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Abstract: In this paper, we present an auto-tuning method for Linear Quadratic Regulator
(LQR) based on correlation analysis. Unlike previous studies which focused on LQR tuning
strategies exclusively by evaluating the control performance, we propose to explore the explicit
relationship between the model and weighting parameters in LQR. The objective of this
paper is twofold: (1) we introduce an approach to the identification and quantification of the
correlation between a model parameter and a weighting parameter in LQR; (2) an auto-tuning
method is worked out which is explicitly related to the variation of the model parameter. As a
result, an optimal value of the weighting parameter can be effectively determined and, in the
meantime, the parameter variation estimated. Through the numerical example, we demonstrate
the effectiveness of the proposed auto-tuning method in restoring the control performance under
unknown parameter variations.
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1. INTRODUCTION

The primary purpose of the Linear Quadratic Regulator
(LQR) is to derive an optimal feedback controller that
manipulates the system at a minimum cost according to
user preferences. The feedback gain matrix of LQR is easily
determined if an accurate dynamic model can be available.
The feedback gain is considered to be suboptimal in the
case of parametric uncertainties, such as payload variation
or component aging (Clarke and Gawthrop (1979)). The
existing tuning methods to address the variation of the
model parameter are all based on the controller perfor-
mance analysis. However, there is no available approach
to tuning LQR by explicitly considering the relationship
between the model parameters and the weighting param-
eters. Our purpose is to investigate these relationships by
correlation analysis, such that the parameter tuning can
be made explicitly related to parameter variations.

In general, the tuning algorithms for the weighting param-
eters in LQR can be categorized into two groups: indirect
and direct approaches (Astrom and Wittenmark (1994)).
The indirect approach consists of two stages (Clarke et al.
(1985); Grimble (1984)), i.e., the model parameters are
estimated at first and then the control parameters in the
feedback gain matrix updated using a tuning algorithm.
The direct approach in LQR mostly refers to the selec-
tion of the weighting parameters (Johnson and Grimble
(1987)). A simple heuristic scheme is widely applied based
on the inverse-square method (Bryson and Ho (1969)).
These techniques offer considerable flexibility in system
design but require intensive numerical or practical exper-
iments to achieve the expected control performance.

In Trimpe et al. (2014), the authors proposed a gradient-
based auto-tuning approach with a simultaneous perturba-

tion stochastic approximation (Spall (2003)). The search
for the weighting parameters is based on the symmetric
Bernoulli distribution around their nominal value. This
work was extended in Marco et al. (2016) by applying
an entropy search (Hennig and Schuler (2012)) to reduce
the experiment times. However, the search space grows
dramatically when the number of weighting parameters
increases.

The conventional correlation analysis is to identify the de-
pendence between different data sets (Cohen et al. (2014)).
In general, it refers to the degree of the linear relationship
between two data sets. Recently, correlation analysis was
applied to identify the relationships among model param-
eters of differential equation systems to determine their
identifiability (Li and Vu (2013, 2015)). If there is a param-
eter correlation, the model is non-identifiable. In Lazutkin
et al. (2015), the authors proposed to evaluate the degree
of difficulty in solving dynamic optimization problems
by analyzing correlations among control variables in the
model. It is shown that the presence of correlated controls
negatively affects the convergence rate of the numerical
solution algorithm.

Inspired by these studies, in this paper, we intend to
explore the correlations between the model and weighting
parameters for developing an auto-tuning method for
LQR. The purpose of our auto-tuning method is to restore
the control performance of the system when the values
of model parameters vary, by adjusting the weighting
parameters based on the identified relationship.

In short, our approach can restore the control performance
effectively by extracting two pieces of the essential infor-
mation from the correlation analysis. First, a correlation
coefficient is introduced to describe the correlation level

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 7230



between a model parameter and a weighting parameter. In
this way, if multiple weighting parameters are correlated
with one model parameter, the weighting parameter with
the most significant correlation can be chosen to com-
pensate the system deviation. Second, a tuning coefficient
can be determined, which relates the weighting parameter
explicitly to the model parameter variation.

