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Abstract: We consider the design problem for discrete-time bilinear control systems subjected
to arbitrary bounded exogenous disturbances. A procedure for the construction of the stabiliz-
ability ellipsoids and stabilizability domain for discrete-time bilinear control systems is proposed
and its efficiency is proved. The main tools are the linear matrix inequality technique and
the apparatus of quadratic Lyapunov functions. This simple yet general approach is of great
potential; for instance, it can be generalized to the various robust statements of the problem.
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1. INTRODUCTION

Since the appearance of the monograph Mohler (1973),
also see Ryan and Buckingham (1983); Isidori (ed.) (1990);
Chen et al. (1991), problems related to stability, stabiliza-
tion, and control design for bilinear systems are in the
focus of numerous publications. There exists a variety of
problem statements as well as approaches to the solution;
e.g., see Ryan and Buckingham (1983); Chen et al. (1991);
Čelikovský (1990, 1993); Tibken et al. (1996); Belozyorov
(2002, 2005); Andrieu and Tarbouriech (2013); Coutinho
and de Souza (2012); Kung et al. (2012); Omran et al.
(2014). In particular, an ellipsoidal approach to such prob-
lems was the subject of discussion in Tibken et al. (1996).

In Khlebnikov (2015, 2016), an approach to the description
of a stabilizability domain was proposed for disturbance-
free continuous time bilinear systems. Using the linear
matrix inequality technique and quadratic Lyapunov func-
tions, a so-called stabilizability ellipsoid was constructed.
This enabled efficient construction of nonconvex approxi-
mations to the stabilizability domains of disturbance-free
bilinear control systems. In Khlebnikov (2018) this results
were generalized to the discrete-time case. Among the
most close publications we mention Amato et al. (2009);
Tarbouriech et al. (2009); they are also targeted at the con-
struction of quadratic Lyapunov functions in the problem
of stabilizability of bilinear systems, and use the apparatus
of linear matrix inequalities.

A number of recent publications are devoted to discrete-
time bilinear control systems; e.g., see Goka et al. (1973);
Tie and Lin (2015); Athanasopoulos and Bitsoris (2008,
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2011), etc.; however the considerations in most of them
are limited to the issue of controllability. The present
paper differs essentially from all these works, since it deals
with discrete-time bilinear systems subjected to bounded
exogenous disturbances. In the present paper, an efficient
procedure is proposed for the construction of stabilizability
ellipsoids for discrete-time bilinear control systems sub-
jected to exogenous disturbances; moreover, a new prob-
lem is formulated and solved, which is construction the
stabilizability domains.

The paper is organized as follows. Section 2 presents an
important auxiliary result that represents a generalization
of the so-called Petersen’s lemma; Section 3 contains the
statement of the problem. Section 4 is devoted to the
analysis problem and to construction of stabilizability
ellipsoids, whereas Section 5 contains the main result of
the paper. In Section 6 we present a procedure for the
construction of stabilizability domains for discrete-time
bilinear control systems subjected to exogenous distur-
bances, and Section 7 presents comments and conclusions.

In all formulations throughout the paper, scalar control
input is considered; however, the proposed approach can
be fully generalized to the case of many-dimensional con-
trols; the derivations become somewhat more involved
technically, whereas the ideological part remains nearly
the same.

We stress that the proposed approach is based on the
solution of convex optimization problems, however it leads
to nonconvex approximations of stabilizability domains of
discrete-time bilinear systems.

In the sequel, we use the following notation: ‖ · ‖ is the
Euclidean norm of a vector and the spectral matrix norm,
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> is the transposition sign, I is the identity matrix of ap-
propriate size, and all matrix inequalities are understood
in the sense of sign-definiteness.

2. PRELIMINARY RESULT

The so-called Petersen’s lemma, see Petersen (1987), is
an effective tool widely used in various statements of the
problems of stabilization and control.

