
candidate

V (e) = e(t). (6)

Since l(u∗) ≥ l(u(t)) for any t, V (e) is positive definite.

On the other hand, V̇ (e) is given by

V̇ (e) = ė(t) = − ∂l
∂u
u̇(t) = −α

(
∂l

∂u

)2

≤ 0 .

Thus, the asymptotic stability of the error dynamics is
assured and therefore the output y(u(t)) asymptotically
approaches the maximum output y(u∗) (Zhang and Or-
donez, 2012).

Since the optimization algorithm (5) uses the gradient
∂l/∂u but l(u) is an unknown function, in real applica-
tions either an approximation or an estimation of such a
gradient must be considered.

In order to bypass the uncertainty related to the unknown
function l(u), let us consider not the gradient but the
sign of the gradient in the algorithm (5), which, indeed,
contains the direction information. A robust optimization
algorithm can then be proposed as

u̇(t) = α sign

(
∂l

∂u

)
;α > 0 . (7)
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with the sing function defined as

sign(σ) =

{
1 ; x > 0
−1 ; x < 0

and sign(0) ∈ [−1, 1] (Shtessel et al., 2014).

Taking into account the positive definite candidate Lya-
punov function (6), the derivative V̇ (e) is given by

V̇ (e) = ė(t) = − ∂l
∂u
u̇(t) = −α ∂l

∂u
sign

(
∂l

∂u

)
V̇ (e) = −α

∣∣∣∣ ∂l∂u
∣∣∣∣ ≤ 0 .

Again, the asymptotic stability of the error dynamics is
assured and therefore the output y(u(t)) asymptotically
approaches the maximum output y(u∗) (Zhang and Or-
donez, 2012).

Equation (7) induces a first order sliding mode, with the
gradient σ = ∂l/∂u as the sliding variable. Furthermore,
it has the form of the integral part of the super-twisting
algorithm with sliding variable defined as σ = −∂l/∂u. By
accounting for these observations, the following theorem
describes our strategy, which avails of a second order
sliding mode.

Theorem 1. Let us consider the super-twisting algorithm

u(t) = −λ|σ|1/2sign(σ) + u1(t) ,

u̇1(t) = −α sign(σ) ,
(8)

where λ > 0 and α > 0 are constant gains and σ is a
sliding variable (Shtessel et al., 2014).

By considering σ = −∂l/∂u, the algorithm (8) asymptoti-
cally maximize the objective function l(u).

Proof. By taking into account the positive definite can-
didate Lyapunov function (6), the derivative V̇ (e) is given
by

V̇ (e) = ė(t) = − ∂l
∂u
u̇(t),

where u̇(t) is given by

u̇(t) = λ sign

(
∂l

∂u

)[
1

2

∣∣∣∣ ∂l∂u
∣∣∣∣−1/2 d

dt

∣∣∣∣ ∂l∂u
∣∣∣∣
]

+ u̇1(t)

u̇(t) = λ sign

(
∂l

∂u

)[
1

2

∣∣∣∣ ∂l∂u
∣∣∣∣−1/2 sign

(
∂l

∂u

)
∂2l

∂u2
u̇(t)

]

+ α sign

(
∂l

∂u

)
u̇(t) =

λ

2
∣∣ ∂l
∂u

∣∣1/2 ∂2l∂u2
u̇(t) + α sign

(
∂l

∂u

)
u̇(t) =

α

1− λ

2| ∂l
∂u |1/2

∂2l
∂u2

sign

(
∂l

∂u

)
.

According to the Taylor’s theorem, the function l(u) can
be approximated as

l(u∗ + h) = l(u∗) + h
∂l

∂u
(u∗) +

h2

2

∂l2

∂u2
(u∗) + . . .

+
hn−1

(n− 1)!

∂ln−1

∂un−1
(u∗) +

hn

n!

∂ln

∂un
(u∗ + θ h)

for θ ∈ (0, 1).

If n = 2, due to Assumption 1,

l(u∗ + h)− l(u∗) =
h2

2

∂l2

∂u2
(u∗ + θ h) < 0 ,

and therefore
∂l2

∂u2
(u) < 0

in a neighborhood N of u∗.

Hence

u̇(t) = α′ sign

(
∂l

∂u

)
,

where

α′ =
α

1− λ

2| ∂l
∂u |1/2

∂2l
∂u2

> 0 .

