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Abstract:
This work establishes a novel robocentric Non-linear Model Predictive Control (NMPC)
framework for fast fully autonomous navigation of quadrotors in featureless dark tunnel
environments. Additionally, this work leverages the processing of a single camera to generate
direction commands along the tunnel axis, while regulating the platform’s altitude. The
extracted visual dynamics are coupled in the sequel with the NMPC problem, structured
around the Proximal Averaged Newton-type method for Optimal Control (PANOC), which
is a fast numerical optimization method that is not sensitive to ill conditioning and is suitable
for embedded NMPC implementations. Multiple fully realistic simulation results demonstrate
the effectiveness of the proposed method in challenging environments.
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1. INTRODUCTION

The quest for autonomous MAVs that can reliably navigate
in partially-known or unknown areas brings these plat-
forms in the forefront of research and technological break-
throughs, while introducing novel approaches for several
application areas. Infrastructure inspection, search and
rescue, area coverage/surveillanceare fields that already
pursue the incorporation of aerial vehicles in their oper-
ation cycles. These applications can be part of large scale
outdoors environments (e.g. bridges, wind-turbines, power
plants), urban environments (e.g. cities) and subterranean
operating environments (e.g. tunnels and cave networks).
This article approaches the problem of fast navigation
in dark and featureless subterranean environments like
tunnels, by coupling a Nonlinear Model Predictive Control
(NMPC) architecture that plans the robot motion along a
subterranean tunnel axis and regulates its altitude with a
single image frame processing architecture.

Several works in the existing literature have addressed
the control and navigation of MAVs in challenging en-
vironments using various sensor configurations. In Öza-
slan et al. (2017) the fields of estimation, control and
mapping for the MAV’s autonomous navigation along
penstocks, have been studied. In Tan et al. (2019) a
range based sensor array approach has been developed to
navigate along right-rectangular tunnels and cylindrical
shafts. In Mascarich et al. (2018), the authors presented
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a multi-modal sensor unit for mapping applications, as a
means for aerial robots to navigate in dark underground
tunnels. In Falanga et al. (2018), a perception-aware Model
Predictive Control (MPC) algorithm has been proposed
to compute trajectories for quadrotors that maximize the
visibility of a desired target, optimizing both the action
and perception objectives. In Mcfadyen et al. (2013) a
collision avoidance scheme has been presented that guides
an aerial vehicle around an object along a conical spiral
trajectory using a spherical camera model in a visual
predictive control. Other works on vision based control
have approached the navigation from other aspects, such
in Potena et al. (2017) where the authors proposed a
method to guide a multirotor to a desired pose, while
simultaneously keeping a target within the field of view of
the onboard camera. In this work, a visual servoing scheme
is used to generate a trajectory, based on the minimization
of the target re-projection error, while a MPC scheme was
developed to track the trajectory. In Sheckells et al. (2016)
the authors presented a hybrid visual servoing scheme for
deferentially flat systems formulated as an optimal control.
The method initially computed the final pose of the vehicle
using the desired camera view by solving a Perspective-n-
Point problem and then used optimal control to compute a
feasible trajectory, with a cost function to keep the image
features in the view.

Based on the aforementioned state of the art, the aim
of this article is to advance the current state by the
following four novel contributions: a) establish a general
control framework for fast navigation of MAVs in feature-
less tunnel-like subterranean environments b) incorporate
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perception states in the MAV dynamics and coupling them
with the MAV’s states and control inputs, where the
perception objectives are part of the cost function during
the optimization. c) approach the platform navigation as
a free-flying object in the velocity domain of x and y
axis, while using single image depth-map estimation to
align the heading towards the tunnel axis and regulate the
platform height and d) provide extended simulation results
to demonstrate the performance.

1.1 Outline

The rest of the article is structured as it follows. Section 2
describes the overall framework, the platform and the
image dynamics, the proposed centroid extraction method
and the proposed mathematical establishment of the novel
vision based NMPC control formulation. Section 3 pro-
vides an overview of the performed extended realistic sim-
ulation results on different scenarios and finally, Section 4
presents the concluding remarks of the developed system.

2. FREE-FLYING MAV VISION-BASED CONTROL
FRAMEWORK

This section describes the methodology of all relative com-
ponents, from the control design to the visual processing
scheme. Figure 1 showcases the proposed resulting concept
of the method in two different tunnel environments with
multiple turns and inclinations, while the MAV follows the
vertical and horizontal axes along the tunnel. In the sequel,
the proposed free-flying MAV scheme will be established.

