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Abstract: Lambda tuning is frequently employed for PI(D) controllers in the process industry because of
its simplicity and intuitiveness for the user. In this paper we analyze the fundamental choice of the tuning
parameter λ , that is, of the desired closed-loop time constant, by considering different trade-offs that can
be posed by the user in the controller design. In particular, we consider the trade-off between bandwidth
and gain or phase margin and that between performance and maximum sensitivity. The achievement of a
specified maximum sensitivity is also addressed. Simple analytical formulas are determined so that they
can be used in order to provide an optimized tuning in different contexts.
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1. INTRODUCTION

Proportional-Integral-Derivative (PID) controllers are widely
used in the process industry because of their ability to provide
a satisfactory performance in spite of their relative simplicity
(Åström and Hägglund, 2006). Indeed, the cost/benefit ratio
they ensure is difficult to be improved by other more sophis-
ticated control algorithms. Actually, the great majority of the
controllers employed in practice is of PI type, as the derivative
action is often switched off in order to avoid problems related
to the amplification of noise and, in general, to the increased
complexity in the overall controller design (Visioli, 2006).

Many tuning rules have been devised in the last century in order
to simplify the task required by the user to determine the most
suitable PI(D) parameters for a given application (O’Dwyer,
2006). Between the many different available techniques, one
of the most employed in industry is surely the so-called λ -
tuning (see, for example, (McMillan, 1999; Rice, 2010)). In
fact, despite the method is based on pole-zero cancellation and
therefore it is not suitable for the load disturbance rejection task
in lag-dominant processes (Shinskey, 1994), its ease of use and
its capability to set the speed of response of the control loop in
a very intuitive way makes it a preferred choice for the user in
many situations (Olsen and Bialkowski, 2002).

Basically, λ -tuning, as in the Internal Model Control (IMC) ap-
proach (Morari and Zafiriou, 1989; Rivera et al., 1986), consists
in cancelling the dominant pole(s) of the process dynamics so
that the closed-loop time constant λ can be arbitrarily specified.
In other words, starting from a simple first-order-plus-dead-
time (FOPDT) process model, the PI parameters are automati-
cally determined by using very simple formulas (see Section 2)
once the desired closed-loop time constant λ is selected by the
user. It clearly appears that the overall design effort is therefore

restricted to the suitable choice of λ , by taking into account
that its value handles the trade-off between aggressiveness and
robustness (and control effort) of the control system. This can
be indeed a critical issue and methods currently used in industry
links the appropriate value of λ to the process parameters. For
example, in (Coughran, 2013) λ has to be selected as three
times the dead time of the process, while in (Smuts, 2011), it is
suggested that its value is less than three times the value of the
dominant time constant of the process. The well-known SIMC
tuning rules proposed in (Skogestad, 2003) are based on select-
ing a value of λ equal to the dead time of the process. Software
tools are also available to help the user to effectively accomplish
this task (see, for example, Figure 1 where a practical probe is
available to help the user to select the most suitable value of λ
based on an estimated process model).

In this paper we provide different rules for the choice of λ by
considering different requirements made by the user. In fact,
it has to be taken into account that a (possibly skilled) user
can be more familiar with some control concept (for example:
bandwidth, phase margin, maximum sensitivity, etc.) than other
ones and he/she may want to exploit these concepts in selecting
the optimized value of λ for a given application. In particular,
we consider different trade-offs between performance and ro-
bustness measures that typically arise in industrial applications.
The devised rules are mostly based on the exploitation of an
analytical approach than can be applied thanks to the simplicity
of the mathematical expressions obtained by means of the pole-
zero cancellation.

The paper is organized as follows. The problem is formulated
in Section 2, where the λ -tuning approach is also briefly re-
viewed mainly for the purpose of introducing the notation. The
different rules for the selection of λ are presented in Section
3. Worked examples are given in Section 4 and conclusions are
drawn in Section 5.
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Fig. 1. Panel of the TuneVP software package related to λ -tuning for PID control (courtesy of Yokogawa Italy).

2. PROBLEM FORMULATION

We consider the standard unity-feedback control scheme of
Figure 2. As it is typical for industrial plants, the process
dynamics is described by a FOPDT model as

P(s) =
µ

τs+ 1
e−θs (1)

where µ is the gain, τ is the (dominant) time constant and θ is
the (apparent) dead time of the process. The controller is chosen
as a PI controller whose transfer function is

C(s) = Kp

(

1+
1

Tis

)

(2)

where Kp is the proportional gain and Ti is the integral time con-
stant. The λ tuning rules consists in selecting the PI parameters
as

Kp =
τ

µ(θ+λ )

Ti = τ
(3)

