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Abstract: The life of a vehicle is heavily influenced by how it is used, and usage information is critical to
predict the future condition of the machine. In this work we present a method to categorize what task an
earthmoving vehicle is performing, based on a data driven model and a single standalone accelerometer.
By training a convolutional neural network using a couple of weeks of labeled data, we show that a three
axis accelerometer is sufficient to correctly classify between 5 different classes with an accuracy over
96% for a balanced dataset with no manual feature generation. The results are also compared against
some other machine learning techniques, showing that the convolutional neural network has the highest
performance, although other techniques are not far behind. An important conclusion is that methods and
ideas from the area of Human Activity Recognition (HAR) are applicable also for vehicles.

Keywords: Maintenance scheduling and production planning, Neural networks in process control,
Measurement and instrumentation.

1. INTRODUCTION

Automated tracking of what task a construction vehicle is
performing has many benefits when one wants to predict the
wear and tear of the vehicle. In the simplest case, only running
time is available, and from experience this gives some notion on
the current wear state of the vehicle. A slightly more advanced
case would be to characterize the vehicle activities, and for
how long each activity has been carried out. Different activities
causes wear on different subsystems, and by collecting such data
more accurate models of wear state can be accomplished. This
work focuses on the characterization of vehicle usage to enable
such analysis, but does not target the actual life time prediction.

For highly computerized vehicles usage characterization is
trivial, since for example speed and load information can be
obtained from a multitude of sensors on the vehicle. A large part
of the population of mining vehicles in the world are however
still low-tech and manually operated, and for such less advanced
vehicles it would be beneficial to categorize the activity from a
simple standalone sensor setup, such as an accelerometer. This
paper targets how to characterize vehicle activities in the case
where no advanced vehicle sensors are available.

The target is similar to the field of Categorization of human
activity and detection of transportation mode. Human Activity
Recognition (HAR) is a well studied field, mainly as a result of
the readily available activity tracking bracelets that are flooding
the market. To detect what type of transportation people are
utilizing has also received a lot of attention, given its benefits
for city planning and the possibility to receive measurements
from mobile phones. Many different classification algorithms
based on accelerometer data are suggested in the literature. Some
researchers focus on more traditional manual feature extraction
followed by a classifier, such as Principal Component Analysis

(Mantyjarvi et al., 2001). A good overview of such methods can
be found in (Figo et al., 2010).

Other researchers focus on using a more automated feature
extraction approach, most commonly using neural networks
for feature extraction and classification. Zeng et al. (2014) use a
single convolution layer followed by two fully connected hidden
layers, keeping the three measured accelerometer channels
separate until the fully connected layers. Liang and Wang (2017)
use the magnitude of the acceleration, since the orientation
of a body-worn accelerometer is often unknown. The one
dimensional acceleration magnitude signal is fed to a multilayer
network with multiple convolution steps. Also Ronao and Cho
(2016) show that multiple convolution layers are efficient for
capturing higher level features. In their case accelerometer and
gyroscope readings were used, resulting in 6 individual channels.

This work is based on methodology presented in (Liang and
Wang, 2017), since their work involves characterizing trans-
portation mode, such as riding a bike, driving, going by train,
etc. Accelerations of public transportation vehicles are likely
more similar to an earthmoving vehicle than gestures of a person,
where most of the HAR research is concentrated. Like Liang and
Wang (2017) we also use multiple stacked convolution layers,
each reducing the dimensionality of the data and capturing
increasingly higher level features. The main reason for using
Convolutional Neural Networks (CNN), is their property to
handle translation invariance. We wish to capture certain accel-
eration patters, but we do not know where in the time segments
they will occur. Another benefit of CNNs is the reduced need of
feature engineering.

A main difference from Liang and Wang (2017) is that we
apply the methodology on vehicle data directly rather than
human subjects. Doing so we can keep the 3 accelerometer
channels separate since the accelerometer orientation is fixed on
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Fig. 1. The type of mine truck used for this study. The accelerom-
eter is located centered on top of the rear wheel axis.

the vehicle. Using this setup, we target the following research
questions (RQ):

RQ1: Can methods used in Human Activity Recognition work
also for vehicles, i.e., what accuracy can such models
reach?