Fig. 1. Tunnel views showing the MAV following the tunnel
axis and a corresponding altitude descend, where a)
depicts xy view of the tunnel axis and b) depicts xz
view of the tunnel altitude descend.

2.1 Preliminaries

The world frame W is fixed with the unit vectors
{xW , yW , zW} following the North-West-Up (NWU) frame
convention. The body frame of the aerial vehicle B is at-
tached on its base with the unit vectors {xB, yB, zB}. The
zB is antiparallel to the gravity vector, xB is looking for-
ward the platform’s base and yB is in the NWU convention.
The onboard camera frame C has unit vectors {xC , yC , zC}.
Furthermore, yC is parallel to the gravity vector and zC

points in front of the camera. Finally, the image plane is
defined as I with unit vectors [xI , yI ]. Figure 2 depicts
an overview of the utilized main coordinate frames of the
aerial platform.

2.2 MAV Dynamics

The first step for solving the model based control problem
considers the description of the robot dynamics. In this
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Fig. 2. Coordinate frames, where W , B, C and I denote
world, body and camera and image coordinate frames
respectively.

work the proposed control scheme is employed alongside
a low level flight controller and therefore the modelling
does not focus on producing low level motor commands
from the sensory input, but stays at a level higher. To this
end, the quadrotor model derived in Kamel et al. (2017)
is used, providing roll φcmd, pitch θcmd ∈ [−π/2, π/2] and
thrust Tcmd ∈ R+ commands, that are later handled by
a low-level controller mounted onboard the aerial vehicle.
The dynamic model considers that the main forces acting
on the vehicle are produced from the propellers, while it is
enhanced by taking into account the induced drag, another
critical effect that is evident while maneuvering, and it is
introducing additional forces on the rotors. The drag force
introduces an extra force on the xy rotor plane, while the
following Equation (1) summarizes the quadrotor model.
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Where v
B = [vBx , v

B
y , v

B
z ]

⊤ ∈ R
3 represents the linear

velocities on each axis, φ, θ ∈ R are roll and pitch, R ∈
SO(3) is the rotation matrix without a rotation around
the z-axis, since the coordinates are in the body frame,
Td ∈ R is the mass normalized thrust, g is the gravitational
acceleration, Ax, Ay, and Az are the normalized mass drag
coefficients, τφ and τθ are the time constants, and Kφ,
Kθ are the roll and pitch angle gains, and finally φcmd,
θcmd are the reference values of the roll and pitch angle
for the low level controller. In this model, the drag force is
expressed with the diagonal matrix, which associates the
linear velocities with the force affecting the robot motion.
Following the work presented in Small et al. (2019), the
model incorporates the mass normalized thrust Td that is
converted to Tcmd using the derived adaptive acceleration
control scheme. In this way, the controller is able to adapt
to changes regarding the payload, the motor thrust and
the thrust loss from the battery depletion over time.

2.3 Image Dynamics

Image Based Visual Servoing (IBVS) The visual pro-
cessing part of the proposed control scheme operates in
the 2D image plane, as discussed in Section 2.4.1, without
any available metric in the 3D world frame. To follow the
desired target in the image plane the coupling between
the camera motion, attached on the MAV, and the target
movement in the image plane should be studied. Therefore,
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for deriving proper control actions, the image dynamics
should be coupled with the MAV’s control input and/or
states.

A 3D point PW = [XW
P , YW

P , ZW
P ]⊤ ∈ R

3 fixed in
the world W is expressed in the camera frame P C =
[XC

P , Y
C
P , Z

C
P ]

⊤ ∈ R
3, using the homogeneous transforma-

tion T : R4 → R
4 through matrices TB

W and T C
B ∈ R

4×4.
The point is projected into the image plane I using a pin-
hole camera model Hartley and Zisserman (2003) and the
perspective projection equation. The projection function
Π : R3 → R

2 results in the 2D point pC = [up, vp] ∈ R
2

can be expressed as it follows:

up = fx
XC
P

ZC
P

, vp = fy
Y C
P

ZC
P

(2)

where up, vp ∈ R are the horizontal and vertical pixel
coordinates and fx, fy ∈ R are the camera focal length
for the pixel columns and rows respectively. up and vp are
then discretized and quantized into pixel coordinates uI ,
vI ∈ N. The normalized pixel coordinates sx and sy ∈ R

can be defined as:
sx = (uI − ox)/fx, sy = (vI − oy)/fy, (3)

where ox ∈ N and oy ∈ N are the principal points in pixels.