The proposed auto-tuning method is implemented in the
form of a compensator to the real system. The objective of
the auto-tuning is to minimize the performance difference
between the compensator and the real system. The corre-
lated parameters (i.e., a model parameter and a weighting
parameter) are updated based on the tuning coefficient.
When the computation converges, the solution will provide
the estimated variation of the model parameter as well as
the optimal value of the weighting parameter.

The paper is organized as follow: In Section 2, we present
the problem statement and corresponding definitions on
pairwise parameter correlations. In Section 3, a method for
the parameter correlation analysis in LQR is introduced
and its properties are discussed. In Section 4, an auto-
tuning method is proposed based on the pairwise correla-
tion analysis. In Section 5, numerical results are illustrated
and discussed. The conclusions and future work are given
in Section 6.

2. PROBLEM FORMULATION

Consider a linear time-invariant (LTI) system described
with the following state space model

ẋ(t) = Ax(t) +Bu(t) (1)

where x(t) ∈ Rnx is the state vector and u(t) ∈ Rnu

the control vector. x(0) = x0 is the initial state. A ∈
Rnx×nx , B ∈ Rnx×nu are the system and control matrices
consisting of constant but uncertain model parameters,
i.e., the magnitude of their variations is unknown a priori.

For an infinite-time horizon LQR, the performance index
to be minimized is defined in the quadratic form:

J =

∫ ∞
0

(x>Qx+ u>Ru)dt (2)

where Q ∈ Rnx×nx is positive semi-definite and R ∈
Rnu×nu is positive definite. We assume that (A,B) is
controllable and (A,C) with Q = C>C is observable. In
this study, we will tune the weighting parameters in these
two matrices to compensate the effect of variations of the
model parameters in (A,B) on the control performance.

The optimal control law derived in LQR is given as

u(t) = −Kx(t) (3)

where K = R−1B>P ∈ Rnu×nx is the feedback gain ma-
trix and the matrix P = P> > 0 is the unique stabilizing
solution of the algebraic Riccati equation (ARE).

A>P + PA− PBR−1B>P = 0 (4)

We partition the set of matrices into two groups: the
system and control matrices (A,B) contain nv model
parameters denoted as θV ∈ Rnv and the weighting
matrices (Q,R) contain nw weighting parameters denoted
as θW ∈ Rnw , respectively. Then, the whole parameter
vector in LQR is

θ = (θV , θW ) ∈ Rnr , for nr = nv + vw (5)

The basic idea of this study is to analyze the relationships
(i.e., the correlations) between the model parameters θV
and the weighting parameters θW and, based on which,
to adjust the weighting parameters so as to compensate
the negative effect of the varying model parameters on the
control performance.

To investigate pairwise correlations, a Cartesian product
is constructed as the set of all parameter pairs (θi, θj) for
θi ∈ θV and θj ∈ θW and given as

C = θV × θW = {(θi, θj)|θi ∈ θV and θj ∈ θW } (6)

First, we define some assumptions about the nominal
parameter values and their variations.

A1: The nominal parameter values θ0 ∈ Rnr and the cor-
responding nominal state vector x(t; θ0) are known.

A2: The parameter variation ∆θ is in a small neighbor-
hood of the nominal value.

If the parameter vector changes from its nominal value θ0

to θ0 + ∆θ, the deviated state vector is then denoted as
x(t; θ0 + ∆θ) where ∆θ ∈ Rnr is the vector of parameter
variation. Now, we define a measure to evaluate the control
performance as the cost of the state trajectory deviation
due to the parameter variation. The cost of the state
trajectory deviation is formulated as follows:

D(∆θ) =

nx∑
l=1

∫ tf

t0

(
xl(t; θ

0 + ∆θ)− xl(t; θ0)
)2

dt (7)

where t0 and tf are the initial and terminal time points,
respectively. For the tuning purpose, the terminal time tf
should be large enough so that the state vector is at a
steady state at this time point.

