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Abstract: A two-on-one pursuit-evasion differential game is considered. The setup is akin to
Isaacs’ Two Cutters and Fugitive Ship differential game. In this paper it is however assumed
that the three players have equal speeds and the two cutters/pursuers have a non-zero capture
radius. The case where just one of the Pursuers is endowed with a circular capture set is also
considered. The state space region where capture is guaranteed is delineated, thus providing
the solution of the Game of Kind, and the players’ optimal state feedback strategies and the
attendant value function are synthesized, thus providing the solution of the Game of Degree.

1. INTRODUCTION

Isaacs’ Two Cutters and Fugitive Ship differential game
Isaacs (1999) is revisited – see Fig. 1 . In Isaacs’ formula-

Fig. 1. Two Cutters and Fugitive Ship

tion, the cutters are faster than the fugitive ship and point
capture is required. The solution of the game was obtained
using a geometric method, sans a proof. In Pachter (2018)
the validity of Isaacs’ geometric approach was proven. It
was shown that the geometric method–provided strategies
are recovered from the solution of the HJI PDE. In Isaacs
(1999), Pachter (2018), and Pachter (2019), point capture
was considered and the case where the two pursuers are
endowed with circular capture sets of radius ` > 0 was
addressed in Wasz (July 2019). In references Isaacs (1999),
Pachter (2018), Pachter (2019),and Wasz (July 2019), the
pursuers are faster than the evader.

In this paper it is assumed that all three players have the
same speed. Many-on-one pursuit-evasion games where the
players have simple motion and the pursuers and evader
have the same speed require special consideration – see,
? The views expressed in this paper are those of the authors and
do not reflect the official policy or position of the United States Air
Force, Department of Defense, or the United States Government.

e.g. the seminal paper Pshenichnyi (1976), where discrim-
inating/stroboscopic pursuit strategies are employed. This
has become a standard feature in the many-on-one pursuit-
evasion literature as documented in the recent survey
paper Kumkov (2016). Not so in this paper where the
optimal strategies are state feedback strategies.

In this paper, the three players have equal speeds but, as
in Wasz (July 2019), the cutters have a non-zero capture
radius; when the two pursuers have the same speed as
the evader, point capture is not possible, and this even if
the Evader would be obliged to pre-announce his course;
thus the need for finite capture sets. This game, where all
the players have the same speed and the pursuers have a
non-zero capture range, was considered in our preliminary
work Wasz (Oct 2019). The state space region where
capture is guaranteed was delineated thus providing the
solution of the Game of Kind and the closed form solution
of the Game of Degree which yields the players optimal
state feedback strategies was outlined. In this paper, a
streamlined derivation of the main result – the pursuers’
and the evader’s optimal state feedback strategies, and
the Value function, is presented. The novel approach
lends itself to the consideration of additional interesting
scenarios, e.g., the case where the pursuers have different
capture ranges.

The motivation behind this research is directly tied to
air-to-air operations Kang (2010), Horie (2006). Previous
research into this field has focused on games with fast pur-
suers where the objective is point capture, as in Breakwell
(1979), but we are expanding this to include operationally
relevant instances where both the blue and red sides have
similar capabilities and the pursuers are endowed with
finite capture sets, to reflect the range of aircraft weapon
systems. This allows for the considerations of bounded
capture regions, which was not the case when fast pursuers
and point capture only is considered.
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2. GEOMETRY

The Two Cutters and Fugitive Ship differential game is
herein solved using a geometric method based on the so-
lution of the max-min open-loop optimal control problem
– as opposed to solving the HJI PDE – the validity of the
geometric method in the case when the pursuers are faster
than the evader having been proven in Pachter (2018).
Now, when a pursuer and an evader; both with simple
motion á la Isaacs, have the same speed and the pursuer is
endowed with a circular capture set of radius `, the locus
of points in the Euclidean plane which they can reach at
the same time is a hyperbola. Therefore, for any value of
capture range ` > 0 of the pursuer, what would have been a
Cartesian oval had the pursuer been faster than the evader,
as in Wasz (July 2019), will now become a hyperbola. The
Boundary of the Safe Region of the Evader (BSR) will now
be delineated by an arc of the hyperbola

X2

a2
− Y 2

b2
= 1

with the parameters

a =
`

2
, b =

1

2

√
d2 − `2

where d is the P −E separation. Since there are two pur-
suers, there are two hyperbolae at play. The asymptotes
of those hyperbolae are used to solve the Game of Kind,
and these are given by

