
Nonlinear Grey-Box Identification with
Inflow Decoupling in Gravity Sewers

Krisztian Mark Balla ∗,∗∗ Carsten Skovmose Kallesøe ∗,∗∗

Christian Schou ∗∗ Jan Dimon Bendtsen ∗

∗ Dept. of Electronic Systems, Aalborg University , Fredrik Bajers Vej
7c, DK-9220 Aalborg, Denmark (e-mail: {kmb,csk,dimon}@es.aau.dk)
∗∗ Grundfos, Poul Due Jensens Vej 7, DK-8850 Bjerringbro, Denmark

(e-mail: {kballa,ckallesoe,cschou}@grundfos.com).

Abstract: Knowing where wastewater is flowing in drainage networks is essential to utilize
system storage, predict overflows and to optimize system operation. Unfortunately, flow in
gravity-driven sewers is subject to transport delays, and typically influenced by significant
disturbances entering the sewer pipes in the form of domestic, ground and rain inflows. Model-
based optimal control of urban drainage requires knowledge about these inflows, even though
it is often not feasible in operational setups. To this end, we propose a lumped-parameter
hydrodynamic model with a bi-linear structure for identifying the transport delays, decouple
periodic disturbances and to predict the discharged flow. Pumped inlet and discharged dry-
weather flow is used to find the model parameters. Under mild assumptions on the domestic
and groundwater inflows, i.e. disturbances, the decoupling capabilities of the identified model are
presented. A numerical case study on an EPA Storm Water Management Model (EPA SWMM)
and experimental results on a real network demonstrate the proposed method.
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1. INTRODUCTION

In sewers, waste water is collected and transported to-
wards treatment plants, where contaminants are removed
before releasing the water back to the environment (Butler
and Davies [2006]). Flow routing in sewers is a complex
task, since the network is characterized by large spatial
dimensions, nonlinear dynamics, large flow variations and
significant time delays. In this work, a nonlinear system
identification approach is proposed to predict flow and de-
lays based on the simplified Saint-Venant (SV) equations.
Gravity-driven flow in open channels is represented by a
system of coupled partial differential equations (PDEs).
Due to the complexity of these PDEs, simplified and
linearized models are typically used in optimal control
design. In Xu et al. [2011], the control effectiveness of
reduced SV models in Model Predictive Control (MPC)
has been studied. In Leirens et al. [2010], a linearized
SV model has been proposed for pumped sewer networks.
Moreover, linear cascade modelling is a common modeling
approach in open water systems, e.g. in irrigation canals
(Litrico and Fromion [2004]), and in inland waterways
(Segovia et al. [2018]). Linearization, however, does not
allow flow-dependent delays and the maximum allowed
flow deviation from the steady-state solution is restricted.
In a previous paper, Kallesøe and Knudsen [2016], self-
calibrating flow estimation has been developed for tracking
the pump flow at the inlet, and for the discharged flow
at the outlet of gravity pipes. This algorithm utilized
information about wastewater pits and pump operation,
hence applicable in any system configuration. However,

prediction of flow dependant delays considering different
disturbance inflows (i.e. domestic- and groundwater) has
not been encountered yet. The current work utilizes this
previously-established flow estimation algorithm as the
source of training data, and proposes a modeling method
for flow and delay prediction in long gravity sewers. While
we do not explicitly address control strategies, the pro-
posed identification approach is dedicated for the internal
model of a predictive controller. The main compromise of
establishing such a model is typically between complex-
ity, accuracy and the computational burden (Lund et al.
[2018]). In recent years, identification-based modeling has
gained more attention, as data has become widely avail-
able at utilities. Yet, reports on Grey-Box modeling of
open-channel water systems are relatively few (Su Ki Ooi
and Weyer [2003], Weyer [2001]). Moreover, research on
Grey-Box modelling in different domains, e.g. Sundar and
Zlotnik [2019], considered large-scale natural gas networks
where state and parameter estimation has been developed
using data and the underlying graph of the network.
In many applications in this framework (e.g. irrigation
canals, sewage networks, etc.), linear physical models are
used. In contrast to these approaches, we propose a non-
linear model structure which can describe a wide range of
flows. The task of finding the correct physical parameters
(e.g. length, shape, slope and friction) disappears with the
proposed data-driven approach, thus enabling scalability
to large systems with arbitrary structures.
Our approach is data-driven, yet we establish our proposed
model structure based on physical considerations, familiar
to those working in the water domain. In contrast to
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methods utilizing cross-correlation analysis e.g. for delay
detection (Bjorklund and Ljung [2003]), and statistical
blackbox models for disturbance prediction (Troutman
et al. [2017]), we aim to preserve intuition by giving
physical interpretation of the flows in the system.
The remainder of the paper is structured as follows.
Section 2 provides an overview of the system, whereupon
in Section 3 we review the PDE model for gravity sewers
and propose a model for the disturbance flows. In Section
4, we formulate the estimation as a least squares problem
in the form of a Nonlinear Program (NLP), while in
Section 5, we present numerical and experimental results.
Finally, Section 6 sums up the contributions of the work.
Throughout the paper, all quantities mentioned are real.
We use boldface letters for sets, such as s = {s1, ..., sn},
as well as for vectors x = [x1, ..., xn]T ∈ Rn.

