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Abstract: Axial dispersion models are used for the prediction of residence time distribution
(RTD) of the flow occurring in various processes. Such models are essential for the understanding
of the flow dynamics allowing monitoring, control and material tracing specially in the scope
of continuous pharmaceutical manufacturing. However, RTDs are most usually dependent on
the process variables (PVs), indicating that a single constant parameter dispersion model would
not be capable of capturing this variability. In this contribution a variable parameter axial
dispersion model is proposed, where the dependency on the process variables are captured from
experimental data using Gaussian Process Regression (GPR) models. The method is illustrated
with an example of a Vibrated Fluidized Bed Dryer (VFBD), in which a number of tracer
experiments are performed at different values of the drying process air flow rate and vibration
acceleration. The axial dispersion model parameter values are identified for each experiment.
Manifolds for the axial dispersion model parameters are then constructed by the regression
of the GP models on the identified values. Comparisons between the experiments and model
predictions for an example validation case are drawn showing that the proposed model is capable
of producing accurate RTD predictions and certainty bounds even for points not explicitly
included in regression dataset. Insight about the advantages of the method in model based
controller design is given.

Keywords: Axial Dispersion Model, Continuous Manufacturing, Residence Time Distribution,
Gaussian Process Regression.

1. INTRODUCTION

Analyzing as well as predicting the flow dynamics in pro-
cesses is essential for design, monitoring and control tasks.
Tracer Residence Time Distribution (RTD) experiments
(see Danckwerts (1995) and Fogler (2016)) has proven
itself to be a very useful tool for experimentally charac-
terizing the flow behavior for fluids as well as powders
appearing in processes present in food (e.g. Torres and
Oliveira (1998), Ganjyal and Hanna (2002)), chemical
or pharmaceutical Industries. In the scope of continuous
pharmaceutical manufacturing, studies such as Gao et al.
(2012, 2011); Meier et al. (2016, 2017); Martinetz et al.
(2018); Engisch and Muzzio (2016) have been focused on
the utilization of the RTD theory and tools for the analy-
sis, prediction and monitoring of a wide range of underly-
ing processes. Various models with different characteristics
have been proposed for the prediction of the RTD, see
Gao et al. (2012) and Martin (2000). Determining the
effect of different process variables and parameters on the
process RTD has been studied in the scope of process
analysis e.g. Sudah et al. (2002). Attempts to capture such
dependencies in models have been made mainly for each
case separately e.g. by rigorous modeling in de Graaf et al.
(1997), through parametric relations in Bongo Njeng et al.

(2015). Black box models have been also proposed for the
direct prediction of RTD e.g. in Ganjyal and Hanna (2002).
However, the aforementioned literature lacks a generalized
approach to consider process variables dependencies in
RTD models. In this contribution, a more generalizable
approach for considering such dependencies in RTD mod-
eling is proposed, where a Grey-box axial dispersion model
is presented. The functional dependency of the RTD on
the process variables is captured by introducing Gaussian
Process Regression (GPR) models representing the disper-
sion parameters. The proposed model is specially suited for
automatic control, as both the model formulation and its
numerical solution are chosen to be compatible with the
design framework of model based controllers. The paper
is organized as follows. First, a brief introduction about
RTD is given. Then, the proposed model is presented
illustrating the analytical (white box) as well as the data
driven (black box) parts. Afterwards, the model’s numer-
ical solution as well as the used approach for parameter
identification are introduced and adopted to an application
from the field of continuous pharmaceutical manufactur-
ing. The presented application and its experimental setup
are outlined. Finally, effectiveness of the proposed method
is demonstrated for an example validation case.
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2. RESIDENCE TIME DISTRIBUTION

The residence time of a flowing element is defined to
be the time elapsed from its point of injection to its
appearance at reactor outlet. However, different fragments
of the flowing material have different 1 residence times,
which are then represented by a distribution, namely the
RTD E(t). In a real world experimental setup (Fogler
(2016)), a specific amount of an inert tracer material is
injected at the inlet, then the concentration Cexp(t) of this
tracer is measured at the process outlet over time t starting
from the time point of injection. Normalizing Cexp(t) by the
total discharged concentration delivers the experimentally
determined RTD

