
An Observer for the Electrically Heated
Vertical Rijke Tube with Nonlinear Heat

Release

Nils Christian A. Wilhelmsen ∗ Florent Di Meglio ∗
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Abstract: This paper proposes an observer for the electrically heated vertical Rijke tube,
using a model capable of inciting thermoacoustic instabilities. The model consists of linear,
distributed acoustics coupled with nonlinear, lumped heat release. Using a boundary pressure
measurement taken at the bottom end of the tube, the observer is designed by copying the system
model and reconstructing both the bottom and top boundary conditions, the former exactly
and the latter with an error that is shown to be converge to zero exponentially. It is proven
that the observer produces state estimates that converge to their correct values asymptotically.
Furthermore, it is shown the state estimation errors stay bounded when there is a modelling
error in the boundary acoustic impedance. The proposed observer is simulated and compared
to two alternative observers.

Keywords: Thermoacoustics, Rijke tube, Observers, Nonlinearities, Distributed parameter
systems.

1. INTRODUCTION

Thermoacoustic instabilities can be a severe issue in com-
bustion chambers, and have been observed in rocket en-
gines, gas turbines, industrial furnaces and afterburn-
ers (Correa (1998); Crocco (1969); Macquisten (1995)).
They occur due to a positive feedback loop between the
heat release from the combustion process and the acoustics
in the chamber when these are sufficiently in phase (Put-
nam and Dennis (1954)). Oscillations can grow into a
limit cycle with amplitude large enough to damage the
combustion system. However, it is difficult in practice to
forecast when or if thermoacoustic instabilities occur for
a given combustor (Lieuwen and Yang (2005)), and hence
much research effort has been devoted to understanding
the phenomenon better, and also developing techniques
for monitoring and mitigating the instabilities.

One common experimental setup for studying thermoa-
coustic instabilities, being one of the simplest arrange-
ments capable of exhibiting the phenomenon, is the elec-
trically heated Rijke tube. It has the advantage of being
simple to model due to the absence of complicated com-
bustion dynamics. The Rijke tube (with a flame) was first
introduced in Rijke (1859), and has since been the subject
of numerous studies to gain understanding of and develop
methods to mitigate thermoacoustic instabilies, see Raun
et al. (1993) for a review.

? The work of N.C.A. Wilhelmsen has received funding through the
European Union’s Horizon 2020 research and innovation programme
under the Marie Sk lodowska-Curie grant agreement No. 766264.

Much of the previous work on the Rijke tube has con-
sisted in characterizing its stability limits, with Carrier
(1955) pioneering linear stability analysis of the system
and later Bayly (1986) taking into account nonlinear fea-
tures. In addition to experimental studies of the stability
limits of the Rijke tube, studies on active control strategies
applied to attenuate the thermoacoustic oscillations in the
Rijke tube have been performed. A control law consisting
of measuring the pressure signal upstream of the heater
and subsequently sending this signal phase-shifted and
amplified to a loudspeaker downstreams has been applied
to a Rijke tube in Heckl (1988), being one of the first
studies investigating active control of the Rijke tube. More
recently, a more sophisticated full-state feedback boundary
control law designed via infinite-dimensional backstepping
on a linearized PDE-ODE model of the electrically heated
Rijke tube has been derived in de Andrade et al. (2018b).
To pair with this full-state feedback control law, a corre-
sponding boundary observer for the linearized PDE-ODE
model is derived in de Andrade et al. (2018a).

A heat release model which, together with an acoustic
model, captures the most important behaviour of the elec-
trically heated Rijke tube is King’s law (King (1914)). For
the observer design in de Andrade et al. (2018a), King’s
law is linearized, which makes the mathematical analysis
tractable - however this linear ODE model does not reflect
the full nonlinear dynamics one typically obtains in prac-
tice. A nonlinear heat release model is needed to model
the saturated response one sees for large amplitudes and
resultant limit cycle behaviour (Agostino et al. (2002)). To
maintain this behaviour in the design, we propose a differ-
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Fig. 1. Electrically heated vertical Rijke tube. The ma-
genta arrow represents base flow induced by the elec-
trical heater.

ent observer taking into account the nonlinear features of
King’s law. This is the main contribution of the paper.

