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Abstract: This paper presents an incompressible particle flow filtering method that does not require an 

auxiliary filter by estimating log-density gradients directly from particles. Particle flow filter (PFF) is 

likely to avoid particle impoverishment and degeneracy problems that occur in particle filters because 

particles themselves move toward desired density to perform measurement updates. There are various 

implementation forms for PFF depending on the assumptions made about the flow. This paper deals with 

PFF using incompressible flow. Incompressible PFF requires the log-density gradient to calculate the 

flow. The well-known gradient estimation method for incompressible PFF is a finite difference method 

collaborating with k nearest neighbors(kNN) method. Since this method requires the prior knowledge 

about the prior density value in each particle, it is necessary to use an auxiliary filter or a density 

estimation technique. As a result, the performance of an auxiliary filter or a density estimation technique 

can directly affect the PFF performance, and the finite difference method is more likely to be inaccurate 

than directly estimating the log-density gradient. Therefore, this paper presents a PFF structure applying 

least-squares log-density gradient (LSLDG) method that estimates the log-density gradient directly from 

particles. In order to verify the performance of the presented structure, this paper performs both single 

and multiple target tracking simulations. Simulation results demonstrate that the presented structure has a 

relatively good estimation performance and works more robustly for various situations. 

Keywords: Bayesian methods, Particle filtering, Monte-Carlo methods, Estimation and filtering, Particle 

flow filtering, Daum-Huang filter, Incompressible flow 



1. INTRODUCTION 

A particle filter is a Bayesian filter commonly used to handle 

nonlinear/non-Gaussian models that are difficult to solve 

analytically. The particle filter is composed of a process of 

moving particles according to a dynamic model in a 

prediction phase and importance sampling to get posterior 

density in a correction phase. For estimating the properties of 

a probability density, the importance sampling method picks 

samples from a proposal density and estimates the desired 

density by calculating the ratio between the desired density 

and the proposal density for each sample. To achieve good 

results of importance sampling with finite particles, the 

proposal density should be similar to the desired density. If 

one uses an improper proposal density, sampling will not 

occur for the region with the highest probability of the 

desired density. The result is particle collapse that obstructs 

the filter in working properly. Importance sampling is the 

process of trying with a guess and checking the difference, so 

as the dimension gets higher, more trials, i.e., particles are 

needed to avoid failure. Numerous studies on particle filters 

address proposal densities or focus on resampling techniques 

to solve this problem(T. Li, Bolic, & Djuric, 2015; T. Li, Sun, 

Sattar, & Corchado, 2014; Musso, Oudjane, & Gland, 2001). 

Unlike these studies, (Fred Daum & Huang, 2008) presented 

a new perspective framework called particle flow for 

nonlinear filters with log-homotopy. This method constructs 

a homotopy function that changes from prior density to 

posterior density with virtual time. Since the homotopy 

function defines the change in a probability distribution, the 

Fokker-Planck Equation (FPE) can be used to obtain the 

imaginary time flow of random variables corresponding to 

the change in the distribution. Following the flow, each 

particle can move itself to perform measurement updates. It is 

feasible to use fewer samples compared to importance 

sampling because particles move from prior density to 

posterior density themselves. 

There are many ways to get flow models from FPE, and 

accordingly, various filters have been proposed(Bunch & 

Godsill, 2016; Fred Daum & Huang, 2012, 2013; Fred Daum, 

Huang, & Noushin, 2010). Among them, the most commonly 

used method is the exact Daum-Huang filter (EDHF), which 

assumes Gaussian prior and posterior distribution and 

suggests a closed-form solution(Fred Daum et al., 2010; 

Khan & Ulmke, 2015). Since EDHF requires covariance for 

prior distribution, extended Kalman filter (EKF) or unscented 

Kalman filter (UKF) is usually performed in parallel as 

auxiliary filters. This structure can be affected by the 

performance of the auxiliary filter and requires a Gaussian 

assumption. One way to avoid using a Gaussian assumption 

is to use the incompressible flow assumption. The divergence 

of incompressible flow is zero, so it is easy to calculate the 
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flow if one knows only the log-density gradient. In 

conventional incompressible flow-based filters, the k-nearest 

neighbors (kNN) method is known to be good for obtaining 

gradients(Fred Daum, Huang, Krichman, & Kohen, 2009). 

