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Abstract: This paper describes a new approach for the blind identification of a two–channel FIR system
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1. INTRODUCTION

Blind system identification is a fundamental problem in signal
processing aimed at estimating the channel impulse response
by using the output observations only, since the input signal
is either unknown or not easily accessible. Problems of this
type arise in many important applications such as data trans-
mission, speech recognition, reverberation cancellation, seis-
mic deconvolution, biomedical data analysis, image restora-
tion (Abed–Meraim et al., 1997b; Giannakis et al., 2001). In
most of these applications, the unknown system is described
by a single–input multi–output (SIMO) finite impulse response
(FIR) model, whose outputs are affected by additive noise.
For this problem, two different approaches are usually con-
sidered: methods based on second–order statistics (SOS) and
approaches based on higher–order statistics (HOS). HOS meth-
ods are based on optimization techniques employing gradient–
based algorithms and are characterized by the drawbacks of
slow convergence and local minima. Since it was recognized
in (Tong et al., 1991) that the problem can be solved by using
SOS only, the study of blind identification with SOS has had a
rapid development. Many techniques have been proposed, such
as the subspace algorithm (Moulines et al., 1995), the cross–
relation algorithm (Xu et al., 1995) and the two–step maximum
likelihood algorithm (Hua, 1996). A review of many SOS meth-
ods can be found in (Tong and Perreau, 1998). Most of the
existing approaches assume the presence of the same amount of
additive white noise on all the channels or, at least, the a priori
knowledge of the ratio of the noises’ variances. A solution for
the case of unknown unbalanced noise environments has been
proposed in (Diversi et al., 2005, 2007), on the basis of Errors–
in–Variables (EIV) identification techniques.

The method proposed in this paper relies on the cross–relation
property and deals with the blind identification of two–channel
FIR systems, whose outputs are affected by different and un-
known amounts of additive white noise. As a major novelty, the
algorithm makes use of frequency domain data. This feature
offers an easy implementation of the filtering operation, which

is reduced to the selection of an appropriate limited band of
the signal spectrum. This property can be advantageously used
for obtaining good identification results even when the additive
noise is not white, provided that some information of its char-
acteristic is available.

The organization of the paper is as follows. Section 2 defines
the blind identification problem in the frequency domain, while
Section 3 introduces a novel frequency domain description
for the noisy two–channel FIR model. Section 4 discusses
some contexts for the identification of EIV models. In partic-
ular, the GIVE framework, originally proposed in (Söderström,
2011), and the dynamic Frisch scheme, originally proposed in
(Beghelli et al., 1990), are briefly recalled. Sections 5 describes
a possible identification criterion, that can be directly formu-
lated in the frequency domain. This criterion takes advantage
of two sets of equations similar to the High Order Yule Walker
(HOYW) equations. The method can be considered as the appli-
cation of the approach proposed in (Soverini and Söderström,
2015) to the blind identification of FIR models. In Section 6
the effectiveness of the proposed method is verified by means
of Monte Carlo simulations and the advantages of the filtering
operations in the frequency domain are illustrated by means
of a numerical example. Finally some concluding remarks are
reported in Section 7.

2. STATEMENT OF THE PROBLEM

Consider a two–channel FIR system whose outputs x1(t), x2(t)
are linked to the input u(t) by the convolution model

x1(t) = H1(z
−1)u(t) =

L
∑

k=0

h1(k)u(t− k) (1)

x2(t) = H2(z
−1)u(t) =

L
∑

k=0

h2(k)u(t− k), (2)

where H1(z
−1), H2(z

−1) are polynomials of degree L in the
unitary delay operator z−1 of the type
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Hi(z
−1) = hi(0) + hi(1) z

−1 + · · ·+ hi(L) z
−L i = 1, 2.

(3)
This model is useful to describe the case of a single unknown
source and multiple spatially or/and temporally distributed sen-
sors (Tong and Perreau, 1998; Xu et al., 1995).

The channel outputs are affected by additive noise, so that the
available signals are

y1(t) = x1(t) + n1(t) (4)

y2(t) = x2(t) + n2(t). (5)

The following assumptions are made.

A1. The order L of the FIR channels is assumed as a priori
known.

A2. The input u(t) can be either a zero–mean ergodic process
or a quasi–stationary bounded deterministic signal (Ljung,
1999).