Y = ± b
a
X

It will be useful to define the hyperbola’s ”eccentricity”
e , d

` , and so the asymptotes’ slope is

b

a
=

√
e2 − 1 (1)

The hyperbola locus, whose foci are the instantaneous
positions of the pursuer P and the Evader E, and it’s
asymptotes, is shown in Figure 2. We use the hyperbola
construct to designate the Safe Region (SR) of E in the
two-on-one differential game when the Pursuers have the
same speed as the Evader. Figure 2 shows the Boundary
of the Evader’s Safe Region (BSR) in the realistic plane
(X,Y) when the pursuer is at (−d

2 , 0) and the evader at

(d
2 , 0). Because the Pursuer is not faster than the Evader,

this BSR is open; in other words, the Evader can escape.
Hence, we need at least one other pursuer to obtain a
closed SR so that the Evader might be isochronously
captured by the two cooperating pursuers.

In the version of the Two Cutters and Fugitive Ship Differ-
ential Game investigated herein we have two pursers with
capture radius ` and one evader, with all three having the
same speed. We use a rotating reference frame (x, y), with
the x-axis running through the instantaneous positions of
the Pursuers P1 and P2 and the y-axis is the orthogonal
bisector of the segment P1P2. The state is specified by
three variables: half of the separation of the pursuers,
xp, and the x and y position, (xE , yE), of the Evader
in the rotation (x, y) frame. For example, the symmetric
situation where E, P1, and P2 are collinear and the Evader
is located halfway between P1 and P2 is illustrated in
Figure 3. This Figure shows both the hyperbolae and their
asymptotes, which intersect. The SR is therefore bounded
and under optimal play the two pursuers will isochronously

Fig. 2. The Hyperbola is the BSR of E

capture the Evader.

Fig. 3. Symmetric State – Two Pursuer Action

If the asymptotes don’t intersect the evader can escape.
But if the hyperbolae intersect and E is in the lens
shaped region formed by the intersecting hyperbolae, if
the pursuers play optimally, captures of the Evader is
guaranteed. I1 and I2 are the points of intersection of
the (P1, E) and (P2, E) based hyperbolae. Each of these
points will be important in the sequel. Our immediate goal
is to determine whether the SR is bounded, that is, the
asymptotes intersect, which obviously is the case in the
symmetric configuration illustrated in Figure 3 – when the
evader is hemmed in by the pursuers, the asymptotes of
the hyperbolae intersect at I ′ and I ′′.

3. GAME OF KIND

When the players are in general position, to find the
solution to the Game of Kind, that is, whether under
optimal pursuer play the Evader’s capture is guaranteed,
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we need to determine whether the SR is bounded, which
is the case if and only if the asymptotes of the hyperbolae
intersect. Consider now the diagram in Figure 4. There are
four points of interest, O1,O2, I ′, and I ′′ that are vertices
of a quadrilateral. This quadrilateral contains the entirety
of the evader’s SR, so we can ensure capturability if we
determine that this quadrilateral is indeed formed.

Fig. 4. Quadrilateral Formed by Intersecting Asymptotes

To this end, consider the angles θ, α1, α2 in Figure 4. Since
a quadrilateral must have all internal angles sum to 360
degrees, we have the following

(360− θ) + α1 + α2 < 360

This yields the condition for a closed SR, and consequently
the capturability condition is

θ > α1 + α2

Since the slope of the asymptotes in the realistic plane
(X,Y ) are specified by Equation 1, we know that α1 =

arctan(
√
e21 − 1) and α2 = arctan(

√
e22 − 1), with e1 = r1

`
and e2 = r2

` . The angles α1, α2, and θ are exclusively
determined by the game’s state (xP , xE , yE). This is shown
in Figure 5 where P1, P2, and E are in a general position.
In Figure 5 the points

Fig. 5. The State (xP , xE , yE)

O1 =
1

2
(xE − xP , yE) , O2 =

1

2
(xE + xP , yE)

The angles

tanα1 =
√
e21 − 1 , tanα2 =

√
e22 − 1

and
tanP1 =

yE
xP + xE

, tanP2 =
yE

xP − xE
Therefore, summing those angles, we can characterize the
captured zone in the reduced state space (xP , xE , yE).
Based on these arguments, in Ref. Wasz (Oct 2019) it
was shown that the SR is closed and capturability is
guaranteed if and only if in the realistic plane (x, y) the
evader is located in the gray zone shown in Figure 6. If the
y-coordinate is greater than `, the evader can escape along
a straight line path; he might even pre-announce his course
and he’ll still get away. The broken line in Figure 6 is not
part of the gray zone where capturability is guaranteed.