RQ2: Do CNNs give an advantage compared to more conven-
tional machine learning techniques such as random forests
and support vector machines?

2. DATA

Data is available from a three axis accelerometer sampled at
50 Hz on a mine truck as seen in Fig. 1. The main oscillation
frequency of the mine truck is below 2 Hz, and 50 Hz is therefore
deemed sufficient. The data is collected during normal operation
at an active mine site. For this study some meta data such as
current payload mass and vehicle speed is available enabling
automatic labeling of the data.

2.1 Partitioning

The acceleration signal is partitioned into 2 s segments using
50% overlap to extract more samples from the limited data
set. The length is chosen as a trade off where a larger segment
would give more information on what class it belongs to, but
also would increase the risk of having multiple classes within
the same segment. Longer segments would also give a lower
resolution on the final classification results.

An alternative method would be to select 2 s segments from
time periods containing only one class. This would remove the
issue of learning from mixed-class examples, but one would
need to be careful to avoid any edge effects, such as acceleration
patterns that occurs at specific state transitions. If for example
the opening of the box would always occur on the first time
instance in an Unloading segment, this could fool the learning
process by introducing false time dependencies in the model.
When evaluating the model, no true state transitions are known,
and the false time dependencies could cause poor results.

The data is divided into a training set (80%) and a test set (20%).
During training and hyper parameter optimization, only the
training set is used, and it is in turn split with 80% for training
and 20% for validation of parameter selection.
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Fig. 2. The original dataset is unbalanced with a clear majority
of Idle cases, and a minority of Loading cases.

2.2 Labeling

Automatic labeling is performed using this typically unavailable
meta data, and the current task of the vehicle is decided from a
set of logical rules. Five different tasks are defined:

– Idle, as the vehicle stand still doing nothing, but the vehicle
control system is running.

– Hauling, when the vehicle transports material.
– Empty, when the vehicle is driving without payload.
– Loading, when payload is increasing.
– Unloading, when the vehicle dumps its load.

2.3 Normalization and balancing

The accelerometers are of dynamic type, and do not measure
static level, and thus the signals are zero mean by default. To
further normalize the signals, data is divided by the standard
deviation of the entire training set to produce unit variance.

Unbalanced data can cause issues during neural network classi-
fication, since the majority classes are likely to dominate. The
tasks of a mine truck are not equally distributed, and can differ
significantly depending on application. For the data in this study,
two classes are severely underrepresented as seen in Fig. 2. Both
undersampling by discarding majority samples on random, and
oversampling by duplicating minority samples on random are
considered. The sampling techniques are implemented using the
imbalance-learn package (Lemaı̂tre et al., 2017).

Two datasets are created. The undersampled dataset is limited
by the minority class Loading and consists of 3,016 samples per
class for training. The oversampled dataset is chosen to contain
as many samples as the Hauling class, i.e., 204,527 per class.
The undersampled set is used in this work, if not otherwise stated.
For verification an undersampled set of 736 unique samples, i.e.
not present in the training data, is used.

The dataset can be found on https://gitlab.liu.se/
erija11/mine_truck_usage_characterization_
data

3. MODELS

This section includes the different models evaluated, and also
the hyper parameter search that is required to find suitable model
configurations.

3.1 Baseline

A number of out-of-the-box machine learning techniques avail-
able in the Python framework Scikit learn (Pedregosa et al.,
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2011), are investigated to create a baseline evaluating convolu-
tional neural nets against other techniques. To include some time
invariance and hence simplify for such techniques, also spectral
features are included by calculating the frequency response of
each 2 s time segment using the fast Fourier transform (FFT).
The positive half of the spectrum is concatenated for the three
accelerometer channels. The FFT can be regarded as a form
of hand crafted feature, although a general one. The different
techniques are described below.

Support Vector Machines (SVM) The evaluated SVM algo-
rithm is available in Scikit learn based on (Chang and Lin,
2011). The SVM is tuned to use a rbf kernel, C=1000 and
gamma=0.001, by performing a small hyper parameter search.