A3. The additive noises n1(t) and n2(t) are zero–mean er-
godic white processes with unknown variances σ∗

1 and σ∗

2 .
A4. n1(t), n2(t) and u(t) are mutually uncorrelated.

In order to guarantee the system identifiability (up to a scalar
factor), the following additional assumptions must be intro-
duced (Hua and Wax, 1996).

A5. The polynomials H1(z
−1) and H2(z

−1) do not share any
common factor.

A6. The input u(t) is persistently exciting of order 2L+ 1.
A7. The number of the available samples N satisfies the con-

dition N ≥ 3L+ 1.

Let {y1(t)}N−1
t=0 and {y2(t)}N−1

t=0 be the sets of output obser-

vations at N equidistant time instants. For {y1(t)}N−1
t=0 , the

corresponding Discrete Fourier Transform (DFT) is defined as

Y1(ωk) =
1√
N

N−1
∑

t=0

y1(t) e
−jωkt (6)

where ωk = 2πk/N and k = 0, . . . , N − 1. Similarly, let

Y2(ωk) be the DFT of {y2(t)}N−1
t=0 . In the frequency domain,

the problem under investigation can be stated as follows.

Problem 1. Let Y1(ωk), Y2(ωk) be the sets of noisy measure-
ments generated by a two–channel FIR system of type (1)–
(5), under Assumptions A1–A7. Estimate the coefficients of
H1(z

−1), H2(z
−1) (up to a scalar factor) and the variances σ∗

1 ,
σ∗

2 .

Remark 1. For real–valued signals, the following consideration
holds for every N , even or odd, see also (McKelvey, 2002). Let
s(t) denote either y1(t) or y2(t). It can be observed that for

k = 0, . . . , floor
(

N
2

)

S(ωN−1−k) =
1√
N

N−1
∑

t=0

s(t) e−j N−1−k

N
2πt

=
1√
N

N−1
∑

t=0

s(t) e−j
−(1+k)

N
2πt = S̄(ω1+k), (7)

where S̄(·) is the complex conjugate of S(·). Thus, a redundant
information is used when the full data set is considered. In fact,
it is worth observing that the algorithm proposed in Sections 5
yields consistent estimates of the system parameters by using
only the first Nhalf = ceil

(

(N + 1)/2
)

samples Y1(ωk),

Y2(ωk), k = 0, . . . , floor
(

N
2

)

.

3. A FREQUENCY DOMAIN SETUP

In this section a new frequency domain description for the
noisy two–channel FIR model (1)–(5) is introduced. This setup
has been originally developed in (Soverini and Söderström,
2014a,b) with reference to the identification of errors–in–
variables systems.

In absence of noise, relations (1) and (2) lead immediately to the
following well–known cross-relation property (Xu et al., 1995)

H2(z
−1)x1(t) = H1(z

−1)x2(t). (8)

Working with frequency data, the previous relation must be
modified as follows. Similarly to equation (6), let X1(ωk) and
X2(ωk) be the DFTs of the signals x1(t) and x2(t) appearing
in equation (8). It is a well–known fact (Pintelon et al, 1997;
McKelvey, 2002) that for finite N the DFTs X1(ωk) and
X2(ωk) exactly satisfy an extended relation that includes also a
transient term, i.e.

H2(e
−jωk )X1(ωk) = H1(e

−jωk)X2(ωk) + T (e−jωk), (9)

where T (z−1) is a polynomial of order L− 1

T (z−1) = τ0 + τ1 z
−1 + · · ·+ τL−1 z

−L+1 (10)

that takes into account the effects of the initial and final condi-
tions of the experiment.

By considering the whole number of frequencies, eq. (9) can
be rewritten in a matrix form. For this purpose, introduce the
parameter vectors

θ1 = [h1(0)h1(1) . . . h1(L)]
T (11)

θ2 = [h2(0)h2(1) . . . h2(L)]
T (12)

θτ = [ τ0 . . . τL−1 ]
T (13)

and define the following vector Θ, with dimension (cf. Ass. A7)

p = 3L+ 2 , (14)

containing the whole set of parameters

Θ = [ θT2 − θT1 − θTτ ]T . (15)

In absence of noise, the parameter vector (15) can be recovered
by means of the following procedure. Define the row vectors

ZL+1(ωk) = [1 e−jωk . . . e−j(L−1)ωk e−jLωk ] (16)

ZL(ωk) = [1 e−jωk . . . e−j(L−1)ωk ], (17)

whose entries are constructed with multiple frequencies of ωk,
and construct the following matrices

Π =







ZL+1(ω0)
...