The capture zone is limited. This is due to the fact
that the pursuers are not faster than the evader – when
both pursuers or just one pursuer, are/is faster than the
evader, global capturability is guaranteed. Interestingly
though, while the area of the Capture Zone is small, the
pursuers can initially be far away from the evader and yet
capturability is still guaranteed, provided the evader is in
the narrow, gray, capturability zone.

Fig. 6. Region of Capture

4. GAME OF DEGREE

Suppose the initial state is in the capture zone as shown
in Figure 6. We focus on the Capture Zone area which is
in the first quadrant of the (x,y) plane, that is, xE > 0,
yE > 0.

Because both pursuers with equal speed and equal capture
radii must travel the same distance in the same time, the
interception ∆IP1P2 is isosceles, so the vertex I of the
BSR must be on the orthogonal bisector of the segment
P1P2; therefore, the intercept point I is on the y-axis.

We now stipulate that the following must hold – see Fig.
7, √

x2E + (y − yE)2 =
√
x2P + y2 − `,

as capture is only possible if EI = P1I − ` = P2I − `.
Squaring both sides of the above equation, we obtain a
quadratic equation in y
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Fig. 7. Optimal Trajectories

4(`2 − y2E)y2 − 4yE(`2 − y2E + x2P − x2E)y

− (`2 − y2E + x2P − x2E)2 + 4`2x2P = 0.

The discriminant must be non-negative. Thus, the follow-
ing must be true:

4y2E(`2 − y2E + x2P − x2E)2

+ 4(`2 − y2E)(`2 − y2E + x2P − x2E)2 − 16`2(`2 − y2E)x2P > 0

(`2 − y2E + x2P − x2E)2 − 4(`2 − y2E)x2P > 0

We know `2 − y2E > 0, x2P − x2E > 0, thus

`2 − y2E + x2P − x2E > 2
√
`2 − y2ExP .

We need

(xP −
√
`2 − y2E > x2E),

but in the Capture Zone

xP −
√
`2 − y2E > xE .

Thus, as long as the state (xP , xE , yE) ∈ Capture Zone,
the quadratic equation has two real roots. If yE ≥ 0,

y =
yE(`2 − y2E + x2P − x2E)

2(`2 − y2E)

+
`
√

(`2 − y2E + x2P − x2E)2 − 4(`2 − y2E)x2P
2(`2 − y2E)

> 0 (2)

The expression under the square root can be simplified so
that eq. (2) can be written as

y(xP , xE , yE) =
`2 − y2E + x2P − x2E

2(`2 − y2E)
yE

+
`
√

(xP +
√
`2 − y2E)2 − x2E ·

√
(xP −

√
`2 − y2E)2 − x2E

2(`2 − y2E)
(3)

Eq. (3) can be applied ∀ xP > 0, xE > 0, yE > 0 to the
Capture Zone part which is in the first quadrant of the
realistic (x,y) plane. The players’ optimal state feedback
strategies are

sin ψ∗ =
y√

x2P + y2
, cos ψ∗ =

xP√
x2P + y2

sin χ∗ =
y√

x2P + y2
, cos χ∗ = − xP√

x2P + y2

sin φ∗ =
y − yE√

x2E + (y − yE)2
, cos φ∗ = − xE√

x2E + (y − yE)2

where the function y(xP , xE , yE) is given by eq. (3). The
value function

V (xP , xE , yE) =
√
x2P + y2 − `.

When the state is symmetric (xE = 0)

y(xP , 0, yE) =
x2P − (`− yE)2

2(`− yE)

and the Value/time-to-capture

V (xP , 0, 0) =
x2P − (`2 − y2E)

2(`− yE)

When yE = 0,

y(xP , xE , 0) =

√
(xP + `)2 − x2E ·

√
(xP − `)2 − x2E

2`

5. CONTACT

Consider the case where the initial state is not in the
interior of the gray capture zone and E is in contact with
one of the pursuers, say P2 – see Figure 8 – so

(xP − xE)2 + y2E = `2

We insert this expression into eq. (3) and calculate the
y-coordinate of the players’ aim point,

y =
xP yE

xP − xE
(4)