In this way, the loop transfer function L(s) := C(s)P(s) results
in

L(s) =
e−θs

(θ +λ )s
(4)

This implies that the closed-loop transfer function is

F(s) =
L(s)

1+L(s)
=

e−θs

(θ +λ )s+ e−θs (5)

By considering the approximation (to be used in the denomina-
tor of (5))

e−θs ∼= 1−θ s (6)
we obtain

F(s)∼= e−θs

λ s+ 1
(7)

It turns out that the only design parameter λ represents the
desired closed-loop time constant, which has to be suitably
selected depending on the given control requirements and on
the required robustness. In fact, the process has unavoidable
uncertainties and, in any case, the achieved performance is
never exactly as expected because of the approximation (6).
In the next section we give some methodologies for the sound
selection of λ , where the previous approximation is not used.

r y
C P

e u

Fig. 2. The considered standard unity-feedback control system.

Remark 1. In case the process is modelled as a second-order-
plus-dead-time (SOPDT) transfer function, a PID controller can
be used so that the two zeros of the controller cancel the two
poles of the process and the complementary sensitivity transfer
function F(s) is the same as (5).

Remark 2. Transfer functions (4) and (5) depends only on the
dead time θ and on the design parameter λ , so that it is sensible
to find tuning rules that relate λ to the only process parameter
θ .

Remark 3. As already mentioned in the introduction, being
based on pole-zero cancellation, the approach could not be
suitable for lag-dominant processes (i.e., when τ > 8θ ) as in
this case the load disturbance response is very sluggish. In
general, the λ tuning approach is particularly suitable when the
set-point following task is of major concern (for example, in
batch processes, or when a feedforward controller is effectively
used to handle the load disturbance task).

3. TUNING RULES

3.1 Tuning to avoid overshoot and for minimum IAE

Although, in principle, the set-point step response of system
(7) has no overshoot, it has to be taken into account that
the approximation (6) has been employed so that in practical
cases there is an overshoot for small values of λ . In (Guzman
et al., 2015) it has been determined that, by approximating
e−sθ with the first-order Padé approximation (1 − s θ

2 )/(1 +

s θ
2 ), the denominator of the closed-loop transfer function does

not exhibit complex poles if λ ≥
(

1
2 +

√
2
)

θ . The absence of

overshoot implies also that the integrated absolute error (IAE)
is equal to the integrated error (IE), that is
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Fig. 3. Resulting values of IE (solid line) and IAE (dashed line)
for different values of α = λ/θ .

∫ ∞

0
|e(t)|dt =

∫ ∞

0
e(t)dt. (8)

The values of IAE and IE can be evaluated numerically for
different values of the ratio α := λ/θ , thus removing any kind
of approximation. Results are shown in Figure 3 (the specific
values of IE and IAE are related to the case of θ = 1 but the
results are analogous for the other cases) and clearly indicates
that there is no overshoot for λ ≥ 3

2 θ and the minimum value
of the integrated absolute error is achieved for λ = 0.7θ .

3.2 Trade-off between bandwidth and gain (phase) margin

The speed of response of a system is clearly related to its
bandwidth, that is, to the gain crossover frequency ωc of L(s).
By imposing |L( jωc)|= 1, we obtain

ωc =
kpµ
Ti

=
1

θ +λ
(9)

Thus, the phase margin can be computed as

ϕm =
π
2
−ωcθ =

π
2
− θ

θ +λ
(10)

Then, by imposing argL( jωπ )|=−π , we obtain

ωπ =
π

2θ
(11)

so that the gain margin results

κm =
πTi

2kpµθ
=

π(θ +λ )
2θ

=
π

2θωc
(12)

It is clear there is a trade-off between ωc and κm and a Pareto
front can be determined. Thus, a typical bargaining problem
can be posed. Assuming that the user selects the minimum
acceptable values for the gain crossover frequency and for the
gain margin, and denoting them as ωd

c and κd
m, respectively, the

so-called Nash point can be determined as the optimal trade-
off. In fact, we can determine the value of λ that corresponds to
the point on the Pareto front for which the area of the rectangle
having vertexes on it and in the disagreement point (ωd

c ,κd
m) is

the largest (Sanchez et al., 2017). The situation is depicted in
Figure 4.