ZL+1(ωN−1)






Ψ =







ZL(ω0)
...

ZL(ωN−1)






(18)

of dimension N × (L+ 1) and N × L, respectively.

From the DFT samples X1(ωk), X2(ωk) construct the follow-
ing N ×N diagonal matrices

V diag
X1

= diag [X1(ω0), X1(ω1), . . . , X1(ωN−1)] (19)

V diag
X2

= diag [X2(ω0), X2(ω1), . . . , X2(ωN−1)]. (20)

Compute the N × (L + 1) matrices

ΦX1 = V diag
X1

Π ΦX2 = V diag
X2

Π (21)

and construct the N × p matrix

Φ̂ = [ΦX1 |ΦX2 | Ψ]. (22)

Thus, eq. (9) for k = 0, . . . , N − 1 can be rewritten as

Φ̂Θ = 0. (23)
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It then holds

Σ̂Θ = 0, (24)

where Σ̂ is the p× p matrix

Σ̂ =
1

N
(Φ̂H Φ̂). (25)

Remark 2. Because of assumption A5, relation (9) cannot be
satisfied by polynomials H1(z

−1) and H2(z
−1) with order

lower than L. Therefore, the matrix Σ̂ in (25) is positive
semidefinite, with only one zero eigenvalue, i.e.

Σ̂ ≥ 0 dimker Σ̂ = 1 . (26)

In the presence of noise, the previous procedure can be mod-
ified as follows. With the noisy DFT samples Y1(ωk), Y2(ωk)
construct the N ×N diagonal matrices

V diag
Y1

= diag [Y1(ω0), Y1(ω1), . . . , Y1(ωN−1)] (27)

V diag
Y2

= diag [Y2(ω0), Y2(ω1), . . . , Y2(ωN−1)], (28)

compute the matrices

ΦY1 = V diag
Y1

Π ΦY2 = V diag
Y2

Π (29)

and construct the N × p matrix

Φ = [ΦY1 |ΦY2 | Ψ]. (30)

Because of Assumptions A3–A4, when N → ∞, we obtain the
following p× p positive definite matrix

Σ = lim
N→∞

1

N
(ΦHΦ) = Σ̂ + Σ̃∗, (31)

where

Σ̃∗ = diag
[

σ∗

1 IL+1, σ
∗

2 IL+1, 0L
]

. (32)

The matrix Σ̂ in (31) must be interpreted as the limit for
N → ∞ of (25). Of course, the property (24) still holds. Thus,
the parameter vector Θ, defined in (15), can be obtained as the
kernel of

(

Σ− Σ̃∗

)

Θ = 0. (33)

By considering the particular structure of the matrices Σ and

Σ̃∗, Problem 1 can be solved by considering a system of equa-
tions of type (33) with reduced dimensions. For this purpose,
the matrix Σ, defined in (31), is partitioned as follows

Σ =





Σ11 Σ12 Σ13

Σ21 Σ22 Σ23

Σ31 Σ32 Σ33



 , (34)

where Σ11 and Σ22 are square matrices of dimension L+1 and
Σ33 is a square matrix of dimension L. In a similar way, the

matrix Σ̂ in equation (31) is also partitioned.

Relation (33) can be expanded as follows

Σ̂11 θ2 − Σ12 θ1 − Σ13 θτ = 0 (35)

Σ21 θ2 − Σ̂22 θ1 − Σ23 θτ = 0 (36)

Σ31 θ2 − Σ32 θ1 − Σ33 θτ = 0. (37)

Next (37) implies

θτ = Σ−1
33

(

Σ31 θ2 − Σ32 θ1

)

. (38)

The expression (38) can be substituted in (35) and (36), and the
following problem of reduced dimension can be defined

(

R− R̃∗

)

θ = 0, (39)

where

R =

[

Σ11 − Σ13Σ
−1
33 Σ31 Σ12 − Σ13Σ

−1
33 Σ32

Σ21 − Σ23Σ
−1
33 Σ31 Σ22 − Σ23Σ

−1
33 Σ32

]