This method takes a finite-difference from nearby k samples 

to find log-density gradients. For the finite-difference, it is 

necessary to know the value of the prior density in each of 

the samples. However, the prior density is given as a set of 

particles, so the practical implementation requires an 

auxiliary filter such as EKF or UKF to acquire density 

values(Choi, Willett, Daum, & Huang, 2011). Alternatively, 

even if one uses the density estimation methods, the 

performance may be degraded because the method still 

differentiates finitely. 

Therefore, we use a method of estimating the log-density 

gradient directly from particles so that a filter does not 

require an auxiliary filter or a density estimation method. To 

implement an incompressible flow filter, the log gradient of 

the prior density at particle moving with the flow should be 

continuously obtained. Since the moved particles exist in 

different locations from the particles constituting the prior 

density, a technique utilizing kernels seems to be suitable. 

This paper applies the least-squares log-density gradient 

(LSLDG) method proposed in (Sasaki, Hyvärinen, & 

Sugiyama, 2014). LSLDG is a non-parametric approach 

based on score matching. LSLDG consists of constructing 

basis functions for all or several particles and estimating the 

weights of the basis functions. Sasaki et al. have generalized 

this to a method called integrated squared error for density 

derivatives (ISED)(Sasaki, Noh, Niu, & Sugiyama, 2016). 

The contributions of our paper are (i) to propose the use of 

LSLDG technique in implementing incompressible particle 

flow filter(PFF) and (ii) to demonstrate the superiority to the 

existing implementing technique through single target 

tracking and multi target tracking examples. Through the 

results, we believe that the proposed structure could be a new 

alternative to the implementation of incompressible PFF. The 

paper is organized as follows. First, section 2 summarizes the 

background theories, including the incompressible PFF and 

LSLDG. Section 3 discusses an algorithm that applies 

LSLDG to incompressible PFF structures. Section 4 presents 

the simulations. The simulations cover both single-target 

tracking problem and multi-target tracking problem. Section 

5 concludes the paper. 

2. BACKGROUND 

2.1  Incompressible Particle Flow Filter 

This subsection summarizes the correction process of an 

incompressible particle flow filter proposed by Daum and 

Haung(Choi et al., 2011; Fred Daum & Huang, 2008). 

According to the Bayes law, the posterior density 

( | )k kp x Z is defined as  
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by the prior distribution 1( | )k kp x Z  and the likelihood 

function ( | )k kp z x . Here, kx  is the state vector, and kz  is 

the measurement at time k. 
kZ  means the set of all 

measurements up to the time k, and 
1( | )k kp z Z  is the 

normalization term. Ignoring the normalization term, the log-

homotopy function log ( , )kp x  between the prior and 

posterior density is 

 log ( , ) log ( ) log ( )k k kp g h  x x x , (2) 

where ( )kg x  represents the prior density ( | )k kp x Z , ( )kh x  

represents the likelihood function ( | )k kp z x . By 

understanding   as a concept of time, we can assume that 

random variables 
kx  varying with   follow the Ito 

stochastic differential equation (SDE), 

 ( , ) ( , )k kd f d d      x x x , (3) 

where ( , )kf x  is a drift term, which is called the flow in 

this paper, ( , )k x  is a diffusion term, and   is the Wiener 

process. Considering zero-diffusion process, the flow 

( , )kf x  can be reformulated as 

 ( , ) k

k

d
f

d





x
x . (4) 

The Fokker-Planck equation, which describes the time 

evolution of the density following Ito SDE in (3), can be 

summarized by substituting the zero-diffusion assumption 

and (2) as follows: 

 log ( ) ( , ) log ( , ) ( , )k k k kh f p f     x x x x . (5) 

Assuming an incompressible flow, the divergence of the flow 

is zero, that is, ( , ) 0kf  x , (5) can be reformulated as 

 log ( ) log ( , ) ( , )k k kh p f   x x x . (6) 

The minimum norm solution for (6) is 
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. (7) 

As a result, if the filter moves each sample by integrating the 

flow of (7) from 0   to 1  , one can obtain a sample set 

following the posterior distribution. 