Our approach is as follows. We design an observer by
injecting measured signals at two boundaries of an infinite
dimensional observer. The zero equilibrium of the resulting
error system is shown to be Globally Asymptotically
Stable (GAS). Further, we show that the presence of
uncertainty in the boundary acoustic impedance results
in bounded errors.

The paper is organized in the following way. In Section 2
the governing equations are introduced and the problem
we are solving is defined. Next, in Section 3 the design and
convergence analysis of the observer is covered. Results
from simulations are presented in Section 4 before some
concluding remarks are offered in Section 5.

2. PROBLEM STATEMENT

Consider a vertical Rijke tube of length L and constant
circular cross-sectional area A with an electrical heater
placed at a fixed vertical position z0 ∈ (0, L2 ) 1 . The
phenomenon we are studying evolves mainly in the vertical
direction inside the Rijke tube, so we use one-dimensional
(1D) first principles to model the dynamics of the air
column inside the tube (de Andrade et al. (2018b)). To
establish an acoustic model, define pressure perturbation
P̆ := P − P̄ , velocity perturbation V̆ := V − V̄ , and heat
fluctuation Q̆ := Q− Q̄, with P total pressure, P̄ constant
atmospheric pressure, V total velocity, V̄ constant base
flow velocity,Q heat release and Q̄ its constant mean value.
Also, the mean air density is denoted ρ̄. We write, as in
Epperlein et al. (2015), the linearized mass, momentum
and energy conservation laws of 1D gas dynamics to obtain
the following linear acoustic model,

1 A necessary condition for thermoacoustic instabilities to occur is
for the heater to be in the lower half of the tube.

∂tV̆ (z, t) +
1

ρ̄
∂zP̆ (z, t) = 0 (1a)

∂tP̆ (z, t) + γP̄∂zV̆ (z, t) =
γ̄

A
δ(z − z0)Q̆(t) (1b)

P̆ (L, t) = ZV̆ (L, t) + U(t) (1c)

P̆ (0, t) = −ZV̆ (0, t) (1d)

P̆ (x, 0) = P̆0(x) (1e)

V̆ (x, 0) = V̆0(x), (1f)

defined over the spatial domain z ∈ [0, L] and for time

t ≥ 0, initialized from P̆0, V̆0 ∈ L2(0, L). Also, γ is the
adiabatic constant, γ̄ := γ−1, Z is an acoustic impedance
at the tube boundaries and U is a boundary gauge pressure
actuation signal.

To describe the heat release rate Q from the electrical
heater, King’s law (King (1914)) is used, which together
with dynamics described in Lighthill (1954) reads

Q̇(t) = −1

τ
Q(t)

+
1

τ
lw(κ+ κv

√
|V (z0, t)|)(Tw − Tg) (2a)

Q(0) = Q0, (2b)

and is initialized from Q0 ∈ R, with τ a time-constant
due to the boundary layer formed around the electrical
heater, lw the length of the heating wire, Tw is the wire
temperature, Tg is the time-averaged gas temperature
around z0, κ is the thermal conductivity of air and κv is an
empirically determined constant. The model (2) captures
the two most important dynamic features required of
the heat source for thermoacoustic instabilities to occur,
namely a time lag between changes in the local velocity
and the heat release rate, and also a positive dependency
between the time derivative of the heat release rate and
the local air speed. Unlike previous attempts at designing
observers for the Rijke tube, as in de Andrade et al.
(2018a), we do not linearize King’s law in (2) to capture
the full nonlinearity of its dynamics.