The area of the rectangle is

A =
(

ωc −ωd
c

)(

κm −κd
m

)

=
(

ωc −ωd
c

)

(

π
2θωc

−κd
m

)

(13)
and, by solving

dA
dωc

=
π

2θωc
−κd

m − π
(

ωc −ωd
c

)

2θω2
c

= 0 (14)

we have that A is maximum for (note that the second derivative
of A is always less than zero):

ωc = ωo
c :=

1

2

√

2πωd
c

θκd
m

κm = κo
m :=

1

2

√

2πκd
m

θωd
c

λ = λo :=

√

2θκd
m

πωd
c
−θ

(15)

If, on the contrary, the user prefers to specify the desired gain
crossover frequency and gain margin (we denote them as ωu

c
and κu

m, respectively, as they represent the utopia point), then
we have

κd
m =

π
2θωu

c

ωd
c =

π
2θκu

m

(16)

Thus, by replacing (16) in (15), we have

ωc = ωo
c :=

1

2

√

2πωu
c

θκu
m

κm = κo
m :=

1

2

√

2πκu
m

θωu
c

λ = λo :=

√

2θκu
m

πωu
c
−θ

(17)

A similar reasoning can be applied by considering the trade-off
between the gain crossover frequency and the phase margin.
In this case the relationship is linear and expressed by (10).
By denoting as ϕd

m the minimum acceptable value of the phase
margin, the Nash point is determined as:

ωc = ωo
c :=

π − 2ϕd
m+ 2θωd

c

4θ

ϕm = ϕo
m :=

π + 2ϕd
m− 2θωd

c

4

λ = λo :=
4θ

π + 2ϕd
m − 2θωd

c
−θ

(18)

If the user might specifies his desired phase margin ϕu
m together

with the desired value of ωc, then we have

ωd
c =

(π
2 −ϕu

m

)

θ

ϕd
m =

π
2
−θωu

c

(19)

and, by replacing (19) in (18), we have
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Fig. 4. Illustrative picture regarding the selection of the Nash
point given the disagreement or the utopia point consider-
ing the trade-off between the gain crossover frequency and
the phase margin.

ωc = ωo
c :=

π − 2ϕu
m+ 2θωu

c

4θ

ϕm = ϕo
m :=

π + 2ϕu
m− 2θωu

c

4

λ = λo :=
4θ

π + 2ϕu
m − 2θωu

c
−θ

(20)

3.3 Tuning for specified maximum sensitivity

A typical approach for the tuning of a PID controller is to
consider the resulting maximum sensitivity as a measure of the
system robustness (see, for example, (Padula and Visioli, 2011;
Åström et al., 2015; Alfaro and Vilanova, 2016)). In λ -tuning
this can be relevant, for example, in order to compensate for
an imperfect pole-zero cancellation or a imperfect dead time
estimation (as uncertainties in the process parameters cannot
be avoided in practice). In this context, defining the maximum
sensitivity as

Ms := max
w

∣

∣

∣

∣

1
1+L( jω)

∣

∣

∣

∣

(21)

its value can be determined numerically for different values of
α (see Figure 5). Then, a fitting function can be determined in
order to obtain a relationship between α and Ms. It results:

Ms =
α + 1.2256

α + 0.3943
(22)

Therefore, once a desired value of Ms has been selected by the
user, then the corresponding value of λ can be obtained as:

α =
1.2256− 0.3943Ms

Ms − 1
(23)

3.4 Trade-off between performance and maximum sensitivity

In Veronesi and Visioli (2009, 2010), the set-point following
performance of a PID controller is assessed by comparing
the obtained integrated absolute error with a benchmark one
calculated as 2Asθ , that is, the one given by the response of (7),
where λ = θ as suggested in (Skogestad, 2003), to a set-point
signal of amplitude As.
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Fig. 5. Values of Ms for different values of α (black stars) and
the determined fitting function (solid line).
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Fig. 6. Minimization of the cost function J. The dashed straight
lines represent the points corresponding to constant values
of J (the solid line corresponds to the optimal value).
Values of (IAE,Ms) for different values of α are shown
with the symbol ‘*’.
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Fig. 7. Values of α (black stars) for different values of w and
the determined fitting function (solid line).
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It is therefore sensible to consider the trade-off between the
performance assessed in this way and the achieved robustness,
which can be considered as the ratio between the value of Ms
obtained with a given value of λ and a target one equal to 1.2.
Thus, the following new performance index can be minimized:

J = w
IAE

2Asθ
+(1−w)

Ms

1.2
(24)

where the user can select a value of w between 0 and 1 in order
to suitably weight the two terms. It is worth noting that, in
the plane Ms-IAE , the considered cost function is represented
by straight lines corresponding to constant values of J and, of
course, the bigger is the value of J the worse is the overall
performance. On the other hand, for a given value of w, the
trade-off between IAE and Ms can be obtained by simulation for
different values of α and drawn as a curve in the same plane.
Since the overall cost function has to be minimized, the best
achievable point achievable by λ -tuning is the one where that
line is tangent to the constraint represented by the trade-off: the
situation is shown in Figure 6, where the slope of the straight
lines depends on the value of w.