Random Forests (RF) The evaluated RF is available in Scikit
learn, based on (Breiman, 2001). A small hyper parameter search
showed that n=100 trees is a good choice.

K Nearest Neighbors (KNN) The evaluated algorithm is the
standard KNN available in Scikit learn. Three neighbors are
used, as a result from a small hyper parameter search.

Multi Layer Perceptron (MLP) A single hidden-layer MLP is
evaluated. A small hyper parameter search gives that a hidden
layer containing 200 neurons with Relu activation is sufficient
to exploit the model structure. The output layer has 5 neurons
with soft-max activation to generate a class probability.

3.2 Convolutional Neural Network (CNN)

The CNN architecture is based on the work done in (Liang and
Wang, 2017), with some minor adaptations to fit the input data
in this work. One important difference from their work, is that
the orientation of the three axis accelerometer on a vehicle in our
case is easy to keep fixed. As a result, there is no need to look at
acceleration magnitude such as done in (Liang and Wang, 2017),
and the acceleration channels are kept separate until the fully
connected layer at the end of the network. This is similar to the
late fusion of channels seen in for example (Yang et al., 2015),
and identical to the fusion seen in (Zeng et al., 2014).

The overall structure of the CNN is shown in Fig. 3. The
input consist of three concatenated acceleration vectors with
100 samples each, corresponding to 2 s of acceleration data.
In the frequency response case, the input vector is reduced to
49x3, i.e., the positive half of the spectrum. Each convolution
filter has the shape 15 x 3 and applies zero-padding to preserve
size, typically referred to as same-padding. The filters are
moved one step a time in the temporal direction. This keeps the
acceleration channels separate and preserves the three channels.
The number of feature maps, n, are left as a tunable hyper
parameter. After each convolution, a relu activation is used, and
this is followed by a max pooling operation of size 4 and stride
2 effectively reducing the temporal dimension to half the size.
This is repeated 5 times. Each convolution layer also features l2-
kernel regularization, where the penalty is left as a tunable hyper
parameter. Also the learning rate and number of epochs are left
as tunable hyper parameters. The choice of tunable parameters
is based on what is common when training CNNs.

Finally a fully connected layer with 100 neurons merges the
three channels, and a last layer containing 5 neurons with soft-
max activations converts the result to class probabilities.

n@100x3

n@50x3

n@25x3
n@15x3

n@7x3

100
5

100x3

Fig. 3. Visualization of the convolutional neural network archi-
tecture for time signal input. A series of convolution and
max pooling layers shrink the temporal dimension. Finally
a fully connected layer merges the feature maps and a soft-
max layer converts the result to class probabilities. Layers
are shown as ”feature maps @ data points x channels”

3.3 Hyper parameter search

Given the huge search space for hyper parameters, an optimiza-
tion framework is a necessity to cover at least a small portion
of it. For this work, Talos (Autonomio, 2019) is used since it
offers seamless integration with Keras (Chollet et al., 2015), the
software package used to implement the neural networks. Talos
is used by wrapping the standard Keras syntax in a number of
Talos functions, and then passing parameters as a dictionary.
Some optimization strategies are provided in the framework, but
for this work only full grid search was used.

During hyper parameter optimization none of the test data is
used. Instead 80% of the training data is used for training, and
20% for validation. Once a set of model parameters are chosen,
the full training dataset is used to train the final model.

4. RESULTS

In this section we show the results for the hyperparameter search,
and the prediction results for the different models investigated.

4.1 Hyper parameter search

Results from a full grid hyper parameter search for the CNN
are shown as a parallel coordinates plot in Fig. 4. To increase
readability some noise is added to the plot, separating lines
originating from the same point vertically. Reversing the reg-
ularization column and including accuracy further improves
readability of relations between hyper parameters and accuracy.
Low regularization and feature maps ≥ 64, combined with a
high learning rate gives the highest accuracy. Using 500 epochs
is deemed sufficient to reach the potential of the model.

The overall best model at 94% validation accuracy is selected,
having the hyper parameters seen in Table 1.