Lemma 1. (Petersen’s lemma). Let G = G> ∈ Rn×n,
0 6= M ∈ Rn×p, and 0 6= N ∈ Rq×n be given matrices.
The inequality

G+M∆N +N>∆>M> � 0

is valid for all ∆ ∈ Rp×q : ‖∆‖ ≤ 1 if and only if there
exists a number ε > 0 such that(

G+ εMM> N>

N −εI

)
� 0.

We introduce the following modification of Petersen’s
lemma. Namely, instead of norm-bounded matrix uncer-
tainty we consider vector uncertainty subjected to the
ellipsoidal constraint.

Lemma 2. Let G = G> ∈ Rn×n, 0 6= M ∈ Rn×q,
0 6= N ∈ R1×n, and 0 ≺ P = P> ∈ Rq×q be given
matrices. The inequality

G+MδN +N>δ>M> � 0

is valid for all

δ ∈ Rq : δ>P−1δ ≤ 1

if and only if there exists a number ε > 0 such that G MP N>

PM> −εP 0
N 0 −ε−1I

 � 0.

The proof of the Lemma 2 follows from Petersen’s lemma
for the vector uncertainty ∆ = P−1/2δ such that ‖∆‖ ≤ 1.
This result will be essentially used in the exposition to
follow.

3. STATEMENT OF THE PROBLEM

Consider the discrete-time bilinear control system

x`+1 = Ax` +Bx`u` + bu` +Dw`, (1)

with state variable x` ∈ Rn, scalar control input u` ∈ R,
initial state x0 and exogenous disturbance w` ∈ Rm, which
is bounded at every time instant:

‖w`‖ ≤ γ for all ` = 0, 1, 2, . . . (2)

Here A,B ∈ Rn×n, D ∈ Rn×m, and b ∈ Rn are given
matrices and vectors.

Definition 1. The ellipsoid

E =
{
x ∈ Rn : x>P−1x ≤ 1

}
, P � 0, (3)

is said to be stabilizability ellipsoid associated with the
static linear state feedback

u` = k>x`, k ∈ Rn, (4)

if trajectory of the closed-loop system (1) embraced with
feedback (4), emanating from any point in this ellipsoid
remains to stay inside this ellipsoid for all admissible
disturbances (2).

We are interested to construct the stabilizability ellipsoid
for the considered system. In what follows, this ellipsoid
will be made as large (in a certain sense) as possible.

Embracing the bilinear system (1), (2) by a static linear
feedback (4) we arrive at the quadratic discrete-time
dynamical system

x`+1 = (Ac +Bx`k
>)x` +Dw`,

where
Ac = A+ bk>.

The dynamical systems of this form are the subject of our
interest in the next section of this paper.

4. ANALYSIS

Consider the quadratic discrete-time dynamical system of
the form

x`+1 = (A+Bx`k
>)x` +Dw`, (5)

where A,B ∈ Rn×n, D ∈ Rn×m, k ∈ Rn, x` ∈ Rn is the
state variable, and w` is the exogenous disturbance (2).
Note that no other constraints are imposed on the dis-
turbance w`; e.g., it is not assumed to be stochastic or
harmonic. Hence, we consider l∞-bounded exogenous dis-
turbances. Assume that the matrix A is Schur stable.

System (5) in the absence of exogenous disturbances
(D = 0) was the subject of analysis in Khlebnikov (2015,
2016). Using the linear matrix inequality technique and
the apparatus of quadratic Lyapunov functions, a regular
approach was proposed in these papers for the construction
of stabilizability ellipsoids for such bilinear system. The
goal of this section is to construct a stabilizability ellipsoid
for system (5) in the presence of disturbances (2).

In contrast to disturbance-free systems, trajectories enter
the reachability set of the closed-loop system (or approach
a point on its boundary), whereas the trajectories have to
converge towards the origin in the disturbance-free case.
An important common feature of these two cases is that
the trajectory of system (5) that emanates from any point
x0 inside the stabilizability ellipsoid, remains to stay inside
this ellipsoid for all admissible disturbances (5).