By fitting the optimal values of α obtained for different values
of w (see Figure 7), we obtain:

α =
0.7375

(w− 0.0673)0.4903 (25)

4. ILLUSTRATIVE EXAMPLES

Some results are shown hereafter only with the aim to illustrate
the use of the devised formulas, rather than showing the effec-
tiveness of the λ -tuning and the role of λ in the performance, as
these are already well known. For this reason, we focus only of
the set-point step response, even if load disturbance rejection is
also relevant in general and has not to be neglected. We consider
the process with µ = 1, τ = 4, and θ = 1, that is,

P(s) =
1

4s+ 1
e−s (26)

Note that, in the process model, only the the dead time is rele-
vant in the set-point step response. However, the PI controller,
and therefore also the control variable, depends also on the
process time constant and on the process gain.

4.1 Example 1

As a first case we consider the trade-off between the bandwidth
(that is, the gain crossover frequency), and the gain margin.
By setting the minimum acceptable values (that is, the dis-
agreement point) as ωd

c = 0.1/θ and κd
m = 1.1, by applying

(15) we obtain ωo
c = 0.3779, κo

m = 4.1568, λo = 1.6463. This
gives Kp = 1.5115 and Ti = 4. On the other hand, if we set the
desirable values of the gain crossover frequency and of the gain
margin (utopia point) as ωu

c = 1/θ and κu
m = 4, it results (see

(17)) ωo
c = 0.6267, κo

m = 2.5066, and λo = 0.5958, which gives
Kp = 2.5066 and Ti = 4. The set-point unit step responses with
these two tunings are shown for the sake of completeness in
Figure 8 where also the minimum IAE case (λ = 0.7, which
gives Kp = 2.3529 and Ti = 4) is plotted. Of course, as it is
well known, results confirm that a smaller value of λ implies
a smaller rise time but also a bigger control effort and a larger
overshoot.
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Fig. 8. Results related to Example 1. Solid line: λ = 1.6463.
Dashed line: λ = 0.5958. Dotted line: λ = 0.7.
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Fig. 9. Results related to Example 2. Solid line: λ = 0.7434.
Dashed line: λ = 0.570.

4.2 Example 2

In the second example we consider the trade-off between the
gain crossover frequency), and the phase margin. By setting
the minimum acceptable values as ωd

c = 0.1/θ and ϕd
m = π/6,

by applying (18) we obtain ωo
c = 0.5736, ϕo

m = 0.9972, and
λo = 0.7434. This gives Kp = 2.2943 and Ti = 4. Alternatively,
if we set the desirable values of the gain crossover frequency
and of the phase margin as ωu

c = 0.75/θ and ϕu
m = π/3, it

results (see (20)) ωo
c = 0.6368, ϕo

m = 0.934, and λo = 0.570,
which gives a value of the proportional gain Kp = 2.547. The
set-point unit step responses in the two cases are shown in
Figure 9.

4.3 Example 3

In the third example we consider the tuning based on a speci-
fication of a desired maximum sensitivity. By setting the maxi-
mum sensitivity as Ms = 1.2, Ms = 1.6, and Ms = 2 (which are
typical values), we obtain through (23) the values λ = 3.7622,
λ = 0.9912, and λ = 0.437 respectively. The corresponding
values of the proportional gain of the PI controller are, respec-
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Fig. 10. Results related to Example 3. Solid line: λ = 3.7622.
Dashed line: λ = 0.9912. Dotted line: λ = 0.437.
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Fig. 11. Results related to Example 4. Solid line: λ = 1.6972.
Dashed line: λ = 1.1121. Dotted line: λ = 0.8893.

tively (Ti = 4): Kp = 0.8399, Kp = 2.0088, and Kp = 2.7835.
The set-point unit step responses in the three cases are shown
in Figure 10.

4.4 Example 4

In the last example we consider the tuning based on the trade-
off between performance and maximum sensitivity. By setting
the value of the weight w as w = 0.25, w = 0.5, and w =
0.75, we obtain through (25) the values λ = 1.6972 (which
corresponds to Kp = 1.4830), λ = 1.1121 (which corresponds
to Kp = 1.8938), and λ = 0.8893 (which corresponds to Kp =
2.1172), respectively. The set-point unit step responses are
plotted in Figure 11.

5. CONCLUSIONS

In this paper we have presented simple rules to determine the
value of the desired closed-loop time constant in the λ -tuning of
PI(D) controllers, starting from specifications given by the user
in different forms. Although the rationale of λ -tuning is well
known (and this is one of the reasons for its success in industry),

the devised formulas are very useful because they can be used
by users with different skills and different knowledge of the
given industrial process. It is therefore believed that they can
be exploited to optimize the performance and to obtain a fast
commissioning of the control loop, which is one of the main
features to improve the cost/benefit ratio of PID controllers.
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