Following the IBVS theory Chaumette and Hutchinson
(2006), calculating the derivative of (2) over time provides
the matrix that connects the time derivative of a 2D point
in the image plane with the rates of the camera in the 3D
plane. More specifically, (4) describes the desired relation
in the 2D target motion and the 3D camera motion, with
the assumption that the target is static.

[
ṡx
ṡy

]

= L
[
v
C
x v

C
y v

C
z ω

C
x ωC

y ωC
z

]⊤
(4)

where v
C = [vCx, v

C
y , v

C
z ]

⊤ ∈ R
3 and ωC = [ωC

x , ω
C
y , ω

C
z ]

⊤ ∈ R
3

represent the linear and angular velocities in frame C, while
the L ∈ R

2×6 matrix that describes the coupling is called
Interaction matrix and is defined as:

L =

[
− 1

d(uI ,vI)
0 sx

d(uI ,vI)
sxsy −1−s2x sy

0 − 1

d(uI ,vI)

sy

d(uI ,vI)
1+s2y sxsy −sx

]

(5)

where d(uI , vI) = ZC
P and d()̇ represents the depth map of

the image I(uI , vI), ∀uI ∈ columns and vI ∈ rows. The
interaction matrix L includes the depth ZC

P , information
that is lost when working in the 2D image plane. In this
article the 2D processing extracts the dark area, which is
assumed to lie in front of the aerial vehicle in a close range.
Making this assumption, the system considers the depth
measurement as known and fixed.

Perception States The starting point to introduce the
perception states in the dynamic model of the MAV and
couple them with the control input and the corresponding
state is presented in (4). Generally, the aim is to simplify
the interaction matrix, keeping the camera motions that
have the major impact in the image dynamics. The rate
of change of sx is mainly affected when the camera is
undergoing a yaw motion ωy and a lateral velocity vx.
Similarly, the rate of change of sy is mainly affected when
the camera is undergoing a vertical velocity vy and a pitch
rate ωx. In both cases the other camera motions have
negligible affect on the rate of change of the target position
in the image plane. Thus, the simplified image dynamics
can be summarized as it follows:

[
ṡx
ṡy

]

=
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
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In the case where sx is closer to the center of the image, ωC
y

has a greater impact in the rate of change, when compared
to the lateral velocity v

C
x of the camera and therefore vx

can be ignored. Similarly, for an aerial vehicle, the θB is
commanded to zero and as a consequence the θ̇B will be
close to zero as well, thus having a negligible effect in the
sy rate of change. To this end, the vertical velocity vy
has the main impact in the target motion in the image
plane. Equations (6) and (7) express the simplified image
dynamics that consist the perception state.

ṡx = (1 + s2x)(ψ̇cmd) (6)

ṡy =
1

d(uI , vI)
v
B
z (7)

As previously discussed, the depth ZC
P has been assumed

known and in the system it has been set at 3m distance
from the MAV. It is also evident that the sx is directly
coupled with the control input command ˙ψcmd, while sy
is coupled with the vehicle’s state vz. Finally, using (6)
and (7), the perception state vector S = [sx, sy] ∈ R

2 is
defined.

2.4 Visual Processing

Depth Estimation Light scattering Cozman and Krotkov
(1997) is a well known process, where the light is deflected
to other directions and the formation of an image can be
defined as follows:

I(u, v) = O(u, v) · tr(u, v) + a[1− tr(u, v)] (8)

where I : [0...M − 1] × [0...N − 1] → N
2 is the observed

image, O : [0...M − 1] × [0...N − 1] → N
2 is the original

image, a is the color of the atmospheric light, tr(u, v) is the
transmission term, (u, v) are the pixel coordinates, where
u = 0, ...,M−1 and v = 0, ..., N−1 with M the width and
N the height of the image. The first term O(u, v) · tr(u, v)
is called direct attenuation Tan (2008), and the second
term a[1− tr(u)] is called airlight. The transmission term
describes the portion of the light that is not scattered and
reaches the camera and can be defined as:

tr(u, v) = e−βd(u,v) (9)

where β is the scattering coefficient of the atmosphere and
d(u, v) is the depth of the scene for pixel coordinates (u, v).

The (9) could be utilized in order to estimate a depth map
from the original image. However, the estimation of the
terms tr(u, v) and a is required. Thus, the Dark Channel
Prior (DCP) method He et al. (2011) is used in order to
estimate these terms.