Hence, given the Rijke tube thermoacoustic model (1)–
(2), the objective of this paper is to design an observer

producing convergent state estimates P̂ , V̂ and Q̂ of
respectively the pressure P , velocity V and heat release
Q, assuming the boundary pressure measurement

Y (t) := P̆ (0, t) (3)

is available, only. As noted in Epperlein et al. (2015), in
practice the nodes in the Rijke tube are situated slightly
outside the tube ends. Hence by placing the pressure sensor
right by the tube opening or slightly inside, the node is
avoided and one obtains information that can be used
for state estimation. Next, we proceed with the observer
design and assess its convergence properties.

3. OBSERVER DESIGN

3.1 Model in Riemann coordinates

For the observer design and analysis, we rewrite the lin-
earized acoustics (1) in Riemann invariant coordinates and
fold the spatial domain around z0 to move the heat release
to the system boundary. To facilitate this, we introduce the
invertible linear spatial coordinate transforms zi : x 7→ z,
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z1(x) := z0(1− x) (4a)

z2(x) := z0 + x(L− z0), (4b)

with x ∈ [0, 1] and i ∈ {1, 2}. The subscript i denotes
which part of the Rijke tube x is mapped to, with z1
mapping x to points below the electrical heater and z2
mapping x to points above the electrical heater. Next,
define the Riemann coordinates

ui(x, t) := P̆ (zi(x), t) + kV̆ (zi(x), t) (5a)

vi(x, t) := P̆ (zi(x), t)− kV̆ (zi(x), t). (5b)

where

k :=

√
γP̄ ρ̄. (6)

This allows us to rewrite the linearized acoustics (1a)–(1b)
over (x, t) ∈ (0, 1)× [0,∞) as

∂tu1(x, t) = λ1∂xu1(x, t), ∂tu2(x, t) = −λ2∂xu2(x, t),
(7a)

∂tv1(x, t) = −λ1∂xv1(x, t), ∂tv2(x, t) = λ2∂xv2(x, t),
(7b)

where

λ1 :=
λ

z0
, λ2 :=

λ

L− z0
, λ :=

√
γP̄

ρ̄
, (8)

with λ being the speed of sound inside the tube.

Remark 1. Since z0 ≤ L
2 , we have that λ1 ≥ λ2. This fact

is useful later on in the observer design.

Next, the acoustics boundary conditions (1c)–(1d) are
rewritten as

u2(0, t) = u1(0, t) + µX̆(t), v1(0, t) = v2(0, t) + µX̆(t),
(9a)

u1(1, t) = dv1(1, t), v2(1, t) = du2(1, t) +W (t),
(9b)

where we have denoted X̆ := Q̆, the boundary reflection
coefficient d, the ODE boundary coefficient µ and input
signal W , are respectively defined

d :=
Z − k
Z + k

, µ :=
kγ̄

γAP̄
, W (t) := (1− d)U(t). (10)

Denoting X := Q, the heat release model (2) is also
rewritten as

Ẋ(t) = −aX(t) + b1
√
|b2 + b3[u1(0, t)− v2(0, t)]|+ b4

(11)
with

a :=
1

τ
, b1 :=

lw(Tw − Tg)κv
τ

, b2 := V̄ , (12a)

b3 :=
1

2k
, b4 :=

lw(Tw − Tg)κ
τ

. (12b)

The gauge pressure measurement (3) can in the Riemann
invariant coordinates (5) be written as Y (·) = 1

2 (u1(1, ·) +
v1(1, ·)). Applying the boundary condition for u1 we see
by defining the boundary measurement signal

y(t) := v1(1, t) (13)

the gauge pressure measurement can be reconstructed
as Y = 1+d

2 y. These dynamics are schematically depicted
in Figure 2. Notice that several feedback loops make the
dynamics potentially unstable.

Fig. 2. Schematic of Rijke tube system in Riemann co-
ordinates. The green arrows are couplings between
the ODE state and PDE states, the red arrows are
boundary couplings between the PDE states and the
magenta arrows represent input and output signals.