2.2  Least-Squared Log-Density Gradient 

This subsection summarizes the least-squares log-density 

gradient (LSLDG) method proposed by (Sasaki et al., 2014). 

To directly find the log-density gradient, LSLDG uses the 

loss function, 

  
2

ˆ ˆ( ) ( ) ( ) ( )j j j jJ d d d p d  x x x x , (8) 

where ( )jd x  represents the j-th element of the log-gradient 

of density ( )p x  and ˆ ( )jd x  is the estimate of ( )jd x . By 

substituting ( ) ( ) / ( )j jd p p x x x  for (8), the solution which 

minimizes (8) is identical to the solution for the loss function, 

 ˆ ˆ ˆ( ) ( ) ( ) 2 ( ) ( )j j j j jJ d d p d d p d   x x x x x x , (9) 

where j  denotes the j-th element of the partial derivative. 

By Monte-Carlo integration, (9) can be obtained by the 

empirical approximation,  
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Here, N is the number of samples. The estimate of the log-

density gradient can be modeled as a combination of basis 

functions and their weights, i.e. 

 ˆ ( ) ( )T

j j jd x θ Ψ x , (11) 

where ( )jΨ x  is a vector whose elements are basis functions 

for each sample, and 
jθ  is a weight vector. And the 

derivative of the model is  

 ˆ ( ) ( )T

j j j jd x θ Φ x . (12) 

The loss function can be redefined by substituting (11), (12), 

and adding 
2l -regularizer as  
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where 0   is the regularization parameter. In the sense of 

least-squares, the solution ˆ jθ  minimizing (13) is 
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As a result, the log-density gradient is given as  

 ˆ ˆ( ) ( )T

j j jd x θ Ψ x . (15) 

 

3. INCOMPRESSIBLE PFF USING LSLDG 

By substituting (2) for (7), (7) can be reformulated as 
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2
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Using a specific measurement model, one can obtain the log-

gradient of the likelihood function, log ( )kh x  of (16) in 

closed-form. On the other hand, since the prior density is 

given by a set of particles, acquiring the log-gradient of prior 

density needs the LSLDG method. This research uses the 

model for the basis function of the i-th particle, 

  
2

( )

( )

, 2 2

1
( ) exp

2

i

i

i j j


 

 
   
 
 

x x
x x x , (17) 

where ( ) j  is the j-th element of the input vector, and   is a 

model parameter. 

The basis function of (17) is closer to zero as a particle at 

0 1   moves away from the particle of the basis function 

by the exponential term. In general, since the resultant 

particle set of the correction process moves to a place where 

the prior density is high, the basis function of (17) may be 

suitable. Depending on the situation, there is a little concern 

about a singularity problem when particles are expected to 

move to a place where the prior density is low, then the 

gradient value by (17) approaches zero. Thus, one can add 

the basis function excluding a decaying term to end the 

concern. However, when the   is small, the moving particles 

will not be far from the prior particles, and if the   is large, 

there is the likelihood function term. Therefore, we are not 

very concerned about this problem and use the basis function 

of  (17). 

The proposed algorithm summarized as follows: 

1) Initialization: Perform random sampling according to the 

model of the initial states. 

2) Prediction:  Propagate particles according to system 

dynamic model, just like a typical particle filter. 

3) Correction: First, one constructs a set of basis functions 

according to (17) for the particles distributed by prior 

density. The computational demand can increase 

dramatically due to the number of particles, so one can 

randomly choose several particles for a set of basis 

functions. Calculate the weight vector for LSLDG 

according to (14). The log-prior density gradient values 

are obtained according to (15) at each particle moving 

over  . Calculate the flow by substituting the estimated 

gradient into (16), and propagate the particles by 

recursively numerical integration of the calculated flow 

from 0   to 1  . 