Centroid Extraction In order to extract the point with
the maximum distance from the MAV, we first em-
ploy a grey scale morphological operation in the depth
map image Soille (2003) and in the sequel employ the
kmeans Theodoridis and Koutroumbas (2008) algorithm in
order to segment the depth image into a number of clusters
defined as Ci, i = 1, ..., 10. Finally, we compute the average
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intensity for each cluster and extract the centroid (sx, sy)
of the cluster with the minimum average intensity Cm from
the depth map image Gonzalez and Woods (2006). The
centroid of the cluster is the arithmetic mean of all (x, y)
pixel coordinates in the cluster defined as:

sx =
1

|Cm|

∑

(x,y)∈Cm

x, sy =
1

|Cm|

∑

(x,y)∈Cm

y (10)

where |Cm| is the number of pixels of the cluster. The
calculated centroid is visualized with a red circle in the
sequential frames, while the visual processing architecture
provides the centroid with update rates of 1Hz. The
overall concept and impact on the centroid calculation and
the overall clustering on the sequential image frames is
depicted in Figure 3.

Fig. 3. On the left onboard image frame with the extracted
centroid denoted with the red circle, while on the
right the estimated depth map from a single image
is depicted.

2.5 NMPC Controller

The NMPC considers the non-linear dynamic model of
the platform, which is derived by (1), (6), and (7). The
state of the system is defined as xB(t) = [vBx , v

B
y , v

B
z , φ, θ] ∈

R
5, while x̂B is the estimated state obtained from the

onboard sensor measurements. More specifically, the linear
velocities [v̂Bx , v̂

B
y , v̂

B
z ] are provided from the ground truth

simulation environment, while the roll φ̂ and pitch θ̂
states are provided from the onboard IMU. Moreover, the
perception state vector S(t) = [sx, sy] includes the visual
states on the centroid, where Ŝ is the estimated state
and the values ŝx and ŝy are provided from the visual
processing unit discussed in Section 2.4.1. The NMPC
objective is to generate uB = [φcmd, θcmd, ψ̇cmd, Tcmd] to
keep the centroid in the center of the image and by doing
this, the MAV navigates along the tunnel, while following
the tunnel’s altitude changes. Based on the obtained
commands uB, the low-level controller generates motor
commands for the MAV.

The continuous-time dynamics can be discretized Stetter
(1973) (e.g. using an explicit Runge-Kutta method) lead-
ing to the overall discrete-time dynamical system of the
form in (11). Moreover, xB

k+j|k, uB
k+j|k and Sk+j|k are the

vehicle’s state, control action and perception state ahead
of k + j steps form the current time k denoted as:

xBk+1 = f(xBk , u
B
k ), Sk+1 = g(vBz,k, Sk, ψ̇k) (11)

For the proposed NMPC, the following finite horizon stage
cost function is defined l : Rnx ×R

nS ×R
nu → R+ and the

terminal cost function lf : Rnx × R
nS → R+.

l(xB, S, uB) =
∥
∥xB − xBref

∥
∥
2

QxB

︸ ︷︷ ︸

tracking vehicle states

+ ‖S − Sref‖
2
QS

︸ ︷︷ ︸

tracking the centroid

+
∥
∥uB − uBref

∥
∥
2

R
︸ ︷︷ ︸

hovering term

lf
(
xB, S

)
=

∥
∥xB − xBref

∥
∥
2

QxB

f
︸ ︷︷ ︸

tracking vehicle states

+ ‖S − Sref‖
2
QS

f
︸ ︷︷ ︸

tracking the centroid

The cost function of the optimization involves four terms.
The first term tracks the vehicle’s states towards the
desired velocities and attitudes, the second term is min-
imizing the position of the centroid, the third term is
the hovering term, where uBref is [g, 0, 0]⊤ that is the
hover trust with horizontal angles, and the forth term
is the terminal cost. Additionally, Qx

B

∈ R
nx×nx is the

weight matrix for the MAV’s states, QS ∈ R
nS×nS is the

weight matrix for the perception states, R ∈ R
nu×nu is the

weight matrix for the control input, Qx
B

f ∈ R
nx×nx is the

terminal cost and QSf ∈ R
nS×nS is the terminal cost for the

perception part, while each term value reflects the relative
importance of the term in the objective function. Now, the
NMPC scheme can be formulated in the following equation
for the problem of navigation in unknown subterranean
tunnels:

min
{uB

k+j|k
}
N−1
j=0

lfN

(
x
B
k+N|k, Sk+N|k

)