3.2 Proposed observer

With the measurement signal y defined in (13), we propose
the following observer

˙̂
X(t) = −aX̂(t)

+ b1
√
|b2 + b3[û1(0, t)− v̂2(0, t)]|+ b4 (14a)

∂tû1(x, t) = λ1∂xû1(x, t) (14b)

∂tû2(x, t) = −λ2∂xû2(x, t) (14c)

∂tv̂1(x, t) = −λ1∂xv̂1(x, t) (14d)

∂tv̂2(x, t) = λ2∂xv̂2(x, t) (14e)

û2(0, t) = û1(0, t) + µ(X̂(t)− X̄) (14f)

v̂1(0, t) = v̂2(0, t) + µ(X̂(t)− X̄) (14g)

û1(1, t) = dy(t) (14h)

v̂2(1, t) = dy(t+ λ−11 − λ
−1
2 ) +W (t)

+ d
(
û1(0, t− λ−12 )− v̂2(0, t− λ−12 )

)
. (14i)

We state now the main result of this paper, which pertains
to the convergence properties of (14), before explaining the
rationale behind the observer followed by a formal proof
of the result.

Theorem 3.1. Consider system (7)–(12), and the state ob-
server (14) using the measurement (13). Assume they have
initial conditions (ui,0, vi,0, X0) ∈ L2(0, 1) × L2(0, 1) × R
and (ûi,0, v̂i,0, X̂0) ∈ L2(0, 1) × L2(0, 1) × R, respectively.
Then, the zero equilibrium of the dynamics of the estima-
tion errors ũi := ui − ûi, ṽi := vi − v̂i, X̃ := X − X̂ is
GAS.

This observer consists of a copy of the Rijke tube dynam-
ics in Riemann coordinates (7)–(12), with the exception
of (14h)–(14i). While (14h) consists of injecting the mea-
sured output directly, Equation (14i) deserves more expla-
nation. It is based on the following considerations. First,
notice that substituting Equation (9a) into the general
solution of u2 in terms of the boundary at x = 0, u2(1, t)
rewrites

u2(1, t) = u2(0, t− λ−12 )

= u1(0, t− λ−12 ) + µX̆(t− λ−12 ) (15)

Besides, using the expression for v1(0, t) from (9a) to-
gether with the measurement y(t) = v1(1, t) yields

µX̆(t) = y(t+ λ−11 )− v2(0, t) (16)

Combining (9b), (15) and (16) yields

v2(1, t) =d
[
u1(0, t− λ−12 )− v2(0, t− λ−12 )

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4249



Fig. 3. Schematic of the error system signals. The only
internal feedback is ṽ2(1, ·) feeding into itself.

+y(t+ λ−11 − λ
−1
2 )
]

+W (t) (17)

The boundary condition (14i) follows by considering esti-
mates of u1(0, t−λ−12 ) and v2(0, t−λ−12 ) in lieu of the true
values. As we show in the next Section, the resulting error
converges asymptotically to zero.

Remark 2. Notice that the observer is causal, in particular
the signal y(t + λ−11 − λ−12 ) is available at time t due to
Remark 1.

3.3 Convergence analysis

The most critical boundary conditions in the error sys-
tem for stability are ũ1(1, ·), ṽ2(1, ·), so we derive their
expressions first. It is trivial to see that ũ1(1, ·) = 0, while
subtracting (14i) from (17) yields

ṽ2(1, t) =d
(
ũ1(0, t− λ−12 )− ṽ2(0, t− λ−12 )

)
. (18)

The other terms in the observer (14) are copies of the corre-
sponding terms in the original system (7)–(12) and hence
their corresponding error dynamics are easily computed.
Therefore, the state estimation error in ũi, ṽi, X̃ satisfies
the dynamics

∂tũ1(x, t) = λ1∂xũ1(x, t) (19a)

∂tũ2(x, t) = −λ2∂xũ2(x, t) (19b)

∂tṽ1(x, t) = −λ1∂xṽ1(x, t) (19c)

∂tṽ2(x, t) = λ2∂xṽ2(x, t) (19d)

ũ1(1, t) = 0 (19e)