E(t) =
Cexp(t)∫

∞

0 Cexp(t)dt
. (1)

3. PROPOSED GREY BOX AXIAL DISPERSION
MODEL

The main motivation for using a hybrid modeling approach
is to preserve the physical interpretation of the model
parameters and structure while exploiting experimental
data for achieving high prediction accuracy and resolving
unknown (uncertain) model dependencies. Accordingly,
the model structure can be further extended with new
modeling knowledge (rigorous and experimental) to de-
scribe more complex systems. The clear model structure
offered by the approach allows the generalization of the
model to be used for several applications. The proposed
grey-box model can be divided in an analytical part and
a data driven part. The model’s analytical part is based
on the classical closed boundary dispersion model. The
main reason for using an axial dispersion model is that,
it is based on a rigorous modeling methodology as its
parameters have a clear physical interpretation. This fits
the introduced framework as the proposed grey box model
would inherit this generic property of the axial dispersion
model. Moreover, it has been steadily reported (e.g. Martin
(2000) and Bachmann and Tsotsas (2015)) that it delivers
the most accurate RTD predictions in comparison with
other alternatives (e.g. tank in series see Fogler (2016))
for a wide range of dispersion (Peclet) numbers. The main
disadvantage of the dispersion model is complexity and
cost of the numerical solution.

3.1 Analytical Model

The model is represented by a one dimensional conserva-
tive (i.e. no sources or sinks) convection diffusion partial
differential equation (2) for the global representation (Eu-
lerian) of the material concentration c(t,z) in the control
volume

∂c
∂ t

=−v(ϑ)
∂c
∂ z

+D(ϑ)
∂ 2c
∂ z2 , z ∈ [0, L], (2)

the independent variables t and z represent time and
axial distance defined over the length L starting from the
control volume inlet (injection point). The flow parameters
v(ϑ) and D(ϑ) represents the flow’s axial velocity and

1 This holds true for all but strictly plug flow

dispersion rate respectively and are dependent on the
vector

ϑ(t) := (pv1(t), · · · , pvn(t))
T
, ϑ ∈ Rn×1, (3)

which includes all the process variables pv1(t), · · · , pvn(t)
having influence on the flow (RTD). The RTD is then
the concentration at the outlet boundary E(t) = c(t,L)
for a unit impulse concentration at the inlet boundary
cin(t) = δ (t) and zero initial condition c(0,z) = 0 for the
whole control volume. The inlet and outlet boundary con-
ditions depends on the real system configuration, at which
each boundary can be considered either closed or open,
see Fogler (2016). The closed system boundary conditions
given by (4) (also know as Danckwerts boundary condi-
tions Danckwerts (1995)) are used for our case study.

c(t,0) = cin(t)+
D(ϑ)

v(ϑ)
∂c
∂ z

∣∣∣∣
z=0

,

∂c
∂ z

∣∣∣∣
z=L

= 0.
(4)

The two system parameters contained in the parameter
vector p(t) := (v(ϑ), D(ϑ))

T
, p ∈ R2×1 are assumed to

be continuous scalar functions of the vector ϑ. These func-
tions are then represented as Gaussian Processes (GPs).
The two GP models are identified in a regression step using
experimental data thus forming the data driven part of the
model.