 

4. EXAMPLES 

4.1  Single Target Tracking with Range and Bearing 

Measurements 

The state variables of the single target tracking example are 

two-dimensional position xp  and 
yp  and two-dimensional 

velocity xv  and 
yv . The measurements are the range kr  and 

bearing angle 
k  from the origin. This is represented by the 

state-space model as follows: 
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1 0 1 0 1/ 2 0
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
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      
       
      
      
         

w , (18) 

    2 1~ 0 ,diag 1 1k w , (19) 

 
 1

, ,

2 2

, ,

tan /y k x k
k

k

k
x k y k

p p

r p p


 

 
   
   
 

v , (20) 

   22

2 1~ 0 ,diag 0.01 0.2k N 
 
 

v , (21) 

   0 0~ 10 10 0 0 ,
T

N P x , (22) 

 and  2 2 2 2

0 diag 5 5 0.5 0.5
T

P     . (23) 

 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1292



 

 

     

 

where 
0x  denotes initial states and diag( )  is the function of 

giving a matrix whose diagonal elements are the elements of 

an input vector. 

Random trajectories are generated according to (18) and (22). 

The region of interest is set to a 60-by-60 square with the 

origin as the center, and 100 trajectories only within the 

region are chosen for results. Five measurement sets for each 

trajectory are generated, producing a total of 500 ensembles. 

For comparison, we implement EKF, UKF, and sequential 

importance resampling (SIR) as a conventional particle filter. 

Also, we implement the incompressible PFFs (denoted as 

IDH-kNN) that obtain log-gradients using the finite-

difference method in collaboration with the conventional 

kNN method. We also implement the incompressible PFF 

filters (denoted as IDH-FAkNN) using the fast approximate 

kNN method proposed by (Frederick Daum, Huang, Noushin, 

& Krichman, 2009) to reduce computation. These PFFs use 

EKF or UKF as an auxiliary filter. SIR uses 300 particles, 

and PFFs uses 30 particles. 

Fig. 1 shows the boxplot results for the time average of the 

horizontal position error of each ensemble, and Fig. 2 shows 

that of the horizontal velocity error. SIR seems to be the best 

in position error, but the result of SIR excluded 37 trials that 

could not be calculated due to the particle collapse. Therefore, 

we will mention the results excluding the result of SIR. The 

performance of IDH-kNN with UKF and the presented 

incompressible PFF with LSLDG (denoted as IDH-LSLDG) 

seems to be good. The IDH-kNN-UKF has a slightly smaller 

median than the IDH-LSLDG, but there are 39 outliers for 

IDH-kNN-UKF, more than the 13 for IDH-LSLDG. The 

maximum value of the outlier is also smaller in IDH-LSLDG. 

Among the velocity error results, IDH-LSLDG shows the 

best performance, and the maximum value of the outlier is 

clearly smaller than that of other filters. Although IDH-kNN-

UKF and IDH-FAkNN-UKF perform relatively well, the 

results of these filters have many outliers that are widely 

distributed. The result of sole UKF implies that the outliers of 

the PFFs with UKF are originated by the malfunction of the 

auxiliary filter. EKF is the worst performer, and IDH using it 

as an auxiliary filter is also poor. As a result, IDH-LSLDG 

has good estimation performance and works robustly for 

various situations. 

The average elapsed time for a trial was 0.294 msecs for EKF, 

0.834 msecs for UKF, 2.31 msecs for SIR, 945 msecs for 

IDH-kNN-EKF, 887 msecs for IDH-kNN-UKF, 566 msecs 

for IDH-FAkNN-EKF, 567 msecs for IDH-FAkNN-UKF, 

and 168 msecs for IDH-LSLDG. Since we implemented 

unoptimized prototype code on MATLAB, we do not intend 

to emphasize efficiency from these results, but the results 

imply that the proposed method will be more advantageous 

than the existing incompressible PFF implementation method. 

4.2  Multi-Target Tracking with Acoustic Measurements 

Array 

Referring to (Y. Li & Coates, 2017), we simulated a system 

tracking three targets using an array of acoustic sensors. The 

state variables of the i-th target are two-dimensional position 
( )i

xp  and 
( )i

yp  and two-dimensional velocity ( )i

xv  and 
( )i

yv . 

Since there are three targets, the state-space is 12-

dimensional. The dynamic model of each target is the same 

as (18). The system noise kw  follows the distribution, 

 
Fig. 1. The boxplot of the time averaged horizontal position error. (a) full-scale (b) scale from axis 0 to 4, which displays all 

results of only IDH-kNN-UKF, IDH-FAkNN-UKF, and IDH-LSLDG. 