Consider that the negative effect on the control perfor-
mance is caused by one of the model parameters θi ∈ θV
which varies with ∆θi, while the other parameters remain
unchanged. The parameter variation is denoted as

∆θpi = [0, . . . ,∆θi, . . . , 0]

for i = 1, . . . , nv. The negative effect caused by ∆θpi is
represented as the cost of the state trajectory deviation in
(7), and denoted as D(∆θpi ).

To compensate this effect, one of the weighting parameters
θj ∈ θW is to be adjusted with ∆θj . The parameter
vector involving both the model and weighting parameter
variations is now denoted as

∆θci,j = [0, . . . ,∆θi, . . . ,∆θj , . . . , 0]

for i = 1, . . . , nv and j = nv+1, . . . , nr. The corresponding
cost of the state trajectory deviation isD(∆θci,j). Note that

if ∆θj = 0, then D(∆θci,j) = D(∆θpi ).

Next, we define the compensation effect in terms of the
cost of the state trajectory deviation as follows

ei,j = D(∆θpi )−D(∆θci,j) (8)

In this study, we are interested in the pairwise correlation
in terms of the compensation effect. Given the parameter
vector (5), three types of correlations are defined as
follows.

A pair of parameters (θi, θj) ∈ C is correlated if there
exists at least one ∆θj such that the compensation effect
ei,j is larger than zero. The set of correlated parameter
pairs is denoted as
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Rcorr = {(θi, θj) ∈ C|∃∆θj such that ei,j > 0} (9)

Otherwise, θi and θj are said to be uncorrelated if ei,j is
non-positive for all ∆θj . Therefore, the set of uncorrelated
parameter pairs is a complement ofRcorr in C and denoted
as

Rcorr = {(θi, θj) ∈ C|∀∆θj such that ei,j ≤ 0} (10)

In addition, θi and θj are said to be fully correlated if
there exists at least one ∆θj such that ei,j = D(∆θpi ) (i.e.,
D(∆θci,j) = 0). The set of fully correlated parameter pairs
is a subset of Rcorr and denoted as

Rfcorr = {(θi, θj) ∈ C|∃∆θj such that ei,j = D(∆θpi )}
(11)

A correlation coefficient is introduced to describe the
correlation level for a pair of parameters (θi, θj) ∈ C,
and denoted as ρi,j . In this way, if one of the model
parameters is correlated to multiple weighting parameters,
it is reasonable to choose the one which contributes the
highest compensation effect. There is no difference to
choose any of the weighting parameters with the identical
compensation effects until we include further criteria.

For a pair of correlated parameters (θi, θj) ∈ Rcorr, we
define a tuning coefficient αi,j between ∆θi and ∆θj , i.e.,
∆θj = αi,j∆θi. The purpose of the tuning coefficient is
to determine the search direction for the optimal value of
the weighting parameter that maximizes the compensation
effect ei,j .

3. CORRELATION ANALYSIS

3.1 First-order approximation

Based on the assumption A2, the state vector x(t; θ+ ∆θ)
can be approximated using a first-order Taylor expansion:

x(t; θ0 + ∆θ) ≈ x(t; θ0) +
∂x

∂θ

∣∣∣
θ0

∆θ (12)

where ∂x/∂θ|θ0 ∈ Rnx×nr is the parametric sensitivity
matrix evaluated at the nominal parameter vector θ0.

By substituting (12) into (7), the cost of the state trajec-
tory deviation can be approximated as (Hearne (1985))

D̃(∆θ) ≈
nx∑
l=1

∫ tf

t0

(
xl(t; θ

0) +
∂xl
∂θ

∆θ − xl(t; θ0)
)2

dt

=

nx∑
l=1

∫ tf

t0

(∂xl
∂θ

∆θ
)2

dt

= ∆θ>

{∫ tf

t0

(∂x
∂θ

> ∂x

∂θ

)
dt

}
∆θ

= ∆θ>U∆θ
(13)

In this way, the cost of the state trajectory deviation
is approximated in a quadratic form with a symmetric
matrix U ∈ Rnr×nr . Note that U is a Gram matrix
of a set of parametric sensitivity functions ∂x/∂θm for
m = 1, . . . , nr defined as follows (Sreeram and Agathoklis
(1994))

U = [umn]

=


< u1, u1 > < u1, u2 > . . . < u1, unr

>
< u1, u2 > < u2, u2 > . . . < u2, unr

>
...