ũ2(0, t) = ũ1(0, t) + µX̃(t) (19f)

ṽ1(0, t) = ṽ2(0, t) + µX̃(t) (19g)

ṽ2(1, t) = d
(
ũ1(0, t− λ−12 )− ṽ2(0, t− λ−12 )

)
(19h)

˙̃X(t) = −aX̃(t) + b1
√
|b2 + b3[u1(0, t)− v2(0, t)]|

− b1
√
|b2 + b3[û1(0, t)− v̂2(0, t)]|. (19i)

A schematic view of the error system is shown in Figure 3,
illustrating the cascade structure of its dynamics which
ensure the convergence of its states to zero. We are now
ready to prove Theorem 3.1.

Proof. [Proof of Theorem 3.1] From (19a), (19e) we see
that ũ1(0, t− λ−12 ) = 0 for time t ≥ λ−11 + λ−12 . Hence the
boundary condition (19h) simplifies after this time to

ṽ2(1, t) = −dṽ2(0, t− λ−12 ) (20)

allowing us to conclude that

ṽ2(0, t) = −dṽ2(0, t− 2λ−12 ). (21)

Since |d| < 1, we can conclude that ṽ2(0) → 0 exponen-
tially as t→∞. Next, we can bound (19i) by the following
inequality:

˙̃X(t) ≤ −aX̃(t) + b1
√
|b3[ũ1(0, t)− ṽ2(0, t)]|. (22)

Define

g(t) := b1
√
|b3ι(t)|, ι(t) := ũ1(0, t)− ṽ2(0, t) (23)

where we know g tends to zero as t → ∞. Also, defining
the linear system in Ξ̃,

˙̃Ξ(t) = −aΞ̃(t) + g(t), (24)

with initial condition Ξ̃(0) = X̃(0), then Ξ̃ is Input-to-
State Stable (ISS) with respect to g. More precisely (see
Khalil and Grizzle (2002)), we can establish the bound
(where 0 ≤ t0 ≤ t),

|Ξ̃(t− t0)| ≤ e−a(t−t0)|Ξ̃(t0)|+ 1

a
sup

t0≤τ≤t
|g(τ)|. (25)

Since ˙̃X ≤ ˙̃Ξ and X̃(0) = Ξ̃(0), we can establish

X̃(t) ≤ Ξ̃(t). (26)

As g is exponentially vanishing as t → ∞, we see the
right hand side of (25) goes to zero and hence X̃ → 0
asymptotically as t→∞, which proves the Theorem.

3.4 Robustness to modelling error in boundary condition

In practice the acoustic impedance Z appearing in Equa-
tions (1c)–(1d) is difficult to estimate correctly, imply-
ing the boundary coefficient d appearing in (9b) for the
Riemann coordinate formulation is prone to being incor-

rectly modelled. Denote the estimate of d as d̂, and define

d̃ := d− d̂ as the modelling error.

When d̂ is used in place of d in the observer (14), the
expressions for ũ1(1), ṽ2(1), given by (19e), (19h), change
to

ũ1(1, t) = d̃y(t) (27)

ṽ2(1, t) = d̂(ũ1(0, t− λ−12 )− ṽ2(0, t− λ−12 ) (28)

+ d̃
(
µX(t− λ−12 ) + u1(0, t− λ−12 )

)
with the rest of the error system (19) being unaffected.
We state now a Proposition on the sensitivity of the
state estimate error to errors in modelling this boundary
condition.

Proposition 3.2. Assume that the states of the original

system are bounded, and the estimate d̂ of d satisfies

|d̂| < 1. (29)

Then all the error signals ũi, ṽi, X̃ are bounded.