+

N−1∑

j=0

lk+j|k

(
x
B
k+j|k, Sk+j|k, u

B
k+j|k

)

s.t.

x
B
k+j+1|k = f(x

B
k+j|k, u

B
k+j|k), j ∈ N[0,N−1]

Sk+j+1|k = g(v
B
z,k+j|k, Sk+j|k, ψ̇k+j|k), j ∈ N[0,N−1]

u
B
k+j|k ∈ [u

B
min, u

B
max], j ∈ N[0,N−1]

x
B
k|k = x̂

B
k

Sk|k = Ŝk

(12)

where N ∈ N is the control horizon, uBmin and uBmax are
bounds on control actions. At every time instant k, a
finite-horizon optimal problem is solved with a user defined
interval, while a corresponding optimal sequence of control
actions u⋆B

k|k, . . . u
⋆B
k+N−1|k are generated, where the first

control action u⋆B
k|k is applied to the low-level controller.

In the next sample time instant, the optimization solves
the same problem by using the solution in the previous
interval as the initial guess and the updated information
on current states value. More information of the structure
and implementation of the PANOC controller can be found
in Stella et al. (2017), while Figure 4 presents the overall
proposed system architecture.

3. SIMULATION RESULTS

The proposed framework has been evaluated in the
Gazebo Koenig and Howard (2004) robot simulation en-
vironment,the code is written in C++ and is devel-
oped within the ROS framework. The robot model used
in the simulation environment is a simplified multiro-
tor CAD model, equipped with a front-facing camera,
a ROSFlight flight controller Jackson et al. (2016) and
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Fig. 4. Overall block diagram of the proposed system.

an IMU.Throughout the simulations, the gazebo world 1

“tunnel_practice_2.world”, developed for the DARPA
Subterranean challenge 2 , has been selected for deploy-
ing the aerial platform. The NMPC has a sampling rate
of 20Hz, a prediction horizon of 40 steps, while the tuning
parameters used by the NMPC were:

Qx = diag(10, 10, 10, 3, 3), Qxf = 10Qx,

QS = diag(10, 60), QSf = 10QS ,

R = diag(2, 10, 10, 2)

where diag denotes a square diagonal matrix. Additionally,
in the control design, the following bounds have been
considered as: −0.4 rad/s ≤ [φcmd, θcmd, ψ̇cmd] ≤ 0.4 rad/s
and Tcmd ∈ [0, 1]. In the simulation world, two different
subterranean tunnel routes have been chosen for the MAV
to explore. Figure 5 provides a graphical overview of the
two tunnel morphologies.

Fig. 5. Selected tunnel morphology for the evaluation of
the proposed scheme from the DARPA Subterranean
challenge gazebo world “tunnel_practice_2.world”. a)
depicts Scenario 1 and b) depicts Scenario 2

In both simulation scenarios, the desired reference state
vectors were xref = [2m/s, 0, 0, 0, 0] and Sref = [0, 0],
while it should be highlighted that the MAV can perform
the exploration task without any prior information from
the environment, since the MAV navigates by tracking
the centroid in the center of the acquired image frame,
enabling in this way the proper translation along the
tunnel’s horizontal and vertical axes. For these simulation
scenarios the following corresponding videos depict the
exact responses of the aerial vehicle - Video1: https://
youtu.be/F34t3BBHu7w and Video2: https://youtu.be/
6FEU-wxN7WM.

First Scenario The selected tunnel focuses mainly in
the sy tracking, since the tunnel has a challenging part,
where two consecutive altitude descending tunnel areas are
followed by an altitude ascending tunnel area. Figure 6
depicts the xy and xz views of the ground truth path
of the MAV. This information has not been used from
the proposed system and is provided only for visualization
purposes. A main point of the resulting translation based
1 https://bitbucket.org/osrf/subt/wiki/Home
2 https://subtchallenge.com/

on the novel proposed navigation scheme is that the MAV
has properly followed the center of the tunnel also on
the z axis with an overall descending of 10 meters. The

0
200 −100

−50
0

−8
−4
0

XGT [m] YGT [m]

Z
G

T
[m

]