3.2 Gaussian Process Regression Models

In principle, any regression model can be used to ap-
proximate the unknown functions v(ϑ) and D(ϑ) given
some observations. The machine learning community has
developed a wide variety of methods reaching from classi-
cal linear regression (e.g. polynomial regression) to more
advanced methods such as Gaussian Process Regression
or Artificial Neural Networks. The Grey-Box model is
designed to be used by a model based controller usually
employing gradient based optimization methods. There-
fore, the used model should allow for smooth differentiable
predictions in a closed analytical form. Additionally, due
to the cost of experiments the number of observations
is limited. Thus, the model to be chosen should ideally
be able to incorporate prior knowledge. Thirdly, RTD
experiments have an inherent stochastic character. GPR
models represent an ideal candidate due to their capability
of capturing, quantifying 2 , and deriving a generalized
uncertainty prediction measure over the required range of
inputs. Consequently, the predictive variance delivered by
the model (representing the uncertainty) can also be used
for a robust controller design. Below, a brief introduction
highlighting the main advantages of GPR for the problem
at hand is given. For a detailed explanation, the reader is
referred to Rasmussen and Williams (2006).
For a given set of inputs ϑ, the unknown functions v and
D are not assumed to be correlated a-priori. Therefore,
two independent models for v and D are constructed. In
the following m observations with inputs X = [ϑ1, · · · ,ϑm]
and targets Y = [y1,y2, · · · ,ym] equal to either v or D
are considered for simplicity. Additionally, it is assumed
that all samples (of v or D) are corrupted by a noise
2 Uncertainty at the observations can be estimated from redundant
experiments as in Gao et al. (2011)
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term ε, i.e. y = f (ϑ)+ ε, where f (ϑ) represents the true
unknown function value at a given location ϑ. In a GP
it is assumed that any finite set of true function values
{ f1, f2, · · · , fk,}= { f (ϑ1), · · · , f (ϑN)} is distributed accord-
ing to a multivariate Gaussian distribution

( fi)∼ GP(m(ϑ ,θm),k(ϑ,ϑ′,θk)).

The GP is fully characterized by an a-priori mean
m(ϑ,θm) = IE[ f (ϑ)] with hyper parameters θm and a covari-
ance function k(ϑ,ϑ′,θk)= IE[{m(ϑ,θm)− f (ϑ)}{m(ϑ′,θm)−
f (ϑ′)}] with hyper parameters θk. First, assume that ε = 0.
In this case the observed values are identical to the true
function values at any given location. The predictive nor-
mal distribution of f for a query point ϑq can be calculated
by conditioning on the observed function values

f (ϑq)∼ N (µ f (ϑq|X ,Y ,θm,θk),σ
2
f (ϑq|X ,Y ,θm,θk)),

the function prediction value at the query point is then a
function of past observations Y at locations X , as well as
the hyper parameters of the GP’s mean and covariance
functions. For a detailed explanation and formulas for
µ f (ϑq|X ,Y ,θm,θk) and σ2

f (ϑq|X ,Y ,θm,θk) the reader is
referred to Rasmussen and Williams (2006). Neither µ f nor
σ2

f relies on the parameterization of a fixed basis functions
as in the case of parametric methods, e.g. bayesian linear
regression. Consequently, GPR can fit arbitrary continues
functions and therefore is considered a non-parametric
model. By choosing appropriate mean and covariance
functions as well as hyper parameters, the GP is adapted
to the problem at hand with the goal of making sensible
predictions. In this work a squared exponential kernel with
automated relevance detection (SEARD-Kernel)

k(ϑ,ϑ′,θk) = σ
2
0 exp[−1

2
(ϑ′−ϑ)Tdiag(lsc)

−1(ϑ′−ϑ)]

is chosen for the calculation of the covariance between
any two points ϑ′ and ϑ. The kernel is parametrized by
hyper parameters θk = {σ0, lsc}. Note that with the chosen
covariance function the predictive mean is infinitely differ-
entiable (see Rasmussen and Williams (2006)). The scaling
factor σ0 influences the predictive variance at unknown
locations. The length scales lsc = [l2

1 , · · · , l2
n ] determine the

relative area of influence of each input dimension for the
(measured) sample points. Additionally, the behavior of
the model far away from the sample points can be adjusted
by selecting a suitable a-priori mean function. In this case
an affine mean m(ϑ,θm) = a+bm ·ϑ with hyper parameters
θm = {a,bm}, bm = [b1, · · · ,bn]