Proof. In the following we denote the Laplace transform
of the time-domain signal f as f̌ , i.e. f̌(s) = L(f(·)). With
the signal h defined as

h(t) := u1(0, t) + µX(t) (30)

we find that [
ˇ̃u1(0, s)
ˇ̃v2(0, s)

]
= H(s)

[
y̌(s)
ȟ(s)

]
(31)

where

H(s) :=

 d̃e−λ
−1
1 s 0

d̂e
−(2λ

−1
2

+λ
−1
1

)s

1+d̂e
−2λ

−1
2

s

e
−2λ

−1
2

s

1+d̂e
−2λ

−1
2

s

 (32)

is a transfer matrix. This allows us to reconstruct the
signal ι defined in (23) in terms of signals y, h as

ι(t) =

[
1
−1

]T
L−1

(
H(s)

[
y̌(s)
ȟ(s)

])
(33)
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Since |d̂| < 1, Equation (32) implies that H is stable (see
Niculescu (2001) for a more extended treatment of transfer
functions for systems with time delays), and since y, h ∈
L∞, one has ι, g ∈ L∞, with g defined by (23).

Further, since ũ1(1, ·) = d̃y(·), ũ1(1, ·) ∈ L∞ and hence all
of ũ1 is bounded. Besides, one has

ˇ̃v2(1, s) =
d̃e−λ

−1
2 s

1 + d̂e−λ
−1
2 s

(
d̂y̌(s)e−λ

−1
1 s + ȟ(s)

)
(34)

which again using that |d̂| < 1 implies that ṽ2(1, ·) ∈ L∞
and therefore all of ṽ2 is bounded. Equation (22) further

implies the following bound on X̃,

X̃(t) ≤ e−at|X̃(0)|+ 1

a
||g||∞. (35)

Finally, (19f)–(19g) express ũ2(0, ·), ṽ1(0, ·) as the sum of
bounded signals, therefore ũ2(x, ·), ṽ1(x, ·) ∈ L∞, ∀x ∈
[0, 1].

4. SIMULATIONS

In this section the observer (14) is tested in simulations
implemented in MATLAB. The proposed observer has certain
advantages, such as being guaranteed stable for all sys-
tem parameters, global asymptotic convergence and being
robust to modelling errors in the boundary condition d.
However, it also has certain drawbacks, such as having
no tuning parameters to calibrate and possible poor mea-
surement noise filtering properties as the measurement is
injected directly.

For comparison we test, where possible, the observer from
this paper with two alternative observers:

(1) A ”trivial” observer identical to the observer (14),
except the boundary condition v̂2(1, ·) = dû2(1, ·) +
W (·) is used in place of (14i).

(2) A nonlinear observer consisting of the ”trivial” ob-
server together with observer gains from de Andrade
et al. (2018a), multiplied by the output estimation
error (y(·) − v̂1(1, ·)) and added to the observer dy-
namics (14a)–(14e).

A total of three different simulations scenarios are pre-
sented. In the first two simulations, the Rijke tube
model (1)–(2) is implemented with parameters that in-
cite thermaocoustic instabilities. No actuation signal is
imposed on the top boundary so we assume U = 0. The
physical parameters used are summarized in Table 1. For
the observers in the first simulation, it is assumed all
system parameters are known exactly, but in the second
simulation an incorrect value of Z is used in the observers.
Lastly, results from a toy simulation, that implements
the system (7), (9), (11), together with the observer (14)
and observers mentioned above, is presented. This demon-
strates that observer (14) in this paper works for certain
system parameters the alternative observers do not work
for, due to them having no proven stability guarantee.

All results presented are from simulations that integrate
the equations for a total of 1 second, with the observers
being turned on at time t = 0.25 seconds. The PDEs
are integrated using a first-order finite difference upwind
scheme, while the ODE is integrated with a fourth-order
Runge-Kutta scheme. The spatial discretization used is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-300

-200

-100

0

100

200

300

Fig. 4a. Pressure estimation error P̃ (L, ·) at tube end
opposite from where sensing takes place, for observer
(14).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-400

-300

-200

-100

0

100

200

300

400

Fig. 4b. Pressure estimation error P̃ (z0, ·) at heater loca-
tion for observer (14).

dx = 1.00 × 10−2 m, while the temporal discretization is
dt = 8.25× 10−8 s. All observers are initialized to

û1,0(x) = sin(2x) û2,0(x) = cos(3x)

v̂1,0(x) = ex v̂2,0(x) = sin(5x)− 2 cos(x)

X̂0 = 500.