2. SEWER SYSTEMS OVERVIEW

We consider networks with transport lines over long dis-
tances. The layout of such network is shown in Fig. 1.

Fig. 1. Topology of a pumped sewer network.

The sewage is first collected at a pumping station. The
pumping station consists of a small storage tank (pit) and
one or more pumping units. The collected water is then
pumped through a rising main, whereupon it enters a long
gravity-driven sewer channel. Typically, pumps operate in
combination and deliver flow at a fixed rate governed by
local on/off controllers (see Schütze et al. [2002]). When
the pump state is off and the pit volume reaches the max-
imum threshold, the pumps turn on. Then, the pumped
flow arrives to the next pit in line with a delay, thereby
forcing the next station to turn on, and so forth.
Exogenous inflows, i.e. disturbances, enter gravity sewers
in the form of domestic waste, rainfall run-off and through
leakages allowing groundwater to infiltrate into the chan-
nel. These disturbances are characterized by specific flow
patterns, shown in Fig. 2.

periodic

F
lo

w

constant non-periodic

a b c

Fig. 2. Disturbances occurring in sewer networks.
Households are common sources of inflows in sewer net-
works. Due to the large spatial dimension of sewers, do-
mestic waste, collected from urban areas, may enter the
network anywhere along the gravity pipes. Domestic waste
is typically characterized by a diurnal pattern which has
an inherent periodicity of 24 hours with peak points in
the morning and in the afternoon (see Pattern a in Fig.

2.). Groundwater is present when rain runs off slowly and
thereby water accumulates in the ground. In this case,
water may infiltrate gravity channels through leakages
with a nearly constant flow (see Pattern b in Fig. 2.).
The third type of disturbance flow is due to rainfall run-
off. These discharges are disregarded and we rather focus
on domestic and groundwater infiltration. Indeed, this is a
common practice (see Courdent et al. [2018]), as typically
the domestic and groundwater flows are estimated first,
using inflow measurements from dry-weather periods.

3. MODELING

3.1 Flow Model

Unsteady, one-dimensional water flow in gravity sewers
can be computed accurately by the well-known Saint-
Venant PDEs (Schütze et al. [2002])

∂Ax,t
∂t

+ ∂Qx,t
∂x

= qx,t, (1)

∂Qx,t
∂t

+ ∂

∂x

(Q2
x,t

Ax,t

)
+ gAx,t

(∂hx,t
∂x

+ Sf + Sb

)
= 0, (2)

where Qx,t denotes the flow inside the channel, qx,t is the
disturbance inflow, Ax,t is the wetted channel area and
hx,t is the water level. Moreover, Qx,t, qx,t, Ax,t and hx,t
are functions from (0, L) × R+ to R+. The gravitational
acceleration is g ∈ R+, furthermore we assume that Sb ∈
R+ bed slope and Sf ∈ R+ friction slope parameters are
independent of x and t, which is a fair assumption if the
slope variance is small (Schütze et al. [2002]).
For simplicity, we assume kinematic waves, meaning that
we neglect the first three terms in (2) (Singh [2001]), which
results in a balance between friction and gravitational
forces. For determining Sf in (2), we utilize Manning’s
equation (Schütze et al. [2002]). Then, (2) simplifies to