Fig. 6. Trajectory of the MAV during the navigation in the
1st tunnel scenario

first subfigure of Figure 7 presents the tracking of v
B
x

to the desired reference. In this case the controller was
able to follow the reference with an Mean Absolute Error
of 0.09m/s. The second subfigure of Figure 7 showcases
the reference tracking performance of sx over time. For
the first 20 sec, the aerial platform starts from an off-
center pose outside the tunnel and therefore the centroid
on the x axis is slightly oscillating in a way that guides
the MAV inside the tunnel. For the time instances 38 sec,
65 sec, 140 sec, 150 sec and 165 sec the centroid reaches
peak values, depicting that the tunnel is taking a turn
and the MAV has to yaw along the axis. Moreover, for the
time instances 85 sec and 118 sec the centroid is oscillating
but the magnitude of the oscillation is with an error
less than 0.05. This oscillation can also denote that the
aerial platform is flying close to another obstacle in the
tunnel and does a manoeuvre to avoid it. The third
subfigure of Figure 7 depicts the sy reference tracking.
This plot shows that the values are close to zero, but
it also includes peaks that are produced from the visual
processing, since sy sometimes jumps back and forth some
pixels. Nevertheless, these peaks occur instantaneously,
where the average magnitude of the error esy = srefy − sy
is bounded −0.05 ≤ ēsy ≤ 0.05. Therefore, the controller
tries to regulate the small errors and the altitude of the
MAV during the navigation is not disturbed overall. For
the time instances 85 sec and 110 sec the error is positive
and reaches 0.3 meaning that the tunnel is vertically
descending and the MAV follows it. Moreover, for the time
instance 122 sec, the error reaches -0.22 and this denotes
a vertical ascending of the tunnel and the fact that the
MAV tries to follow the vertical axis without colliding to
the walls.

The control signals (roll, pitch, and the normalized thrust
references) are generated by the non linear solver and are
depicted at Figure 8. An interesting note in the presented
responses is that when the tunnel is taking a turn, the
roll of the MAV is offsetting from zero, meaning that the
roll is connected with the centroid motion on x axis, but
the magnitude is negligible. This also leads to faster linear
velocities in the x axis, as shown in Figure 7.

Second Scenario In this scenario, the translation along
the tunnel axis has been evaluated, since it contains
multiple turns in various configurations. Figure 9 depicts
the ground truth 3D path that have been followed by the
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Fig. 7. Linear velocity x, centroid sx and sy reference
tracking during the navigation in the 1st tunnel
scenario

MAV. This Figure also demonstrates the altitude descend
of the vehicle of an overall 8.5m.

Similarly to the case 1, Figure 10 presents the reference
tracking plots for the v

B
x , sx and sy. The performance is

similar, where the sx has more peaks, since the tunnel
contains more turns and for the sy, tracking peaks occur
similar to the case 1, without affecting majorly the navi-
gation.

Table 1 presents a summary of the performed simulations,
depicting the navigation time and the Mean Absolute
Error (MAE) for sx, sy and v

B
x .

Table 1. Comparison of the method in each
tunnel for three different velocity references

Navigation Time v
B
x

MAE

Ref v
B
x

1m/s 1.5m/s 2m/s 1m/s 1.5m/s 2m/s
Tunnel 1 358 s 240 s 195 s 0.04 0.07 0.09
Tunnel 2 873 s 592 s 467 s 0.05 0.07 0.1

sx MAE sy MAE

Ref v
B
x

1m/s 1.5m/s 2m/s 1m/s 1.5m/s 2m/s
Tunnel 1 0.03 0.045 0.07 0.036 0.05 0.06
Tunnel 2 0.04 0.06 0.08 0.02 0.025 0.03

4. CONCLUSIONS

This article approached the problem of fast autonomous
navigation in dark, featureless and unknown subterranean
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Fig. 8. Control signals generated from the PANOC solver
to the low-level controller during the navigation in the
1st tunnel scenario.
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Fig. 9. Trajectory of the MAV during the navigation in the
2nd tunnel scenario.

environments like tunnels, by coupling a NMPC control
architecture that plans the robot motion along the tun-
nel axis and regulates its altitude with a single image
frame processing architecture. In the proposed architec-
ture the robot is considered as a free flying object, while
its dynamic model has been augmented with vision based
perception states and is part of the objective function
for the overall optimization problem. On top of that, a
method based on a sequence of single frame images was
used to extract a navigation centroid in the image plane
in order to identify the free space of the environment both
horizontally and vertically. Simulation results in a realistic
simulation environment demonstrated the ability of the
proposed system to navigate along dark tunnels.
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