4.1 Thermoacoustic simulations with no modelling error

In this simulation it is assumed the observers have perfect
knowledge of the system parameters in Table 1. First, to
showcase the performance of the proposed observer (14),
in Figures 4–6 we see respectively the estimation errors
for the pressure P̃ := P − P̂ and velocity Ṽ := V − V̂ ,
evaluated at positions z = L, z = z0, and the heat release
Q̃ := Q−Q̂, all associated with the estimates P̂ , V̂ , and Q̂
produced by this observer. As predicted by Theorem 3.1,
these approach the origin asymptotically as t→∞.

Next, the transient performance of the various observers
in estimating the heat release rate Q is compared. Even
though the equations were integrated up to time t =
1 second, for clarity a time-interval of length 0.2 seconds
around the time the observers are turned on is shown. In
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Parameter Description Value Unit

Z Tube impedence 6 N s m−3

L Tube length 1.4 m
A Tube cross-sectional area 0.004 m2

z0 Position of heater 0.35 m
lw Length of heating wire 1.067 m
Tw Temperature of wire 933 K
Tg Temperature of air 300 K
τ Heating element time constant 2 × 10−3 s
κ Thermal conductivity of air 26.38 × 10−3 W m−1 K−1

κv Empirical constant in King’s law 1.5 W s
1
2 m− 3

2 K−1

ρ̄ Average air density 1.2 kg m−3

P̄ Atmospheric pressure 105 N m−2

V̄ Base flow velocity 0.35 m s−1

γ Adiabatic constant 1.4 −
Table 1. Physical parameters used in simulation
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Fig. 5a. Velocity estimation error Ṽ (L, ·) at tube end
opposite from where sensing takes place, for observer
(14).
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Fig. 5b. Velocity estimation error Ṽ (z0, ·) at heater loca-
tion for observer (14).

Figure 7 the heat release rate estimation error associated
with the different observers is displayed for times between
t = 0.24 and t = 0.44 seconds. This interval contains
the time instant when the observers are turned on, so the
initial behaviour can be seen from this plot. The ”trivial”
observer seems to converge fastest, with the observer
using backstepping gains converging second fastest and the
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Fig. 6. Heat release rate estimation error Q̃ for observer
(14).

observer (14) from this paper converging more slowly, but
asymptotically, as is shown in Figure 6.

Interestingly, in this example the observer (14) had overall
the worst performance. This can be attributed to the
fact that the error −dṽ2(0, t − λ−12 ) is introduced in the
boundary for v̂2(1) to ensure stability, with the trade-off
being that the performance is degraded initially, before
improving as time increases. Next, the performance of the
observers when there is a modelling error in the boundary
coefficient is compared.

Remark 3. In this example, the convergence properties of
the ”trivial” observer and the nonlinear observer using the
backstepping gains is similar, showing that the observer
gains have little extra effect on the convergence properties.

4.2 Thermoacoustic simulations with modelling error in
boundary

Here the observers are tested against modelling error in
the reflection coefficient d. Therefore, for this simulation
it is assumed the observers have correct knowledge of all
the physical parameters in Table 1 except for Z. Instead
the observers use an estimate Ẑ = 50, which gives an

estimate d̂ ≈ −0.78.

Overall, the effect of the incorrect knowledge of Z is
that the observers have an offset in the state estimate.
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Fig. 7. Heat release rate estimation error Q̃ produced
by observer (14), Q̃trivial produced by the ”trivial”

observer and Q̃backstepping produced by the observer
from de Andrade et al. (2018a) but using a nonlinear
ODE. The plot shows the curves for times t ∈
[0.24, 0.44].