The theorem below establishes a sufficient condition for
the ellipsoid (3) to be a stabilizability ellipsoid for system
under consideration.

Theorem 1. Ellipsoid (3) is a stabilizability ellipsoid for
system (5), (2) for given bound γ, if its matrix P satisfies
the matrix inequalities

−αP 0 0 0 Pk PA>

0 −P 0 BP 0 0
0 0 −(1− α)I 0 0 γD>

0 PB> 0 −εP 0 PB>

k>P 0 0 0 −ε−1I 0
AP 0 γD BP 0 −P

 � 0,

P � 0,
for some α and ε > 0.

Proof. Introduce the quadratic form

V (x) = x>Qx, 0 ≺ Q = P−1 ∈ Rn×n.

To force the trajectories x` of system (5) remain in the
ellipsoid

E =
{
x ∈ Rn : V (x) ≤ 1

}
,
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it is sufficient to require the following condition to hold:

V (x`+1) ≤ 1 for V (x`) ≤ 1 and all ‖w`‖ ≤ γ.

Keeping in mind that

V (x`+1) = x>`+1Qx`+1

= x>` A
>QAx` + x>` kx

>
` B
>QAx` + w>` D

>QAx`

+ x>` A
>QBx`k

>x` + x>` kx
>
` B
>QBx`k

>x`

+ w>` D
>QBx`k

>x` + x>` A
>QDw`

+ x>` kx
>
` B
>QDw` + w>` D

>QDw`

= x>` (A>QA+A>QBx`k
> + kx>` B

>QA

+ kx>` B
>QBx`k

>)x`

+ w>` (D>QA+D>QBx`k
>)x`

+ x>` (A>QD + kx>` B
>QD)w` + w>` D

>QDw`,

this condition can be rewritten as

x>` (A>QA+A>QBx`k
> + kx>` B

>QA

+ kx>` B
>QBx`k

>)x` + w>` (D>QA+D>QBx`k
>)x`

+ x>` (A>QD + kx>` B
>QD)w` + w>` D

>QDw` ≤ 1

for x>` Qx` ≤ 1 and w>` w` ≤ γ2,

and, after introducing the compound vector

s` =

(
x`
w`

)
∈ Rn+m,

it takes the form

s>


A>QA+A>QBx`k

>

+kx>` B
>QA

+kx>` B
>QBx`k

>

A>QD
+kx>` B

>QD

D>QA+D>QBx`k
> D>QD

 s ≤ 1

for s>
(
Q 0
0 0

)
s ≤ 1 and s>

(
0 0
0 γ−2I

)
s ≤ 1.

Use of the sufficiency part of the S-procedure implies the
condition

A>QA+A>QBx`k
>

+kx>` B
>QA

+kx>` B
>QBx`k

>
A>QD + kx>` B

>QD

D>QA+D>QBx`k
> D>QD


− α

(
Q 0
0 0

)
− β

(
0 0
0 γ−2I

)
� 0

or 
A>QA− αQ
+A>QBx`k

>

+kx>` B
>QA

+kx>` B
>QBx`k

>

A>QD + kx>` B
>QD

D>QA+D>QBx`k
> D>QD − βγ−2I

 � 0

for some α, β ≥ 0 such that α+ β ≤ 1.

The obtained condition can be rewritten as



A>QA− αQ
+A>QBx`k

>

+kx>` B
>QA

kx>` B
>Q

A>QD
+kx>` B

>QD

QBx`k
> −Q 0

D>QA
+D>QBx`k

> 0 D>QD − βγ−2I


� 0

or in the equivalent formA>QA− αQ 0 A>QD
0 −Q 0

D>QA 0 D>QD − βγ−2I


+

A>QBQB
D>QB

x`
(
k> 0 0

)
+

(
k
0
0

)
x>`
(
B>QA B>Q B>QD

)
� 0. (6)

Require now that the matrix inequality (6) holds for all x`
in the ellipsoid

E =
{
x ∈ Rn : V (x) ≤ 1

}
=
{
x ∈ Rn : x>P−1x ≤ 1

}
.