, (40)

R̃∗ = diag
[

σ∗

1 IL+1, σ
∗

2 IL+1

]

(41)

and the parameter vector θ, with dimension (cf. Ass. A6)

pθ = 2L+ 2 , (42)

is defined as
θ = [θT2 − θT1 ]T . (43)

4. INTERPRETATION AS AN ERRORS–IN–VARIABLES
PROBLEM

4.1 The GIVE framework

Note that (39) consists of 2L+2 algebraic non–linear equations.
The number of unknowns is 2L + 3, i.e. the 2L + 1 free
coefficients of θ and the two variances σ∗

1 and σ∗

2 . In the time
domain, a similar set of equations has been widely studied in the
identification of EIV dynamic systems. A general framework
has been originally introduced in (Söderström, 2011), where the
Generalized Instrumental Variable Estimation (GIVE) method
was proposed with reference to SISO EIV systems affected by
additive white noises. The GIVE method provides a unique
general framework for the whole class of bias–compensating
methods, including iterative solutions, like the BELS methods
(Söderström et al, 2005). The GIVE framework leads to the
following conclusions, that are common to the whole class of
bias–compensating methods.

1 Since the number of the unknowns is larger than the
number of equations, some further equations need to be
used in addition to the system (39) in order to find a unique
estimate of θ. It can result in an over–determined system
of equations. In the time domain, a natural solution is
to exploit the high–order Yule–Walker equations, where
the noise variances are not present. Indeed, these are the
equations exploited also by the method proposed in this
paper. In Section 5 we will see how these equations can
be written in the frequency domain.

2 In the general case the parameter estimates are obtained as
the solution of the solution to an overdetermined system
of equations, leading to an optimization problem. A usual
solution strategy consists in forcing some equations to
hold exactly, while the others are minimized in a weighted
least squares sense. This will be described as introduction
of a search criterion in Section 5.

3 This second aspect does not affect the statistical properties
of the estimates, since the asymptotic accuracy depends
only on the set of equations used to define the problem
and not on the way the equations are solved (Söderström et
al, 2005). Nevertheless, in practice, different identification
algorithms that are based on the same set of equations can
lead to different estimation results, in terms of computa-
tional complexity and speed of convergence.

4.2 The Frisch scheme context

The purpose of this subsection is to recall the Frisch scheme
(Beghelli et al., 1990; Guidorzi et al., 2008; Söderström, 2018)
for developing the estimation algorithm of Section 5. This can
be viewed as a possible numerical strategy to solve the ‘exact’
equations within the GIVE framework, as stated in the point 2.
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Starting from an assumed knowledge of the noisy matrix R in
(40), the determination of the system parameter vector θ and of
the noise variances σ∗

1 , σ∗

2 in eq. (39) can be seen as a Frisch
scheme problem. This problem can be solved both in the time
and in the frequency domain. In fact, the properties of the locus
of the solutions in the noise plane R2 are the same. In the
following only the main result of the Frisch scheme is recalled.
All the technical aspects, with the related proofs, are reported
in (Soverini and Söderström, 2019).

Consider the set of non–negative definite diagonal matrices of
type

R̃ = diag
[

σ1 IL+1, σ2 IL+1

]

(44)

such that

R− R̃ ≥ 0 det
(

R − R̃
)

= 0. (45)

Main Result. The set of all matrices R̃ satisfying the conditions
(45) defines the points P = (σ1, σ2) of a continuous curve
S(R) belonging to the first quadrant of the noise space R2.
The curve S(R) describes a convex set in the first quadrant of
R2, whose concavity faces the origin. When N → ∞, the point
P ∗ = (σ∗

1 , σ
∗

2), associated with the true variances of n1(t) and
n2(t), belongs to S(R).

Corollary. Every point P = (σ1, σ2) of S(R) can be associated

with a noise matrix of type R̃(P ) in (44) and with a coefficient
vector θ(P ), satisfying the relation

(

R− R̃(P )
)

θ(P ) = 0. (46)

The coefficient vector θ(P ∗), associated with R̃(P ∗) = R̃∗, is
characterized (after a normalization of its first entry to 1) by the
true system parameter vector, i.e. θ(P ∗) = θ.