The magnitude of this offset for the various observers in
estimating the heat release rate can be seen in Figure 8.
From this plot it can be seen that the observer (14) has
the smallest offset from the correct value, followed by the
observer using backstepping gains, and lastly the ”trivial”
observer has the largest offset. It is interesting to note
that despite having incorrect knowledge of the boundary
condition, the observer (14) performs better during the
transient for the simulation shown here compared to the
simulation in Section 4.1. This is due to the smaller
magnitude of d̂ making the error −d̂ṽ2(0, t− λ−12 )) at the
boundary for v̂2(1, ·) shrink faster in the transient.

The simulations suggest the design of the observer (14)
makes it more robust to modelling errors in the bound-
ary reflection coefficient d compared to the other two
observers. For the observer using backstepping gains, the
gains helped make the offset smaller than the offset from
the ”trivial” observer, but not to the extent that the ob-
server (14) managed. In Proposition 3.2 it was proven that
the estimation error produced by the observer (14) when
using an incorrect boundary condition would be bounded -
for the other two observers this has of yet not been proven.

Another performance aspect that is not necessarily guar-
anteed for the other two observers is that they converge
for all possible system parameters. Next a toy simulation
is offered where the observer (14) converges to the correct
estimate but the other observers become unstable.

4.3 Toy simulations showing stability for alternative system
parameters

Due to the way the boundary condition (14i) is constructed
for the observer (14), it is possible to prove that the
state estimates produced by this observer converge to their
true values. For the trivial observer, due to it having a
potentially unstable feedback loop of previous ODE states
influencing the dynamics of the current ODE states via
the nonlinearity present in King’s law, there exists certain
parameters for which the observer can become unstable,
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Fig. 8. Heat release rate estimation error Q̃ produced
by observer (14), Q̃trivial produced by the ”trivial”

observer and Q̃backstepping produced by the observer
from de Andrade et al. (2018a) but using a nonlinear
ODE, with all observers having incorrect knowledge
of the acoustic boundary Z. The plot shows the curves
for times t ∈ [0.24, 0.44].

Parameter Value

a 500
b1 474750000
b2 3
b3 0.001
b4 8349270
d −0.9711
µ 0.2925
λ1 975.9
λ2 325.3

Table 2. Parameters for toy simulation

and the observer in de Andrade et al. (2018a) was only
proven to be stable by assuming that the heat release
model is linearized.

As a demonstration of what could happen in practice, the
system (7), (9), (11) with parameters specified in Table 2 is
implemented. Figure 9 shows a plot of the resultant state
X, shown in blue, versus the estimate X̂trivial produced
by the trivial observer, shown in yellow, and the estimate
X̂ produced by the observer (14), shown in orange. The
estimate produced by the nonlinear observer using back-
stepping gains from de Andrade et al. (2018a) can not be
shown because it becomes unstable very quickly.

As can be seen, the estimate X̂trivial shoots up to values
much larger than the range X is oscillating within. The
observer (14), however, remains unscathed and produces

an estimate X̂ that tracks the state X fairly well, asymp-
totically.

5. CONCLUSIONS

An observer taking into account both the nonlinearity
of the heat release model and distributed states of the
tube acoustics has been derived for the electrically heated
vertical Rijke tube. Instead of applying a standard ob-
server design procedure the observer was designed simply
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Fig. 9. ODE state estimation error X̃ produced by the
observer (14) and X̃trivial produced by the trivial
observer, for a toy example.

by copying the system dynamics and reconstructing some
of its boundary conditions from known signals.

It was proven that this observer converges to the origin
asymptotically and that it is robust to modelling errors
in the boundary condition. Simulations were offered to
demonstrate the observer in three examples. Compared to
an observer that only injects the measurement at a single
boundary, the observer from this paper does not suffer the
same problem of blowing up for certain system parameters.

As further work, simulating the observer against a more
realistic flow model, such as the nonlinear gas dynamics
model based on mass, momentum and energy balance
given in Epperlein et al. (2015), would give more insight
about the observer performance from a practical stand-
point. Also, observer design for the Rijke tube using a
flame rather than electrical heater model could be a viable
research direction.
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