Sb = Sf (Qx,t, hx,t) =
n2Q2

x,t

A2
x,tR

4
3
x,t

, (3)

where R = A
P is the hydraulic radius, P ∈ R+ is the

wetted perimeter and n ∈ R+ is the Manning coefficient.
Simplification with the Manning formula restricts the flows
to be one-directional, meaning that the phenomena of
backwater effect is not considered. Backwater occurs when
the channel is overloaded, thus water surcharges. This
is typically negligible in large gravity lines, transporting
waste water over long distances (Singh [2001]).
We derive the model for rectangular cross section and
argue that semi-filled circular sewers are reasonably well-
approximated by a rectangular shape, shown in Fig. 3.

hx,t

w

Fig. 3. Rectangular channel, where w ∈ R+ is the width.

Hence, the hydraulic radius of a channel is parametrized
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by the width w and approximated by

Rx,t = Ax,t
Px,t

≈ whx,t
2hx,t + w

, (4)

where a linear area-level relation is used. The independent
variables remaining in the SV equations are flow and level
on the domain (0, L)× R+, given by

w
∂hx,t
∂t

+ ∂Qx,t
∂x

= qx,t, (5)

Qx,t =
√
Sb
n

(whx,t)
5
3

(2hx,t + w) 2
3
. (6)

The equation in (6) comes from (3) and (4). The coupled
PDEs in equations (5) and (6) describe kinematic waves
traveling through open channels. Note, that semi-fillness of
the channel is an assumption which does not always hold.
However, the formulation presented here does not hold for
fully-filled flow conditions.

3.2 Discretized Model

We now formulate the physical model in a form more
amenable to system identification. The channel is parti-
tioned into Nx equal-sized, non-overlapping δx segments of
length, while hx,t, Qx,t and qx,t are approximated as piece-
wise constant functions of x. The spatial discretization of
a channel at time t is shown in Fig. 4.

Q0,t QL,t

x=Lx=0

qx+δx,tqx,t

x+δx x+2δx x+3δx

qx+2δx,t

x+iδxx+(i−1)δx

qx+Nxδx,tqx+(i−1)δx,t

Fig. 4. Channel divided into Nx sections, where i ∈
{1, 2, ..., Nx}.

We use backward Euler discretization for the spatial and
forward Euler for the time coordinate. The left boundary
(upstream) is defined at x = 0 and the right boundary
(downstream) at x = L. Discretizing equations (5) and
(6), the model may be recast as

hx,t+δt = hx,t + αqx,t + β1(Qx−δx,t −Qx,t), (7)

Qx,t = β2
h

5
3
x,t

(hx,t + γ) 2
3
, ∀ x ∈ (0, L) (8)

where δt is the sampling time and we define the parameters

α ,
δt

w
, β1 ,

δt

wδx
, β2 ,

√
Sbw

5
3

2 2
3n

, γ ,
w

2 , (9)

where α, β1, β2, γ ∈ R+. Note that the time and spatial
steps, δt and δx, are part of the parameters α and β1.
This implies that (7) and (8) are affected by the choice
of the sampling time and the section size. Indeed, δt and
δx affects the dynamics by introducing distortion in the
traveling wave (see Singh [2001]). Next, we insert the

section flows Qx,t from (8) into (7), so we get

hx,t+δt = hx,t +αqx,t +β1β2

[
h

5
3
x−δx,t

(hx−δx,t +γ) 2
3
−

h
5
3
x,t

(hx,t +γ) 2
3

]
(10)

The state equation in (10) is parametrized by α, β1, β2
and γ. In order to reduce the number of parameters, and
thus avoid non-identifiability, we attempt to restructure
(10) by removing γ from the denominator of the nonlinear
expression. Therefore, we define new states such that

hx,t , γzx,t, ∀ x ∈ (0, L), (11)

where zx,t are the scaled equivalents of the physically
measurable water levels hx,t, i.e. the transformed states.
Now let us define a mapping g : R+ → R+

g : (zx,t) 7→
z

5
3
x,t

(zx,t + 1) 2
3
, ∀ x ∈ (0, L). (12)