Thus

V̇ (e) = −α′ ∂l
∂u

sign

(
∂l

∂u

)
= −α′

∣∣∣∣ ∂l∂u
∣∣∣∣ ≤ 0 .

The asymptotic stability of e(t) is then assured and
therefore, the output y(u(t)) asymptotically approaches
the maximum output y(u∗). 2

Please notice that the framework of this theorem is exactly
the same as for the ESC, in the sense that is a model-free
approach applicable to a convex steady-state map. Thus,
when such control law is applied to the plant, the sliding
variable converges to the origin; that is σ → 0. In light of
Assumption 1, this implies the convergence to the extreme
value of l (u).

Remark 1. Note that the super-twisting algorithm in-
cludes a proportional action and an integral action. By
considering the sign of the gradient in both terms, the ro-
bustness of the optimization algorithm is enhanced. On the

other hand, the term |−∂l/∂u|1/2 in the proportional term
acts as an adaptive gain. Since the initial condition u(0) is
in a neighborhood of u∗, normally | − ∂l/∂u| < 1. Hence,

the term λ |−∂l/∂u|1/2 assures that u(t) will approach to
u∗ faster than u1(t).

Remark 2. Minimization problems can be solved by using
the gradient-based optimization algorithm (8). In such a
case, the sliding variable σ = ∂l/∂u must be considered.
The convergence proof is similar to the proof previously
presented.

In the following section, we provide an estimation of the
input-output gradient, via a signals differentiator based on
the super-twisting algorithm.

3.2 Gradient Estimation

In order to obtain an online input-output gradient estima-
tion, ∂y/∂u, we consider the parametric differentiation.
That is

∂y

∂u
=

dy/dt

du/dt
, (9)

provided the time-derivatives of y(t) and u(t) exist and
du(t)/dt 6= 0.
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Thus, for achieving an estimation of the gradient, we
may first obtain an online estimation of y(t)’s and u(t)’s
derivative.

To this end, let us define

θ :=

(
y
u

)
, (10)

with first time-derivative.

ω :=

(
ẏ
u̇

)
, (11)

The following theorem presents a system capable of es-
timating ω, which is adapted from (López-Caamal and
Moreno, 2019).

Theorem 2. Let
˙̂θ(t) = −k1φ1

(
θ̂ − θ

)
+ ω̂(t)

˙̂ω(t) = −k2φ2
(
θ̂ − θ

)
,

(12)

where θ̂ ( ω̂, resp.) denote the estimation of θ (ω ,
resp.). Furthermore, let us assume that ω̇ is element-wise

bounded; and let the functions φi (x) be

φ1 (x) =
(
η ||x||−p2 + β + γ ||x||q2

)
x, φ1 (0) := 0,

φ2 (x) =
(
η(1− p) ||x||−p2 + β + γ(1 + q) ||x||q2

)
φ1 (x) .

(13)

If the constants η, β, γ > 0,
1

2
≥ p > 0, and q > 0; and k1

and k2 are chosen such that the matrix

A =

(
−k1 1
−k2 0

)
(14)

is Hurwitz, the origin of the estimation error is finite-time
stable.

Proof. By letting x := θ̂ − θ and z := ω̂ − ω, the
differentiation error becomes

ẋ(t) =− k1φ1 (x) + z(t)

ż(t) =− k2φ2 (x)− ω̇(t).

In turn, the origin of differentiation error is finite-time
stable as studied via the following Lyapunov function

V =

(
φ1(x)

z

)>
[P⊗ I]

(
φ1(x)

z

)
,

whose time-derivative is

V̇ = −
(
φ1(x)

z

)>
[Q⊗ J(x)]

(
φ1(x)

z

)
.