Then Lemma 2 implies the equivalent matrix inequality
A>QA− αQ ∗ ∗ ∗ ∗

0 −Q ∗ ∗ ∗
D>QA 0 D>QD − βγ−2I ∗ ∗
B>QA B>Q B>QD −εQ ∗
k> 0 0 0 −ε−1I

 � 0

or 
−αQ 0 0 0 k

0 −Q 0 QB 0
0 0 −βγ−2I 0 0
0 B>Q 0 −εQ 0
k> 0 0 0 −ε−1I



+


A>

0
D>

B>

0

Q (A 0 D B 0) � 0.

Using the Schur complement, see Horn and Johnson (1985)
we obtain

−αQ 0 0 0 k A>

0 −Q 0 QB 0 0
0 0 −βγ−2I 0 0 D>

0 B>Q 0 −εQ 0 B>

k> 0 0 0 −ε−1I 0
A 0 D B 0 −Q−1

 � 0. (7)

We transform inequality (7) to another form, more conve-
nient for design problem. Namely, defining

P = Q−1 � 0,

and pre- and post-multiplying inequality (7) by the matrix
P 0 0 0 0 0
0 P 0 0 0 0
0 0 γI 0 0 0
0 0 0 P 0 0
0 0 0 0 I 0
0 0 0 0 0 I

 ,
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we arrive at
−αP 0 0 0 Pk PA>

0 −P 0 BP 0 0
0 0 −βI 0 0 γD>

0 PB> 0 −εP 0 PB>

k>P 0 0 0 −ε−1I 0
AP 0 γD BP 0 −P

 � 0.

Finally, for simplicity we can eliminate parameter β by
letting

β = βmax = 1− α,
see Boyd et al. (1994) for the details. Theorem is proved.

It is natural to maximize the stabilizability ellipsoid via
one or another criterion. Specifically, the maximization of
its volume leads to the following corollary of Theorem 1.

Corollary 2. Let P̂ be a solution of the convex optimization
problem

max log detP
subject to the constraints

−αP 0 0 0 Pk PA>

0 −P 0 BP 0 0
0 0 −(1− α)I 0 0 γD>

0 PB> 0 −εP 0 PB>

k>P 0 0 0 −ε−1I 0
AP 0 γD BP 0 −P

 � 0,

P � 0,
where the maximization is performed in the matrix variable
P = P> ∈ Rn×n and the scalar parameters ε and α.

Then
Ê =

{
x ∈ Rn : x>P̂−1x ≤ 1

}
is a stabilizability ellipsoid for system (5), (2).

5. DESIGN PROBLEM

We turn back to the bilinear control system (1), (2). With
linear state feedback (4), the bilinear system takes the form

x`+1 = (Ac +Bx`k
>)x` +Dw`,

where Ac = A+ bk>.

By Theorem 1, we arrive at the matrix inequality
−αP 0 0 0 Pk PA>c

0 −P 0 BP 0 0
0 0 −(1− α)I 0 0 γD>

0 PB> 0 −εP 0 PB>

k>P 0 0 0 −ε−1I 0
AcP 0 γD BP 0 −P

 � 0

or
−αP ∗ ∗ ∗ ∗ ∗

0 −P ∗ ∗ ∗ ∗
0 0 −(1− α)I ∗ ∗ ∗
0 PB> 0 −εP ∗ ∗

k>P 0 0 0 −ε−1I ∗
(A+ bk>)P 0 γD BP 0 −P

 � 0.

Now introduce an auxiliary vector variable

y = Pk ∈ Rn,

to get rid of the variable k. Since P � 0, the vector k can
be uniquely recovered as

k = P−1y.