...
...

< u1, unr
> < u2, unr

> . . . < unr
, unr

>

 (14)

where umn is the inner product of ∂x/∂θm and ∂x/∂θn for
m,n = 1, . . . , nr i.e.,

umn =< um, un >=

∫ tf

t0

( ∂x

∂θm

> ∂x

∂θn

)
dt (15)

The properties of the Gram matrix U are given as follows
(Horn and Johnson (2012)):

(1) U is positive-semidefinite.
(2) The diagonal elements of U is positive.
(3) For each positive semi-definite sub-matrix

Ũm,n =

(
umm umn
umn unn

)
(16)

we have
umn ≤

√
ummunn (17)

3.2 Pairwise correlation analysis

To calculate the cost of the state trajectory deviation with
respect to ∆θi and ∆θj , a sub-matrix (totally nv × nw) is
extracted from (14) and given as

Ũi,j =

(
uii uij

uji ujj

)
(18)

Then, the approximated cost for D(∆θpi ) and D(∆θci,j) can
be expressed as

D(∆θpi ) ≈uii(∆θi)2, (19a)

D(∆θci,j) ≈uii(∆θi)2 + 2uij∆θi∆θj + ujj(∆θj)
2 (19b)

By subtracting (19a) and (19b), the compensation effect
ei,j in (8) is given as

ei,j =D(∆θpi )−D(∆θci,j)

≈−
(

2uij∆θi∆θj + ujj(∆θj)
2
) (20)

It can be seen that (20) is a quadratic function of ∆θj in
which the parabola opens downwards due to the nonneg-
ative diagonal element ujj , as shown in Fig. 1. The vertex
of the parabola is at the point

(−uij
ujj

∆θi,
u2
ij

ujj
∆θ2

i ) (21)

where −(u2
ij/ujj)∆θ

2
i indicates the maximum compensa-

tion effect. The slope of the quadratic function (20) at the
origin (see Fig. 1b) is given as

∂ei,j
∂∆θj

∣∣∣
∆θj=0

= −2uij∆θi (22)

which reflects the change rate of the compensation effect
with respect to the weighting parameter θj .

Next, we identify the pairwise correlation (9-11) by an-
alyzing the properties of the vertex from (21). Different
situations of a pairwise correlation between two parame-
ters can be schematically described by using Fig. 1. It is
noted that the axis of symmetry of the parabola locates
on the right plane if −(uij/ujj)∆θi > 0 (solid lines) and
on the left plane if −(uij/ujj)∆θi < 0 (dashed lines).
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Fig. 1. Schematic graph of the three situations of a
pairwise correlation. (a) The parabola describes the
compensation effect ei,j which is a function of ∆θj .
(b) Zoom of the part around the origin in (a) shows
the slopes of the parabola with respect to different
correlation situations.

Pairwise correlated/uncorrelated According to (9), if
there exists at least one ∆θj such that ei,j > 0, then some
part of the parabola (blue curve as shown in Fig. 1a) will
be above the x-axis. Therefore, the solution −(uij/ujj)∆θi
from (21) will be nonzero,

uij
ujj

∆θi 6= 0 (23)

Since the diagonal element ujj is positive, the following
condition holds true

uij 6= 0 (24)

for a nonzero ∆θi. Then, the system deviation can
be compensated by tuning ∆θj with positive value if
−(uij/ujj)∆θi > 0 and negative value if −(uij/ujj)∆θi <
0 (blue lines in Fig. 1b). Otherwise, the parabola (red curve
in Fig. 1a) will locate below the x-axis, which means no
∆θj exists such that ei,j > 0 (red lines in Fig. 1b). In
short, the condition of a pairwise correlation is as follows.