Utilizing the state transformation and the nonlinear map-
ping g, we recast the state equation in (10). This yields as
a set of coupled bi-linear difference equations, describing
the states in the Nx partitioned sections along the channel.

z0,t+δt = z0,t + q̃0,t + θ1Q0,t − θ1θ2g(zδx,t),
...

zx,t+δt = zx,t + q̃x,t + θ1θ2
(
g(zx−δx,t)− g(zx,t)

)
, (13)

...
zL,t+δt = zL,t + q̃L,t + θ1θ2

(
g(zL−δx,t)− g(zL,t)

)
,

where we defined q̃x,t , α
γ qx,t as scaled disturbance flows.

Furthermore, the task of parameter estimation has been
reduced to find the parameters θ1, θ2 ∈ R+ and the
unknown disturbances q̃x,t. The parameters are given by

θ1 ,
β1

γ
, θ2 , β2γ. (14)

We consider the upstream boundary flow Q0,t (hereinafter
Qin), as the control input. The output of the control model
is the downstream flow at the boundary x = L, which we
hereinafter call Qout. The output equation is then

QL,t = θ2g(zL,t), (15)

which is the reformulated Manning equation in (8).

3.3 Disturbance model

In this application, we consider periodic domestic waste
flows coming from urban areas and groundwater infiltra-
tion which we assume to be constant in time. Here, a
Fourier series model is presented to estimate the peri-
odic disturbance signals q̃x,t entering into the dynamic
flow model in (13). It is assumed that the infiltration of
groundwater is uniformly distributed along the partitioned
channel sections, i.e. groundwater enters each section with
the same amplitude. Moreover, it is assumed that we know
where residential areas are connected by pipelines, i.e.
where domestic waste water enters the channel. This is
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a fair assumption, as typically the piping layout of the
infrastructure is stored in, e.g. a GIS (Geographic Informa-
tion System) database at most utilities. Hence, the scaled
disturbances entering the ith section at time t are given by

q̃i,t(λ0,λ) , q̃ gnd
i (λ0) + q̃ dom

i,t (λ) (16)

, λ0 + λ1 +
k∑
j=1

(
λ1jcos(jωt) + λ2jsin(jωt)

)
︸ ︷︷ ︸

fi,t(λ)

where the set of parameters regarding domestic flows are
λ , {λ1, λ11, λ21, ..., λ1k, λ2k} ∈ R, and λ0 ∈ R+ repre-
sents constant groundwater flows. The angular frequency
ω corresponds to a period of one day and k ≥ 2 is the
number of frequency terms in the truncated Fourier series.
Furthermore, fi,t(λ) is a family of functions parametrised
by λ, and for each λ, fi,t : (1, Nx)× R+ → R.
Note, that the model describing the scaled disturbances
does not correspond to the real domestic and groundwater
flows. In order to calculate the real disturbances qi,t from
the scaled estimates q̃i,t, recall that the disturbance flows
are scaled by the model parameters, such that

q̃i,t ,
α

γ
qi,t, ∀ i ∈ (0, Nx). (17)

Then, using the estimated parameters defined in (14) and
the physical model parameters in (9), it is seen that

Nx∑
i=1

qi,tδx =
Nx∑
i=1

q̃i,t
θ1

=
Nx∑
i=1

α

β1
qi,t = qi,tδxNx, (18)

where we use θ1 to calculate qi,t. The last term in (18)
represents all disturbance flows along the total pipe length.
Now, let us consider the function fi,t(λ) in (16). From
this, we form the vector ft(λ), such that the function
at index i is fi,t(λ), i.e. ft : R+ → RNx . Using the
vector representation and the relation shown in (18), we
decompose the domestic and groundwater flows such that

Nx∑
i=1

qi,tδx = λ0

θ1
Nx︸ ︷︷ ︸

qgnd(λ0,θ1)

+ 1
θ1
bTft(λ)︸ ︷︷ ︸

qdom(λ,θ1)

, (19)

where qgnd is the ground infiltration flow summed over all
pipe sections and qdom is the total domestic inflow. The
vector b ∈ {0, 1}Nx has ones in its entries regarding section
points where urban areas are connected, and zeros with
no connection. The number of parameters that we need to
identify is 4+2k, depending on order of the Fourier series.