Here the matrices P,Q ∈ R2×2 satisfy the Algebraic
Lyapunov Equation PA + A>P = −Q; given that A is
Hurwitz and by choosing a Q = Q> > 0, then P is
symmetric and positive definite. In turn, the matrix

J(x) :=∇xφ
1(x)

=
(
η ||x||−p2 + β + γ ||x||q2

)
In

+
(
γq ||x||q2 − ηp ||x||

−p
2

) xx>

x>x
is symmetric and positive definite. Additionally ⊗ denotes
the Kronecker product. Please notice that for square
matrices A,B with eigenvalues λi and νj , the eigenvalues
of A⊗B are λiνj ∀i, j. Hence, both P⊗I and Q⊗J(x) are

symmetric and positive definite matrices, which shows the
asymptotic stability of the origin. The proof of finite-time
stability may be found in (López-Caamal and Moreno,
2019, §4.2). 2

Please notice that the previous differentiator provides an
estimate of the first time-derivative of y(t) and u(t), which
may be used to estimate the input-output gradient, as
described in (9). Both estimates converge exactly at the
same time due to the nonlinearity φ1(x), which couple the
differentiator’s states and becomes zero only when x = 0.
In addition to the convergence timing, another advantage
of using a multivariable differentiator is that we only need
to design one algorithm for both differentiation tasks.
For further robustness properties of (12), we refer the
interested reader to (López-Caamal and Moreno, 2019).
The following section demonstrate applicability of our ESC
via numerical simulations.

4. RESULTS

Let us consider a microalgae production process developed
by Benavides et al. (2015). In this process, the growth of
microalgae under substrate limitation is represented by the
Droop model, which is given by the following ODE system

Ṡ(t) = −ρ(S)X(t) +
Qin(t)

V
(Sin(t)− S(t))

Q̇(t) = ρ(S)− µ(Q)Q(t)

Ẋ(t) = µ(Q)X(t)− Qin(t)

V
X(t) .

(15)

Here S in (g L−1) is the substrate concentration in the
culture medium; Q in (g g−1) is the internal carbon-
based quota of substrate; X in (g L−1) is the biomass
concentration in the culture medium; Sin in (g L−1) is
the substrate concentration in the renewal medium; Qin
in (Ld−1) is the flow rate in the renewal medium; and V
in (L) is the volume of the culture. The functions ρ and µ
represent substrate uptake and growth rate, respectively.
In this model the specific uptake ρ and growth rate µ are
Michaelis-Menten and Droop functions, respectively:

ρ(S) = ρmax
S

KS + S
, (16)

where ρmax is the maximum limiting substrate uptake rate
and Ks is the half saturation constant of substrate; and,

µ(Q) = µmax

(
1− Q0

Q

)
, (17)

where µmax is the maximum growth rate and Q0 is the
minimum cell quota identified empirically by Droop under
which microalgae do no longer grow (Benavides et al.,
2015).

We are interested in maximizing the productivity of the
microalgae production process in real-time. Such an opti-
mization problem can be stated as

max
Qin

P (Qin)

such that:

ẋ(t) = f(x,Qin)

y(t) = P (x,Qin),

(18)
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Table 1. Table of parameters

Classical ESC Fast ST-ESC Slow ST-ESC

ω = 0.175 α = 0.1 α = 0.01
ωh = 0.9ω λ = 0.5 λ = 0.05
A = 0.25 η = 50 η = 50
kI = 2 β = 5 β = 5

γ = 15 γ = 15
p = 0.25 p = 0.25
q = 5 q = 5
k1 = 1 k1 = 1
k2 = 1 k2 = 1

where x = [S QX]>, f(x,Qin) is defined according to
Equation (15) and the measured output P (x,Qin) is the
productivity of the process, defined as

P (x,Qin) =
Qin(t)X(t)

V
. (19)

A similar optimization problem has been addressed by
considering classical ESC (Dewasme et al., 2017). As men-
tioned by Dewasme et al. (2017), achieving the optimum
by the extremum-seeking strategies (5) and (8)-(12) is
only possible if it corresponds to an equilibrium of the
model (15). Hence, the equilibria of the open-loop pho-
tobioreactor should be first determined. This equilibria
for the model (15) have to be, therefore, calculated. By
equating the right-hand side of (15) to zero, and solving
the resulting nonlinear algebraic equations, the following
objective function in steady state is obtained:

P (Qin) =
a3Q

3
in + a2Q

2
in + a1Qin

a4Qin + a5
, (20)

where a1, a2, a3, a4, and a5 are constants. The opti-
mum value Q∗in is obtained by differentiating (20) with
respect to Qin and equating the result to zero (first-order
optimality condition in Assumption 1), which leads to
Q∗in = 11.46Ld−1. By substituting Q∗in in (20), a maxi-
mum productivity Pmax = 6.08 gL−1d−1 is obtained.