5. A SEARCH CRITERION BASED ON HOYW–TYPE
EQUATIONS

As asserted in Section 4, the determination of the point P ∗

on S(R) leads to the solution of Problem 1. Unfortunately,
the theoretic properties of S(R) described so far do not allow
to distinguish point P ∗ from the other points of the curve.
Some additional conditions must be added to define a unique
estimate. One possibility is to introduce a search condition,
i.e. an optimization criterion, taking the equation (46) as a
constraint.

In this section we will describe a possible search criterion.
This criterion is analogue to that reported in (Soverini and
Söderström, 2015) with reference to frequency domain iden-
tification of EIV systems.

Select the integer q ≥ 3L + 1. Analogously to (16), consider
the row vector

Zq+L+1(ωk) = [1 e−jωk . . . e−j(q+L)ωk ] (47)

and extract from it the q–dimensional row vector

Zh
q (ωk) = [e−j(L+1)ωk . . . e−j(q+L)ωk ]. (48)

Then, construct the following N × q matrix

Πh =







Zh
q (ω0)

...

Zh
q (ωN−1)






. (49)

Due to the complete symmetry of the problem it is preferable
to treat the two system outputs in the same way. Thus, with

reference to the noise–free data, we can compute the following
N × q matrices

Φh
X1

= V diag
X1

Πh Φh
X2

= V diag
X2

Πh (50)

and define the q × p matrices

Σh
X1

=
1

N

(

(Φh
X1

)H Φ̂
)

Σh
X2

=
1

N

(

(Φh
X2

)H Φ̂
)

. (51)

Because of (23) we have

Σh
X1

Θ = 0 Σh
X2

Θ = 0. (52)

In an analogous way, in the noisy case, we can compute the
N × q matrices

Φh
Y1

= V diag
Y1

Πh Φh
Y2

= V diag
Y2

Πh (53)

and define the q × p matrices

Σh
Y1

=
1

N

(

(Φh
Y1
)H Φ

)

Σh
Y2

=
1

N

(

(Φh
Y2
)H Φ

)

. (54)

Because of Assumptions A3–A4, when N → ∞, it results in

Σh
Y1

= Σh
X1

Σh
Y2

= Σh
X2

. (55)

It is thus possible to write

Σh
Y1

Θ = 0 Σh
Y2

Θ = 0. (56)

Remark 4. The two linear sets of q equations appearing in (56)
do not involve the noise variances σ∗

1 , σ∗

2 and correspond to
the time domain high order Yule–Walker equations. Each set
of equations could be directly used to obtain an estimate of the
parameter vector Θ if q ≥ 3L + 1. The two sets of equations
are analogue to two instrumental variable (IV) methods in the
time domain, where delayed outputs (for example, in Σh

Y1
) and

delayed inputs (for example, in Σh
Y2

) are used as instruments.

Remark 5. The value of the parameter q is a user choice.
In general, this value can affect the quality of the estimates.
However its influence is not straightforward to investigate. In
all cases of Section 6, q has been chosen as q = 3L+ 1.

The two sets of equations in (56) can be collected in one set, by
defining the matrix

Σh =

[

Σh
Y1

Σh
Y2

]

, (57)

so that we obtain
Σh Θ = 0. (58)

By using again (38), the system of equations (58) can be
reduced to a system of equations with θ as unknown, thus
reducing the number of unknowns. For this purpose, partition
matrix Σh as follows

Σh =
[

Σh
1 Σh

2 Σh
3

]

, (59)

where the matrices Σh
1 and Σh

2 have dimensions 2q × (L + 1)
and Σh

3 has dimension 2q × L. Thanks to (38), equation (58)
can be reduced to

Rh θ = 0, (60)

where θ has been defined in (43) and

Rh =
[

Σh
1 − Σh

3Σ
−1
33 Σ31 Σh

2 − Σh
3Σ

−1
33 Σ32

]

. (61)

Remark 6. The set of (2L+2) non–linear equations (39) can be
joined to the set of 2q linear equations (60), with q ≥ 3L + 1
and can be settled within the GIVE framework, as described
in Subsection 4.1. Thus, the results in (Söderström, 2011) and
(Söderström, 2018) can be applied, to express the statistical
accuracy in terms of the theoretical asymptotic covariance
matrix of the parameter estimates. More precisely, applying the
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Frisch scheme described in Subsection 4.2, the equations (39)
are treated as a constraint that must be exactly satisfied, while
the equations (60) must hold approximately. In other words, the
search for P ∗ along S(R) can be performed by minimizing a
quadratic cost function.