Fig. 8. E in Contact with P2

But note:
tan(π − χ) =

yE
xP − xE

and we calculate

y = xP tan(π − χ) =
xP yE

xP − xE
so,

y = y

Thus, the optimal strategy of P2 mandates that: Once in
contact, P2 pushes against E and does not let go of E.
Once E reaches the y–axis which is the orthogonal bisector
of the P1P2 segment, the captive, but not yet captured, E
will be met by P1 and capture will be effected.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3528



In general, if E does not play optimally by heading toward
the interception point I = (0, y), where y is specified by eq.
(3), he will prematurely come into contact with one of the
Pursuers, whereupon, as discussed above, he’ll be pushed
toward the y–axis where he’ll be met by the companion
pursuer and he’ll be captured. Indeed, see Fig. 9 – the
Evader’s SR is closed and, trying to escape, he’ll therefore
run into one of the hyperbolae, say the P2, E hyperbola.
He will be met by P2 who, by playing optimally, will push
toward the point I ′ on the y-axis where he’ll encounter
P1 and capture will be effected. This play is illustrated in
Figure 9:

Fig. 9. Suboptimal Play of Evader. xP0 = 3, xE0 = −1.4,
yE0 = 1.2, ` = 1.5

E erred by not running toward the aim point I and
prematurely established contact with P2. Consequently,
once contact is established, P2 relentlessly pushed E to
the new aim point I ′ on the y–axis, where E will be met
by P1 and will be isochronously captured by P1 and P2.
This is not good for E because P1I ′ = P2I ′ < P1I =
P2I; E was captured prematurely. A simulation of the
suboptimal trajectory depicted in Figure 9 resulted in a
capture time of 4.9 seconds. A simulation using optimal
feedback strategies subject to the same initial conditions
as the suboptimal simulation resulted in a capture time of
20.1 seconds. The stark difference in capture time validates
the notion that the optimal feedback strategies provide
the evader with maximum longevity. A period of contact
cannot arise in classical pursuit-evasion differential games
where the pursuers are faster than the evader and this
occurrence is unique to games where the pursuer’s speed
is the same, or even lower, than the evader’s. When the
speed ratio µ = vE

vP
, 0 < µ < 1, contact is immediately

fatal for E.

6. DIFFERENT CAPTURE RANGES

We now consider the case where the Pursers are endowed
with dissimilar capture ranges: `1 > `2 ≥ 0. The intercept
point I is no longer on the y-axis. Instead, the point
of interception is defined by the intersections of three

hyperbolae: the safe region-delimiting hyperbola whose
foci are P1 and E, the safe region-delimiting hyperbola
whose foci are P2 and E, plus a third hyperbola whose
foci are the positions of the pursuers, P1 and P2. The
parameters for the latter are

a =
`2 − `1

2
, b =

√
x2P − a2.

The geometry is illustrated in Figure 10. The three hy-
perbolae are concurrent at the point I, which is the three
players’ aim point.

Fig. 10. Non-Equal Capture Disks. `1 = 1.2, `2 = 0.3.

We can now also consider the case where one of the
pursuers, say P2, is not endowed with a capture disk, thus
point capture by P2 is then necessary. The geometry when
`2 = 0, is depicted in Figure 11. The aim point I, where,
under optimal play by the three players the evader will
be captured, is defined by the intersection of the P1, E
hyperbola, the orthogonal bisector of the EP2 segment,
and also the P1, P2 hyperbola; these three curves are
concurrent at the aim point I.

7. CONCLUSION

A pursuit-evasion differential game in which two pursuers
engage an equal-speed evader was analyzed. For capture to
be effected, at least one of the pursuers must be endowed
with a circular capture disk. A geometric approach based
on the solution of the max-min open loop optimal control
problem, whose validity was assumed in Isaacs (1999)
and proven in Pachter (2018), is employed also when
the pursuers have the same speed as the evader. In this
paper, a streamlined derivation of the players’ optimal
state feedback strategies is provided. This, contingent on
the evader being in the zone of capturability, as specified
by the geometric solution of the Game of Kind. The zone
of capturability is rather restricted due to the fact that the
pursuers have the same speed as the evader. In extension,
the optimal feedback strategies for pursuers with unequal
capture radii were determined. Included was also the case
in which only one pursuer is endowed with a capture disk.
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Fig. 11. Point Capture in Conjunction with Capture by
a Pursuer Endowed with a Capture Disk of Radius.
`1 = 1.5.
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