T is chosen. Therefore, it is
assumed that the approximated function is linear where
no measurements are available or far away from the obser-
vations. In the more general case where observations are
corrupted by homoscedastic gaussian noise 3 ε ∼N (0,σ2

ε )
representing the observations uncertainty and with the
assumed normal distribution describing the true function
value f ∼ N (µ f ,σ

2
f ), the predictive distribution of the

observed value is y| f ∼ N ( f ,σ2
ε ) = N (µ f ,σ

2
f +σ2

ε ). If a
gaussian observation model is used the predictive distri-
bution at an unknown location ϑq remains gaussian

3 Here a gaussian observational model (likelihood) is used. Note
that non-normal predictive distributions can also be used with
gaussian process regression, see e.g. Rasmussen and Williams (2006)
or Vanhatalo et al. (2013).

y(ϑq)∼
N (µ f (ϑq|X ,Y ,θm,θk,σε),σ

2
f (ϑq|X ,Y ,θm,θk)+σ

2
ε ).

In total the model is defined by the hyper parameter vector
θ = [θm,θk,σε ]. Usually, these parameters are estimated
from data by maximizing the likelihood p(Y |X ,θ) on the
observations. Moreover, each of the parameters has a clear
distinguishable influence on the prediction. Thus suitable
prior distributions for the hyper parameters (called hyper
priors) can be found. An alternative to the determination
of the hyper parameters by maximizing the likelihood is
to minimize the leave one out cross validation loss (see
Sammut, Claude and Webb, Geoffrey I (2010)). This can
be beneficial in terms of avoiding over-fitting and achieving
practical guarantees on the model prediction in the input
range of the training dataset.

4. MODEL SOLUTION AND IDENTIFICATION

The presented method is used for the modeling and pre-
diction of the RTD representing the propagation of moist
granulate in a fluidized bed drying process. The drying
process represents a subprocess of the wet granulation
route in a continuous manufacturing line of solid-dosage
form pharmaceutics (see Elkhashap et al. (2019)). The
state of the art Vibrated Fluidized Bed Dryer (VFBD)
unit under study is part of a lab scale unit (commercially
named QbCon®1, see Meier and Emanuele (2018)) de-
veloped in the R&D facility of the company L.B. Bohle
Maschinen+Verfahren GmbH.

4.1 Model Numerical Solution

The PDE representing the axial dispersion model is solved
using Method of Lines (MoL), see Schiesser (2012), where
the spatial variable is discretized into nz points over an
equidistant grid with segment length

∆z =
L

nz −1
. (5)

The convection term is discretized using a first order up-
wind scheme, while the diffusion term is discretized using a
second order central scheme. Ghost points are employed at
the boundaries in order to eliminate algebraic constraints
(see LeVeque (1992) and Abgrall and Shu (2017)). Also, a
forward difference scheme is employed at the left boundary
to avoid any division by D(ϑ) thus allowing for zero values
of the parameter, which corresponds to the lower bound for
the dispersion in the system. By defining the state vector
x ∈ Rnz×1, the input u ∈ R, and the output ỹ ∈ R

x := [c(t,0), c(t,∆z), c(t,2∆z), · · · , c(t,L)]T ,
u := [cin(t)] ,
ỹ := [c(t,L)] ,

(6)

the following Linear Parameter Varying (LPV) state space
representation of the dispersion model can be formulated

ẋ=A(p(t))x+b(p(t))u,
ỹ = c̃x,

(7)

For the sake of brevity, the dependence on the parameter
vector p(t) as well as time t is omitted hereafter.

Defining Dd :=
D(ϑ)

∆z2 and vd :=
v(ϑ)
∆z

the system matrices

A ∈ Rnz×nz , b ∈ Rnz×1, and c̃ ∈ R1×nz are given by

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10497



A :=


−Dd − vd Dd 0 . . . 0 0
Dd + vd −2Dd − vd Dd . . . 0 0

0 Dd + vd −2Dd − vd . . . 0 0
...

...
...