4. SYSTEM IDENTIFICATION

The system identification is given as a constrained non-
linear least squares problem, where samples, at time ti,
i = {0, ..., Nt}, of the pumped inlet flows Qin and the
discharged Qout flows are known and estimated a priori.
Let θ , {θ1, θ2} ∈ R+ denote the set of system parameters
and Λ , {λ0,λ} ∈ R denote the parameters corresponding
to the disturbance flows. Then, the parameters θ and Λ

and the initial states z(t0) are found by solving the NLP(
θ∗

Λ∗

z∗(t0)

)
= argmin

θ,Λ,z(t0)

Nt∑
i=0

(
Qout(ti)− Q̂out(ti)

)2 (20)

s.t.
z(ti+1) = Fθ,Λ(z(ti), Qin(ti)), (21)
Q̂out(ti) = Hθ2(zL(ti)), (22)
0 ≤ z(ti) ≤ z, (23)
0 ≤ θ ≤ θ, (24)

where z(ti) ∈ RNx is the vector of states in (13) and the
dynamics in (21) are represented by Fθ,Λ(z(ti), Qin(ti)) :
R+ → RNx . The function Hθ2(zL(ti)) : R+ → R+ in
equation (22) represents the scalar output where zL corre-
sponds to the downstream boundary state. The constraints
in (23) and (24) impose bounds on the transformed state
variables and parameters, respectively.
In the above NLP, we assumed that the number of states
are fixed, i.e. Nx is given. Instead, we introduce Nx as
an auxiliary variable in the model. Hence, we carry out
estimations multiple times on equivalent models but with
different grid sizes as explained in the algorithm below

Algorithm 1 Model evaluation for different Nx
Input: Qin, Qout, z, θ

1: repeat at every iteration k = 1,2,. . . Nx
2: Initialize: θ, Λ, z(t0)
3: Solve: minθ,Λ,z(t0)

∑Nt

i=0
(
Qout(ti)− Q̂out(ti)

)2

4: s.t. constraints
5: until RMSE(Q̂k−1

out ) < RMSE(Q̂kout)
Output: θ∗,Λ∗,z∗(t0), Nx

The model is evaluated for each trial of Nx using Root
Mean Squared Errors (RMSE) and the algorithm is termi-
nated at the lowest Nx. The estimation accuracy is shown
in Fig. 5. for a selection of k iteration steps.

0 1 2 3
0

5

10

Time [h]

F
lo

w
[m

3
h

] Qin Qout Nx = 3 Nx = 5 Nx = 10

Fig. 5. Model accuracy for different Nx tested on real data.

As seen, increasing Nx above a threshold does not increase
accuracy significantly. To evaluate the convergence of Al-
gorithm 1, the RMSE at each iteration is calculated.

10 20 30
0

1

2

3

Nx [-]

R
M

SE
[m

3
h

]

Estimation
Validation

Fig. 6. Estimation and validation evaluated against Nx.
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As seen in Fig. 6., there is an optimal selection for Nx
where model accuracy is the highest for the provided
training and validation datasets.

5. RESULTS

5.1 Numerical results

Results of applying the method are first presented on a
numerical case study in the EPA SWMM(Rossman [2015])
simulation software. The test model is depicted in Fig. 7.

x = L/2

Downstream

Upstream

Pumping
station

Communalarea

Fig. 7. Schematics of the EPA SWMM simulation model.

In this network, a single sewer line is considered, trans-
porting the sewage from a pumping station to an outlet
point, representing either the next pumping station or the
treatment plant. We consider an urban area discharging to
the transportation line at x = L/2. The pumped inlet flows
Qin enter the sewer at the upstream and we observe the
discharged flows Qout at the downstream, indicated in Fig.
7. Moreover, measurement noise is added to the simulated
Qout(ti) flows with the property of n ∼ N (0, 0.2).
In simulation, we attempt to mimic the behavior of a real
scenario, where the wastewater pit collects non-periodic
runoff water with a variety of rain intensity, forcing the
pump to turn on for different time duration. The validation
of the identified model is shown in Fig. 8.