Table 1. Best CNN hyper parameters.

Hyper parameter Value

feature maps 64
kernel regularizer 0.001
epochs 500
learning rate 0.001
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Fig. 4. The influence of hyper parameters is visualized using
a parallel coordinates plot. By following the dark lines
from the top of the accuracy column, it is seen how a low
regularization and a high learning rate are most influential
to achieve a high accuracy.

The results from the CNN are compared to the baseline classifi-
cation from out-of-the box machine learning techniques as well
as to the MLP network. The comparison is done on the balanced
test set, making accuracy a good metric. Table 2. shows the
results for both time input and spectral input.

Table 2. Accuracy results for the different machine
learning techniques

Technique Time Spectral

SVM 0.61 0.88
KNN 0.70 0.88
RF 0.82 0.90
MLP 0.76 0.93
CNN 0.94 0.94

The CNN is able to handle the time invariance without assistance,
and outperforms the other techniques for time signal input. By
introducing a generic feature such as frequency response, the
time invariance can be handled also by the other techniques, and
the performance of the CNN is far less superior. The identical
CNN performance for time and spectral input shows that the
network structure is insensitive to transformations.

4.2 Confusion matrix

The best CNN model from the parameter search is evaluated on
the balanced test set. The confusion matrix seen in Fig. 5 shows
the performance to vary between the classes. Most confusion is
seen between the Loading, Unloading, and Idle classes.

Fig. 6 shows examples of acceleration curves for the different
classified cases. They are arranged as the confusion matrix,
i.e., correct classifications are seen on the main diagonal
and combinations of misclassification on the off-diagonals.
Discussions on class similarities are left for section 5.2.

4.3 Oversampled dataset

The undersampling used throughout the work discards a large
part of samples from all but the minority class. The samples
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Fig. 5. Confusion matrix for the CNN evaluated on test data.

could contain useful cases for learning a more accurate model.
Re-training the time signal CNN using the full dataset increases
the accuracy on the test set to reach 0.96. Re-training the RF with
spectral inputs shows no such improvement, and accuracy even
drops to 0.87 in this case. This shows that the CNN structure
is capable of using more information to further improve its
performance. The decrease in RF accuracy is possibly due to
over fitting on the larger dataset. The SVM method failed to
converge for the larger dataset, and no result is presented.

4.4 Post processing

The classification algorithms are left blind when it comes
to previous and following segments, but in reality, a lot of
information is available from how the vehicle can operate.
This information can be utilized. One example is short driving
segments, like if the machine is in state Hauling and briefly
shows state Empty. Sudden loss and gain of load is impossible,
and such segments can be corrected.

A post processing scheme using information from adjacent
segments is applied to remove such invalid changes between
classes. The time series is partitioned without overlap, and each
individual segment is classified using the CNN. This gives 5
signals showing the probability for each class over time. A 3rd
order low pass Butterworth filter with a cut-off frequency of
7.5 Hz is applied forward and backward over the classifier
output, resulting in zero phase shift filtering. Zero phase, or
at least constant phase, is needed not to shift the different class
probabilities w.r.t. each other. For each time instant, the class
with maximum filtered probability is chosen as the predicted
state. Fig. 7 shows the unfiltered and filtered probability signals
for 3 states. At time 7 and 34 marked by star, the unfiltered
unloading briefly has the largest class probability which is
incorrect. After filtering, the correct class has largest probability.
For the underbalanced test set, the method improves accuracy
from 0.94 to 0.96.

This simple method is limited to spikes shorter than the shortest
possible valid segments. This limits the usage to single outliers,
since the loading segments can be as short as 4 s. More advanced
post processing methods such as Bayesian Filters or Hidden
Markov Models are left for future work.
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Fig. 6. Confusion matrix of different examples of acceleration segments, where red solid is in the driving direction, green dash-dot
in the sideways direction, and blue dash in the vertical direction with respect to the vehicle. The main diagonal shows correctly
classified samples, while the off diagonals shows different combinations of mis-classifications.
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Fig. 7. The state probability time signals are filtered, allowing the
removal of rapid state transitions by choosing the maximal
probability from the filtered signals as seen at the stars.