...
...

...
0 . . . 0 . . . Dd + vd −Dd − vd

,
b := [vd , 0, · · · , 0]T , c̃ := [0, · · · , 0, 1] .

Different time discretization techniques for LPV systems
are studied by van den Hof et al. (2010). Here, the classical
complete (exact) zero order hold discretization technique
(see Franklin et al. (1998)) exploiting the matrix exponen-
tial is chosen for the calculation of the discrete equivalent
of (7). The discrete equivalent of (7) is essential for its
usage in model based controller and observer design ap-
proaches (e.g. Model Predictive Control, Kalman Filter),
or in real time tracing cases involving forward prediction
(i.e. outlet concentration predictions given arbitrary sam-
pled cin(t)). Finally, the predicted RTD function Em(t)
corresponds to the impulse response of (7), namely Em(t) =
ỹ(t) for cin(t) = δ (t). Also, note that setting the process
variables ϑ constant (as in the identification experiments),
produces a constant parameters vector p and consequently
a constant matrix pair A and b, which reduces (7) to a
Linear Time Invariant (LTI) system.

4.2 Experiments

In order to characterize the flow behavior of the wet
granules inside the VFBD a number of experiments are
performed. The two main process variables influencing
the flow were determined to be the drying air mass flow
rate 4 ṁair (Nm3/hr) and the vibration acceleration avib

(m/s2) indicating that ϑ := (ṁair, avib)
T. Nine RTD exper-

iments are preformed at different value combinations of
the two process variables. Inert tracer material is injected
at the dryer input. The concentration of the tracer was
measured at the output using near-infrared spectroscopy
while holding the two PVs constant at their chosen values.
The nine experimental RTD curves are shown in Fig. 1
in the identification results. Moreover, in Table 1 the set
PVs values for each experiment can be found. Next, these
experimental RTDs are used to produce sample points of
the functions representing the two parameters v(ϑ) and
D(ϑ) to be used in the regression step. This is done by
identifying the values of the parameters for each RTD
experiment.

4.3 Model Parameter Identification

The model parameters v and D are identified for each
experiment by minimizing the square of the error between
the experimental RTD curve E(t) and the numerically
predicted by the model Em(t). The identification problem
is solved using Matlab nonlinear programming solver. For
the purpose of a warm start for the solver, estimations for
the parameter values are calculated using the method of
moments mentioned in Bachmann and Tsotsas (2015). The
experimental RTD’s first three moments are calculated
determining the distribution’s mean (consequently the
estimate for v) and variance. Estimate for the dispersion
coefficient D is calculated from solving the implicit relation
given by Levenspiel (1999). The results of the identified
4 normalized cubic meter per hour

Table 1. The used PVs values and the corre-
sponding identified parameter values for each

experiment

Tracer
Exp

ϑ v(ϑ)
(m/hr)

D(ϑ)×103

(m2/hr)
ṁair avib

(Nm3/hr) (m/s2)

Exp1 15 3.7 15.5 7.3
Exp2 15 4.22 26.9 30.8×10−8

Exp3 15 5.2 51.0 43.1
Exp4 20 3.7 22.3 48×10−3

Exp5 20 4.22 37.2 15.7
Exp6 20 5.2 69.3 96.1
Exp7 25 3.7 42.1 72.4
Exp8 25 4.22 57.8 90.6
Exp9 25 5.2 82.4 304.4

0 20 40 60 80 100 120 140
0.00

0.05

0.10

0.15

0.20

Time (s)

E(
t)

Exp1, 1.1% Exp2, 0.7% Exp3, 0.9%
Exp4, 0.3% Exp5, 1.2% Exp6, 0.7%
Exp7, 0.5% Exp8, 0.6% Exp9, 0.4%