Simulations of the ESC (5) and the super-twisting-based
ESC (8)-(12) were performed in Matlab. The model (15)
and the ODEs involved in the ESC (5) and (8)-(12) were
solved using the stiff solver ode15s. A constant substrate
concentration at the photobioreactor input Sin = 0.5 gL−1

was considered. The online optimization started fifty days
after the bioprocess simulation beginning. An optimization
period ∆t = 2 d was considered for the ESC strategy (5),
while an optimization period ∆t = 5 d was considered for
the super-twisting-based ESC (8)-(12). Additionally, we

consider that the signals to differentiate are θ = [P Qin]
>

,
to this end we avail of Theorem 2. Table 1 shows the
parameters considered for each ESC implemented in this
work.

Figure 1 shows the input flowrate time evolution, in
red the flowrate computed by the ESC and in blue the
flowrate computed by the super-twisting-based ESC. Due
to the dithering signal, the flowrate generated by the
ESC (5) has a sinusoidal form. Please notice that both
strategies present oscillations around the optimum input
flowrate. In order to alleviate this phenomenon in the
super-twisting-based ESC (8)-(12) we considered smaller
gains of the optimization algorithm (8). Such result is
depicted in the cyan curve of Figure 1. Although the
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 (
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)
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Fast ST-based ESC

Slow ST-based ESC

Fig. 1. Flowrate at the input of the microalgae production
process.
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Fig. 2. Productivity of the microalgae production process.

magnitude of the oscillations are sensibly reduced, the
convergence time increases. This suggests that there is a
subtle tradeoff between the amplitude of the oscillations
and the convergence time. It must be pointed out that
oscillations of the classical ESC can be diminished by
reducing both parameters, kI and A. However, the time
convergence increases considerably, in this example up to
18 years (data not shown).

In turn, Figure 2 shows the productivity time evolution,
in red the productivity computed by the ESC and in blue
the productivity computed by the super-twisting-based
ESC. As can be observed, the ESC achieves the maximum
productivity almost one year after the process beginning.
On the other hand, the super-twisting-based ESC reaches
the maximum productivity in less than half a year after
the process beginning. Likewise, the cyan curve obtained
with smaller gains of the optimization algorithm shows a
larger convergence time.

Figure 3 shows the gradient estimation time evolution, in
red the gradient estimated by the ESC and in blue and
cyan the gradient estimated by the super-twisting-based
ESC. Please notice that the key difference between the
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Fig. 3. Gradient of the productivity with respect to the
flow rate.
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Productivity by slow ST-based ESC

Maximum productivity

Fig. 4. Productivity vs flow rate.

ESC and the super-twisting-based ESC is that the latter
one is an actual estimation of the gradient; whereas the
ESC makes use of a persistent excitation signal in order
to aim toward the extremum.

Figure 4 shows the productivity versus the input flowrate,
in black the productivity computed by the objective func-
tion (20), in red the productivity computed by the ESC,
in blue and cyan the productivity computed by the super-
twisting-based ESC, and in green the point corresponding
to the maximum productivity. Here we may observe that
the cyan line shows the best tracking performance of the
unknown objective function.

5. CONCLUSIONS

Here we propose an extremum seeking strategy analogous
to the classical extremum seeking, in the sense that both
require the same information to steer the output of a
dynamical system to the maximum of an unknown input-
output map in steady-state. Our algorithm consists of a
super-twisting based gradient estimator that provides this
information to a super-twisting based gradient-based op-
timizer. Furthermore, we provide a rigorous mathematical

proof of the convergence of both the optimizer and the
gradient estimator. It is noteworthy that the information
provided by the gradient estimator, may be used for mon-
itoring and fault detection purposes.

A simulation example showed the feasibility of our scheme
in a microalgae production photobioreactor. In this exam-
ple we outperform the ESC results, since we are able to
converge quicker (with similar oscillation amplitudes) or
with smaller oscillation amplitudes (but larger convergence
time). In addition, please notice that the optimization
period used by the ESC (two days) is shorter than the
optimization period used by the super-twisting-based ESC
(five days). Hence, even the slow super-twisting-based ESC
needs less iterations to converge to the maximum pro-
ductivity than the ESC (146 iterations of the slow super-
twisting-based ESC vs. 273 of the ESC).
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