5. DISCUSSION

In this section we share our thoughts on similarities between
vehicle task recognition and HAR, class distinction performance,
and future implementation in a life time prediction setting.

5.1 Similarities to HAR

Since the data used in this work has not been used before, it is
difficult to evaluate the performance of the suggested approach.

One way is to compare different techniques, as done in this paper.
Another is that given the similarities to both data and techniques
presented in (Liang and Wang, 2017) but with the differences:

– The accelerations are generated by vehicle movements
mainly, not human gestures.

– The data is sampled at 50 Hz and contain experiments with
approximately 2 s time windows.

it makes at least some sense to compare the results directly
despite using different data sets.

(Liang and Wang, 2017) presents an accuracy of 75.48%
for the CNN on 2 s time windows. Out of the other ML
techniques investigated, they found random forests (74.09%
accuracy) on spectral features to be almost as effective as
CNN. This is completely in line with our work, although the
absolute accuracy levels are lower in their work, which could
possibly be explained by how similar the different classes
are. It is reasonable that transportation mode classes such as
Taking subway and Taking train are much more similar than
construction vehicle classes such as Unloading and Hauling,
thus complicating the classification task.

Their best results are obtained using longer time segments,
around 10 s, and they reach over 94% accuracy in this case.
For our data, it is not possible to increase the time segments
given the short duration of some tasks.
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5.2 Class distinction

An interesting point is why some classes are misclassified more
than others. By looking at the acceleration signature of the
misclassified samples in Fig. 6, some insights are found. For
all cases classified as Idle, accelerations are low. Distinguishing
such cases from true Idle, where the accelerations are (truly)
low is difficult. The high mixing between Idle, Loading, and
Unloading can possibly be explained by the presence of such
low-acceleration segments in the other classes.

For the case where Idle segments are misclassified as some other
class, Fig. 6 shows that considerable accelerations can occur
also when the true label is Idle. Possible explanations could
be mislabeled data, since the logical rules used for automatic
labeling can not take acceleration into account. For example,
vehicle oscillations can occur for a while after the machine has
stopped. It is also possible some external force has affected the
still-standing machine so accelerations have occurred.

By investigating the external signals for vehicle speed and mass
for the misclassified segments, the following is observed:

– Nearly all cases misclassified as Idle have low velocity.
– Nearly all misclassification Loading as Idle is at the

start/end of a Loading segment.
– Nearly all cases when Hauling and Empty are confused

occurs in low velocity. This is reasonable since load-
dependent accelerations are caused by vehicle movement.

A general observation is that a large portion of the misclassifica-
tion occur at borderline cases.

5.3 Implementation for life time prediction

The high accuracy results enables usage in a life prediction
setting which is not possible today on machines with a low
number of sensors. Knowledge on the amount of time the
machine spends in each state can for instance be used to adapt
service intervals on a per-machine level. However, if the model
is to be used to count the exact number of complete load-haul-
dump cycles, more work is required since single misclassified
segments would cause large errors.

The model complexity is important given implementation on
automotive grade hardware. The CNN model uses 3.9 Mb
memory, and predicts 1 sample in 4e-4 s on a typical laptop. The
RF model uses 2.4 Mb , and predicts 1 sample in 3e-5 s. Even
though the evaluation time is an order of magnitude smaller for
the RF model, both would run on a typical one-card computer.

6. CONCLUSION

A CNN outperforms both the MLP and some conventional
machine learning techniques for this case of vehicle activity
recognition from accelerometer signals. This is in line with the
results from similar networks used on HAR data sets. When a
time invariant transform is introduced, other ML techniques are
almost as good as CNN. Also this is consistent with earlier HAR
research, and shows that the time invariance is a key difficulty
with the classification task.

7. FUTURE WORK

An interesting extension would be to visualize what features the
different convolution layers learn such as in (Zeiler and Fergus,
2014), and could give insights to improve the learning algorithm.

Further interesting extensions would be to let the time window
sweep the signal with a much finer granularity, and to see if state
transitions can be found with a higher resolution.
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