As a result, we arrive at the linear matrix inequality
−αP ∗ ∗ ∗ ∗ ∗

0 −P ∗ ∗ ∗ ∗
0 0 −(1− α)I ∗ ∗ ∗
0 PB> 0 −εP ∗ ∗
y> 0 0 0 −ε−1I ∗

AP + by> 0 γD BP 0 −P

 � 0

in the matrix variable P , vector variable y, with the scalar
parameters ε and α.

Hence, we obtained the following result.

Theorem 2. Let a matrix P and a vector y satisfy the
matrix inequalities

−αP ∗ ∗ ∗ ∗ ∗
0 −P ∗ ∗ ∗ ∗
0 0 −(1− α)I ∗ ∗ ∗
0 PB> 0 −εP ∗ ∗
y> 0 0 0 −ε−1I ∗

AP + by> 0 γD BP 0 −P

 � 0,

P � 0,

for a certain values of the scalar parameters ε and α, and
given bound γ.

Then the linear feedback (4) with gain matrix

k = P−1y

stabilizes system (1) inside the ellipsoid

E = {x ∈ Rn : x>P−1x ≤ 1}
for all admissible disturbances (2).

It is natural to maximize the stabilizability ellipsoid via
one or another performance index, say by maximizing its
volume. This leads to the following corollary.

Corollary 3. Let P̂ , ŷ be the solution of the convex opti-
mization problem

max log detP

subject to the constraints
−αP ∗ ∗ ∗ ∗ ∗

0 −P ∗ ∗ ∗ ∗
0 0 −(1− α)I ∗ ∗ ∗
0 PB> 0 −εP ∗ ∗
y> 0 0 0 −ε−1I ∗

AP + by> 0 γD BP 0 −P

 � 0,

(8)
P � 0,

with respect to the matrix variable P = P> ∈ Rn×n, vector
variable y ∈ Rn, and the scalar parameters ε and α.

Then the set

Ê =
{
x ∈ Rn : x>P̂−1x ≤ 1

}
is a stabilizability ellipsoid for system (1) embraced with
the linear feedback (4) with gain matrix

k̂ = P̂−1ŷ

for all admissible disturbances (2).

6. STABILIZABILITY DOMAIN

In the previous section, the volume-maximizing stabiliz-
ability ellipsoid E was found for system (1), (2). Obvi-
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ously, there exist other stabilizability ellipsoids, in partic-
ular, those optimal with respect to other criteria. Let us
consider the set composed as the union of stabilizability
ellipsoids; we will refer to it as the stabilizability domain
of the system (1), (2). Clearly, by construction, this sta-
bilizability domain possesses the same property as each
of the individual constituent stabilizability ellipsoids; i.e.,
at every time instant, any trajectory emanating from any
point x0 in this domain remains inside this domain for all
admissible exogenous disturbances.

Given an arbitrary vector c, an efficient procedure for
finding a point on the boundary of the stabilizability
domain of the considered system in the direction c can
be proposed. Indeed, let us pick a direction defined by a
unit-length vector c and require that a point ρc belongs
to a stabilizability ellipsoid. By Schur complement, the
condition that the point ρc belongs to the ellipsoid with
matrix P has the form(

1 ρc>

ρc P

)
� 0.

Appending this matrix inequality to the constraint (8),
and maximizing over them the parameter ρ we provide
a simple characterization of stabilizability domain of the
considered discrete-time bilinear system subjected to ex-
ogenous disturbances.

7. CONCLUSIONS AND FURTHER RESEARCH

The approach proposed in this paper is easily imple-
mentable from the computational point of view; it allows
for efficient construction of stabilizability ellipsoids and
stabilizability domains for the discrete-time bilinear sys-
tems subjected to bounded exogenous disturbances via use
of linear static state feedback.

This approach can be extended to the various robust state-
ments of the problem, and to the case of multidimensional
control input.
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