For every point P on S(R), one can compute the parameter
vector θ(P ) defined in (46) and evaluate the cost function

J(P ) = ‖Rh θ(P )‖22 = θT (P )(Rh)H Rh θ(P ) (62)

which exhibits the following properties

i) J(P ) ≥ 0 ii) J(P ) = 0 ⇔ P = P ∗.

In general, for a finite number of data, the minimum of J(P )
will not be exactly obtained for P = P ∗. Note that the search
algorithm moves radially on S(R), thanks to the equations
(64)–(66).

On the basis of the previous considerations, the following
algorithm can be derived.

Algorithm 1.

(1) Compute, on the basis of the available time domain data,
the DFTs Y1(ωk), Y2(ωk) with ωk = 2πk/N (k =
0, . . . , N − 1).

(2) Compute the matrices ΦY1 , ΦY2 as in (29) and construct
the matrix Φ as in (30).

(3) Compute, as in (31), the sample estimate of matrix

Σ =
1

N
(ΦHΦ) (63)

and compute the matrix R by means of (40).
(4) Select q ≥ 3L+ 1 and construct the matrix Πh as in (49),

then compute the matrices Φh
Y1

, Φh
Y2

as in (53).
(5) Compute, as in (54), the sample estimate of the matrices

Σh
Y1

and Σh
Y2

. Collect them in the matrix Σh as in (57) and

compute the matrix Rh by means of (61).
(6) Start from a generic point ξ = (ξ1, ξ2) (a generic direc-

tion) in the first quadrant of R2 and compute the corre-
sponding point P = (σ1, σ2) on S(R), by means of

R̃ξ = diag
[

ξ1 IL+1, ξ2 IL+1

]

(64)

λM = max eig
(

R−1R̃ξ

)

(65)

σ1 =
ξ1
λM

σ2 =
ξ2
λM

. (66)

(7) Compute the estimates of R̂(P ) and θ(P ) by means of the
relations

R̂(P ) = R− diag
[

σ1IL+1, σ2 IL+1], (67)

R̂(P ) θ(P ) = 0. (68)

(8) Compute the value of the cost function J(P ) (62).
(9) Search on the curve S(R) for the point associated with the

minimum of J(P ).

Remark 7. Algorithm 1 makes reference to the case of N data.
As observed in Remark 1, if only Nhalf = floor

(

N/2
)

data are
considered, the algorithm must be modified in a straightforward
fashion, by substituting N with Nhalf starting from step (2).

Remark 8. As stated in Problem 1, the coefficients of the FIR
systems H1(z

−1) andH2(z
−1), i.e. the entries of the vector θ in

(43), can be estimated up to a scalar factor, only. Thus, a natural
choice for comparing the identification results is to normalize θ

and its estimate θ̂ to unit norm vectors. However, at a generic
i–th iteration of the algorithm, the normalization to unity can

lead to some numerical problems as far as the evaluation of the
cost function J(P ) in (62) is concerned. Better results can be
obtained by taking into account the symmetry of the problem,
avoiding any preference between the two vectors θ1 and θ2.
For this reason, at the i-th iteration of the algorithm, before

evaluating the cost function J(P ), the estimate θ̂i obtained in
(68) has been normalized as follows

θa =
θ̂i

θ̂i(1)
, θb =

θ̂i

θ̂i(2L+ 2)
θ̂i =

θa + θb
2

. (69)

6. NUMERICAL EXAMPLES

In this section, the performance of the proposed blind identifi-
cation algorithm is evaluated and compared with those of other
methods by means of numerical simulations.