 

 
Fig. 2. The boxplot of the time averaged horizontal velocity error. (a) full-scale (b) scale from axis 0 to 16 which displays all 

results of only IDH-kNN-UKF, IDH-FAkNN-UKF, and IDH-LSLDG. 
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   2 2

2 1~ 0 ,diag 0.1 0.1k 
   w  (24) 

The initial state expected values of each target are 

 10 15 1 0
T

   ,  0 10 0 1
T

, and 

 10 10 0.5 0.5
T

    in the order of x and y position and 

x and y velocity. The standard deviation of each axis of the 

initial position is 2, and the velocity is 0.3. The trajectory is 

constrained to within the 40-by-40 rectangular region of 

interest. Twenty-five acoustic sensors are placed in the region 

of interest at intervals of 10. The measurement of the j-th 

sensor is modeled as 

 

   

3
( ) ( )

2 2
( ) ( ) ( ) ( )1
, ,

10

0.1

j j

k k
i j i ji

x k x y k y

z

p r p r




 

   
  (25) 

 and  ( ) 2~ 0,0.1j

k N . (26) 

Here, ( )j

xr  and 
( )j

yr  are the x and y position of the j-th sensor. 

Fig. 3 represents example trajectories and sensor placements. 

Five measurement sets are randomly generated for every 100 

random trajectories. The length of the simulation is 80 epochs. 

For comparison, the same eight filters implemented in a 

single target tracking example are tested. SIR uses 100 

thousand particles, and PFFs use 100 particles. Conditions 

not mentioned are the same as for the single target tracking 

simulation. 

The optimal mass transfer (OMAT) metric is used to 

represent the results of multiple targets(Schuhmacher, Vo, & 

Vo, 2008). The distance metric for the OMAT is Euclidean 

distance, and the OMAT parameter, p is set to 1. Fig. 4 shows 

the boxplot of the time-averaged OMAT. To compare the 

velocity estimation results, Fig. 5 shows the target-averaged 

velocity error between the true targets and the corresponding 

estimated targets with respect to the optimal transportation of 

the OMAT. 

The results seem to indicate that the performance of SIR is 

the best, but the results do not include the failed 145 trials of 

SIR. Excluding the result of SIR, the results for inliers appear 

 

 
Fig. 4. The boxplot of the time averaged OMAT. (a) full-scale (b) scale from axis 0 to 20, which displays all results of only 

IDH-LSLDG. 

 

 
Fig. 5. The boxplot of the time averaged velocity error. (a) full-scale (b) scale from axis 0 to 3, which displays all results of 

only IDH-LSLDG. 

  

 

 
Fig. 3. Example trajectories and sensor placements. 
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to be good in the order of EKF, IDH-kNN-UKF, and IDH-

LSLDG. However, more than 20% of EKF trials are outliers, 

and about 10% of IDH-kNN-UKF are outliers, while the 

outliers of IDH-LSLDG are less than 5% of all trials. The 

maximum value of the averaged OMAT is 531 for EKF, 111 

for IDH-kNN-UKF, and 11 for IDH-LSLDG. As a result, the 

proposed filter structure shows relatively good estimation 

performance for all trials and stable performance in various 

situations. The outlier results of EKF and UKF seems to 

affect the performance of IDHs by using them as auxiliary 

filters. 

The average elapsed time for a trial was 2.14 msecs for EKF, 

2.22 msec for UKF, 2.67 secs for SIR, 1.42 secs for IDH-

kNN-EKF, 1.47 secs for IDH-kNN-UKF, 1.38 secs for IDH-

FAkNN-EKF, 1.41 secs for IDH-FAkNN-UKF, and 1.05 

secs for IDH-LSLDG. 

5. CONCLUSIONS 

In this paper, we applied the LSLDG to estimate the log-prior 

density gradient for an incompressible PFF. To verify the 

performance of the presented structure, we performed a 

single target tracking simulation and a multi-target tracking 

simulation. Simulation results showed that the presented 

scheme works more robustly for various situations than other 

filters including the incompressible PFF structure assisted by 

UKF and kNN. 
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