Fig. 1. RTDs determined from the nine tracer experiments
(marker) and the predicted RTD (solid) using the
identified values. NMSE percentage for each experi-
ment is shown in plot legend

parameters at the corresponding process variables are
shown in Table 1. A comparison between the experimental
RTD and the predicted RTD using the identified values
for each experiment is depicted in Fig. 1. The Normalized
Mean Square Error (NMSE) between both is listed in
the legend. It should be noted that the identified D(ϑ)
values are dependent on the spatial discretization (5) due
to the numerical diffusion added by the upwind finite
difference scheme. This lays restriction on the model
used for prediction since it should be with the same
spatial discretization as the model used for identification.
Otherwise, correction factors for the numerically modified
diffusion due to different spatial grid can be derived from
relations determining the amount of numerical diffusion
(e.g. given by E. Ewing and Wang (2001)). The identified
parameter values at the corresponding PVs values are then
used in the regression step to characterize the GP models
for v(ϑ) and D(ϑ).

5. RESULTS

The available RTD experimental data set is small (nine
points regarding two dimensional input), which does not
allow a classical cross validation data split. Using all the
experimental data in the regression step yields the most
accurate GPR models for the prediction of the two param-
eters of the axial dispersion model. However, to show the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10498



model capability of delivering valid parameter predictions
along with accurate uncertainty estimates at points not
present in the regression data set, two experiments are ex-
cluded from the regression data set and used for validating
the GPR models. As an illustrative example, experiment
5 and 7 were chosen to be excluded and the other seven
points were used as the regression data. The GPR models
have an input dimension of two allowing a visualization of
the models. Fig. 2 shows the prediction mean surrounded
by two surfaces representing the uncertainty estimate ±2σ

predicted by the GPR models of the two parameters v(ϑ)
and D(ϑ). Fig. 3 shows the predictions produced by the
GPR models against the experimental data, where the
predicted mean as well as the uncertainty estimate of
the E(t) functions are calculated and compared to the
experimental RTD at the two excluded points. The NMSE
of the mean predictions corresponding to the excluded
experiments Exp5 and Exp7 are 14.04% and 4.81% respec-
tively. Moreover, it can be seen that for both points the
experimental RTD lies within the predicted uncertainty
(±2σ).

6. DISCUSSION AND CONCLUSION

As shown by the previous example, GPR models are
capable of giving accurate mean predictions as well as
certainty bounds for the axial dispersion model parameters
even at points not explicitly included in the experimental
data used for regression. More systematic methods (e.g.
leave one out cross validation) can be used, in order to
heuristically ensure that the GPR models predictive mean
error will always lie within the predictive variance for the
input range covered by the regression data set. Suitable
hyper-parameters adaptation techniques can be formu-
lated accordingly. In comparison to other alternatives, the
employed GPR method has numerous advantages such
as the high prediction accuracy, conformity with gradient
optimization framework, flexibility and online adaptation
potential. Moreover, the proposed hybrid approach pre-
serving the axial dispersion model rigorous structure can
be further extended with physical modeling knowledge to
describe more complex systems without losing the pre-
diction accuracy gained from the experimental data. The
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Fig. 2. The two GP models representing the two parameters v(ϑ) and D(ϑ). The Prediction mean and variance (±2σv
and ±2σD) are shown along with the points used for regression (+ marker) and the two excluded points (o marker)
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Fig. 3. RTD predictive mean Em(t) (solid) against experimentally determined RTD Eexp(t) (+ marker) for the two
excluded points a) Exp5 and b) Exp7. The predicted variance is represented by the shaded areas around the
predicted mean
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derived GPR models representing parameters in the grey-
box model configuration can be cast into differentiable
analytic closed form expressions which can be efficiently
used in a model based controller design with gradient
based optimization. In Elkhashap et al. (2020) the model is
extended in order to describe the full transient operation of
the VFBD. In Elkhashap et al. (2019) a Nonlinear Model
Predictive Controller (NMPC) employing the model is
realized and tested in closed loop simulations. For future
work, model order reduction techniques are to be investi-
gated to ensure the models computational feasibility and
the method is to be tested on different processes also for
online tracing configuration.
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