Example 1. The simulations have been performed on the fol-
lowing two–channel FIR system of order L = 5, already con-
sidered in (Abed–Meraim et al., 1997a; Diversi et al., 2005)

H1(z
−1) =− 1.1836 + 0.4906 z−1 − 0.3093 z−2

+ 0.4011 z−3 + 0.1269 z−4 − 1.8522 z−5 (70)

H2(z
−1) =1.2965 + 0.0525 z−1 + 0.3410 z−2

− 0.0260 z−3 + 0.3991 z−4 + 0.8817 z−5. (71)

The input signal is an i.i.d. sequence with length N = 200
of binary variables, assuming the values {−1,+1} with equal
probability. The noiseless outputs x1(t) and x2(t) have been
corrupted by additive Gaussian white noise sequences cor-
responding to different values of the Signal–to–Noise Ratio
(SNR). The SNR on the i–th channel is defined, in dB, as

SNR = 10 log10
E[x2

i ]

E[n2
i ]

= 10 log10
E[x2

i ]

σ∗

i

i = 1, 2 (72)

where E[·] denotes the mathematical expectation. Since x1(t)
and x2(t) have different variances, equal SNRs on every chan-
nel correspond to different values of σ∗

1 and σ∗

2 . For every SNR
condition, a Monte Carlo simulation of Nr = 100 runs has been
carried out. As performance index, the following Normalized
Root Mean Square projection Error has been considered

NRMSE =

√

√

√

√

1

Nr

Nr
∑

i=1

ξ
(

θ, θ̂i
)

, (73)

where θ̂i is the estimate of θ obtained at the i-th trial and

ξ
(

θ, θ̂i
)

= sin2
(

φ) = 1−
( θT θ̂i

||θ|| ||θ̂i||

)2

(74)

measures the angle φ ∈ [0, π/2] between the two directions

given by the vectors θ and θ̂i (Morgan et al., 1998). The algo-

rithm is considered as convergent if it results

√

ξ
(

θ, θ̂i
)

< 0.5

(−6 dB). The proposed Algorithm 1 has been compared with
the time domain Frisch Shifted Relation algorithm described in
(Diversi et al., 2005), denoted with Frisch-SR. Figure 1 reports
the NRMSE versus the SNR for the Algorithm 1 (solid line)
and the Frisch-SR method (dashed line). Table 1 reports the
empirical means of the estimates of the parameter θ (scaled to
unit norm) and of the noise variances, together with the cor-
responding standard deviations, obtained with the Algorithm 1
and with the Frisch-SR algorithm, for SNR=10dB. Figure 1 and
Table 1 show that the two identification methods yield good and
comparable results.
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Fig. 1. NMRSE versus SNR: Alg.1 (solid), Frisch-SR (dashed).

Table 1. True and estimated parameters - N = 200,
SNR= 10dB.

True Alg.1 Frisch− SR

θ(1) 0.4560 0.4492 ± 0.0255 0.4496± 0.0306

θ(2) 0.0185 0.0240 ± 0.0631 0.0173± 0.0475

θ(3) 0.1199 0.1251 ± 0.0422 0.1221± 0.0500

θ(4) −0.0091 −0.0026 ± 0.0536 −0.0091± 0.0463

θ(5) 0.1404 0.1427 ± 0.0444 0.1401± 0.0387

θ(6) 0.3101 0.3060 ± 0.0420 0.3023± 0.0372

θ(7) 0.4163 0.4067 ± 0.0374 0.4087± 0.0386

θ(8) −0.1726 −0.1604 ± 0.0810 −0.1676± 0.0630

θ(9) 0.1088 0.1142 ± 0.0565 0.1110± 0.0618

θ(10) −0.1411 −0.1355 ± 0.0672 −0.1423± 0.0603

θ(11) −0.0446 −0.0410 ± 0.0559 −0.0424± 0.0579

θ(12) 0.6515 0.6409 ± 0.0405 0.6425± 0.0492

σ
∗

1
0.5022 0.4448 ± 0.1835 0.4530± 0.2553

σ
∗

2
0.2224 0.1969 ± 0.0923 0.2057± 0.1239

Example 2. This numerical example illustrates the frequency
domain features of the new identification method. The same
two–channel FIR system of the Example 1 has been considered,
driven by the same input sequence. However, in this example
the output signals are affected by pink noises. Pink noise is
characterized by a power spectrum that falls in frequency like
1/f . The pink noise has been generated by using the following
third–order ARMA model, suggested in (Orfanidis, 2010) at
pag. 736

ni(t) = g0
B(z−1)

A(z−1)
ei(t) i = 1, 2 (75)

where ei(t) is a white noise with variance σei , g0 = 0.57534
and

B(z−1) =(1− 0.98444 z−1)(1− 0.83392 z−1)

×(1− 0.07568 z−1) (76)

A(z−1) =(1− 0.99574 z−1)(1− 0.94791 z−1)

×(1− 0.53568 z−1). (77)

The resulting power spectra of the noises ni(t) are

Sni
(ωk) = g20

|B(e−jωk)|2
|A(e−jωk)|2 σei i = 1, 2 (78)
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Fig. 2. FIR models (solid), pink noises (dotted), equivalent
white noises (dash–dotted) and noisy signals (dashed)

By construction, asymptotically when N → ∞, the variance
σei coincides with the variance of the output noise ni(t), i.e.
σei = σ∗

i . The data length in this example has been fixed to
N = 500.