1 2 3 4 5 6 7 8 9 10
0

20

40

Time [day]

F
lo

w
[m

3
h

] Qin Qout (Sim.) Qout (Est.)

Fig. 8. Discharged downstream flow prediction.

Nx = 4 sections resulted in good model accuracy. Note,
that the discharged flow shown in Fig. 8. consists of the
delayed non-periodic pumped flows Qin and the periodic
disturbance inflows q. In EPA SWMM, we can access
the q periodic disturbances for validating our results. The
disturbance q entering the network at x = L/2 and then
discharged at the end of the channel are shown in Fig. 9.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

Time [day]

F
lo

w
[m

3
h

]

qdom
x=L/2 qdom

x=L

Fig. 9. Upstream and discharged domestic waste flows.

The domestic waste flow arrives at the downstream with
a flow-dependent delay. Using the estimated parameter θ1

and the disturbance model defined in Section 4, the de-
coupled domestic disturbance flow qdomx=L/2 yields as shown
in Fig. 10.

0

10

20

F
lo

w
[m

3
h

]

qdom
x=L/2 (Sim.) qdom

x=L/2 (Est.) qgnd

x=L/2 (Est.)

0 1 2 3 4 5 6 7 8 9 10
0

10

20

Time [day]

F
lo

w
[m

3
h

]

qdom
x=L/2 (Sim.) qdom

x=L/2 (Est.) qgnd

x=L/2 (Est.)

Fig. 10. Disturbance decoupling with 2nd (above) and 4th
order Fourier series (below).

Fig. 10. shows that we are able to estimate the periodic
domestic waste flows and the constant groundwater infil-
tration at the point where they enter the system, by using
the disturbance model and the identified model parame-
ters. The disturbances qdom and qgnd in Fig. 10. correspond
to the decoupled flows in (19). With higher order Fourier
series, the estimation is more precise, however at the cost
of increasing the number of parameters.

5.2 Experimental results

We also present results of applying the system identifi-
cation method on a real world case study. The available
data is flow estimation, extracted from a sewer network,
operated by Provas A/S, located in Gram, Denmark. The
pipe layout of the drainage network is shown in Fig. 11.

PGH104

PGH103

PGH102

PGH101

PGH201

PGH202

PGH203

Fig. 11. A segment of a combined sewer network, where
blue dots denote waste water pumping stations.

This particular segment of the network consists of seven
pits with corresponding pumping stations. The estimation
data has been sampled at 1 Hz and gathered from the
gravity sewers connected by PGH103-104 and PGH202-
203 pumping stations. (For detailed explanation of the flow
estimation method utilized in this work, consult Kallesøe
and Knudsen [2016]). In the two test scenarios, urban
areas are not connected, therefore our tests have been
restricted to groundwater detection. The model validations
are shown for the two tests in Fig. 12.
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Time [h]
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3
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Fig. 12. Model validation on experimental data. Gravity
sewer between PGH103-104 stations above, and be-
tween PGH202-203 stations below.

The estimation data covers two days in both cases. In
the graph above, groundwater infiltration is approximately
zero, meaning that between each pump cycle the dis-
charged flow becomes zero, thus the channel dries out.
However in the graph below, groundwater infiltration is
significant, meaning that initial water level estimation
is necessary. The model error yielded sufficiently small
with Nx = 7 channel sections in both cases. As shown,
the model describes the flow-dependent delays accurately
under significant ground water infiltration and under a
large variety of pumped input flows.

6. CONCLUSION

The presented paper focused on detecting and decoupling
periodic and constant disturbance flows from the total
discharge in gravity sewers. To this end, a data-driven
identification method has been proposed based on physical
models. The method has been tested in simulation and
on data from a real network. The implementation has
shown that the identification is feasible and that the
estimated models predict flow and transport delays with
high accuracy. The main advantage of the data-driven
aspect of the modeling is that the method becomes scalable
to a variety of networks, having different structures and
physical parameters. Additionally, using a physical model
carries an advantage of restricting the parameter space.
In our future work, we focus on stability and identifiability.
Note, that the bound of the physical parameters have
been chosen in a heuristic fashion. Furthermore, the state
transformation resulted in loss of insight regarding water
levels. Including the above considerations, we consider
utilizing the models in an MPC framework.
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