A Monte Carlo study of 100 independent runs has been per-
formed by considering noisy output sequences, affected by ad-
ditive pink noises, with variances σ∗

1 = 1.6086, σ∗

2 = 0.7902,
corresponding to a ratio

10 log10
E[x2

i ]

E[n2
i ]

= 10 log10
E[x2

i ]

σ∗

i

i = 1, 2 (79)

of about 5 dB on both channels.

Figure 2 shows, for the two FIR channels, the spectrum of the
FIR system (solid line) and the spectrum of the additive pink
noise (dotted line) together with the resulting noisy output spec-
trum (dashed line). The dash–dotted line reports the spectrum
of the “equivalent” white noise with variance σ∗

i .

In many real situations some additional information about the
system is available. In this case, for example, one could be
aware that the additive noise is of pink type. Taking account
of this information, the two–channel FIR system has been iden-
tified by using the Algorithm 1 within the frequency window
F = [fi, ff ], with fi = 0.05 and ff = 0.5. In this way, the
effect of the pink noise, acting at low frequencies, has been
filtered out.

The results of the simulation are reported in the first column
of Table 2. For comparison, the second column of Table 2 re-
ports the estimates obtained by the Frisch-SR algorithm. When
the whole frequency window F = [0, 0.5] is used, also the
Algorithm 1 yields bad results, similar to those of Frisch-SR.
The corresponding reconstructions of the frequency responses
(properly scaled) are shown in Figure 3. The advantageous
effects of filtering are evident.

7. CONCLUSIONS

In this paper a novel frequency domain approach has been pro-
posed for the blind identification of two–channel FIR systems
affected by additive white noises. The estimation properties of
the new algorithm have been tested and compared by means of
Monte Carlo simulations. The numerical results have confirmed
the good performances of the proposed method. The benefits of
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Table 2. True and estimates parameters in the pres-
ence of output pink noise - N = 500.

True Alg.1 [ 0.05− 0.5 ] Frisch− SR

θ(1) 0.4560 0.4448 ± 0.0143 0.3353± 0.0254

θ(2) 0.0185 −0.0335± 0.0304 −0.2397± 0.0157

θ(3) 0.1199 0.1461 ± 0.0271 0.0976± 0.0362

θ(4) −0.0091 −0.0246± 0.0293 −0.1941± 0.0191

θ(5) 0.1404 0.1123 ± 0.0302 0.0027± 0.0264

θ(6) 0.3101 0.2760 ± 0.0217 0.1249± 0.0303

θ(7) 0.4163 0.4400 ± 0.0215 0.4054± 0.0220

θ(8) −0.1726 −0.2226± 0.0413 −0.4752± 0.0341

θ(9) 0.1088 0.1852 ± 0.0350 0.2176± 0.0617

θ(10) −0.1411 −0.1276± 0.0387 −0.3125± 0.0387

θ(11) −0.0446 −0.0633± 0.0412 −0.1418± 0.0482

θ(12) 0.6515 0.6176 ± 0.0412 0.4431± 0.0487

NRMSE −15.6670 dB −4.7524 dB

0 0.1 0.2 0.3 0.4 0.5
−20

−10

0

10

Normalized frequency (Fs=1)

F
IR

2
 s

p
e

c
tr

a
 (

d
B

)

0 0.1 0.2 0.3 0.4 0.5
−20

−10

0

10

20

Normalized frequency (Fs=1)

F
IR

1
 s

p
e

c
tr

a
 (

d
B

)

 

 

FIR model

Alg.1

Frisch−SR

Fig. 3. FIRs spectra: true models (solid), estimated models with
Alg.1 (dash-dotted) and with Frisch-SR (dashed).

filtering the data in the frequency domain have been illustrated
by means of a numerical example.
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