Given with the LQR described in (1) and (2) which
contains a vector of parameters θ = (θV , θW ), a pair of
parameters θi ∈ θV and θj ∈ θW are partially correlated,
i.e., (θi, θj) ∈ Rcorr if the condition (24) is satisfied.

Otherwise, (θi, θj) ∈ Rcorr.

Pairwise fully correlated According to (11), if there
exists at least one ∆θj such that ei,j = D(∆θpi ), then
the parabola (green curve in Fig. 1a) intersects with the
dashed line ei,j = uii(∆θi)

2. Then, the maximum com-
pensation effect (u2

ij/ujj)∆θ
2
i = uii(∆θi)

2, i.e., uiiujj =

u2
ij . In this situation, the effect of the model parameter

variation is fully compensated (green lines in Fig. 1b).
Therefore, the following condition holds true.

det(Ũi,j) = 0 (25)

Thus, the condition of a fully correlated pair is as follows.

Given with the LQR described in (1) and (2) which
contains a vector of parameters θ = (θV , θW ), a pair of
parameters θi ∈ θV and θj ∈ θW are fully correlated, i.e.,
(θi, θj) ∈ Rfcorr if the conditions (24) and (25) are satisfied.

Next, we define a correlation coefficient ρi,j by normal-
izing ei,j with the cost of the state trajectory deviation

Fig. 2. Block diagram of the closed-loop system. The
weighting parameters are updated based on the tun-
ing coefficient.

uii(∆θi)
2. Recall the expression of the compensation effect

defined in (20), the range of ei,j is

0 ≤ ei,j ≤ uii(∆θi)2 (26)

To bring these values into the range of [0, 1], we divide (26)
with uii(∆θi)

2. Then ρi,j is given as

ρi,j =
ei,j

uii(∆θi)2 (27)

where ρi,j = 1 means that the parameter pair (θi, θj) are
fully correlated and ρi,j = 0 uncorrelated.

As mentioned above, a tuning coefficient αi,j is defined in
terms of maximizing the compensation effect ei,j . Thus, it
is easy to see that ei,j reaches its maximum value at

∆θj = −uij
ujj

∆θi (28)

which provides the tuning coefficient stated as

αi,j =− uij
ujj

(29)

As a result, the following tuning method is used as a linear
function whose coefficient is obtained from (29).

4. AUTO-TUNING METHOD

Our tuning approach is illustrated in Fig. 2. To carry out
an iterative search scheme that converges to the optimal
solution, we design a compensator next to the real system.
Its goal is to reduce the performance difference between
the compensator and the real system. Both share the same
optimal controller but the real system is subjected to the
unknown variations of the model parameter.

The dynamic model of the compensator and the real
system is the same as described by (1), but the system
and control matrices in the real system contain param-
eters with unknown variations denoted as (Arl, Brl). In
the compensator, a LQR is implemented in which the
system and weighting matrices are denoted as (Acp, Bcp)
and (Qcp, Rcp), respectively. The feedback gain matrix
in the shared optimal controller is denoted as Kcp and
calculated based on (3). Those matrices are initialized
with their nominal parameter values θ0. The values of
ρi,j and αi,j are stored in the correlation block which
is used to update the correlated weighting parameter at
each iteration. The costs of the state trajectory deviation
in both the compensator and the real system are evalu-
ated based on (7), denoted as Dcp and Drl, respectively.
The performance difference between the two systems is
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Fig. 3. Flow diagram of the auto-tuning method

measured as F = |Dcp − Drl|, which is fed back to the
compensator for the next iteration.

We refer Θ∗i,j = (∆θ∗i ,∆θ
∗
j )> as the optimal solution,

where ∆θ∗i is the estimation on the unknown variation of
θi in the matrices (Acp, Bcp). ∆θ∗j is the amount of tuning
in the weighting parameter in the matrices (Qcp, Rcp) that
minimizes the cost Dcp.

The objective of the iterative search scheme is to minimize
the performance difference between the compensator and
the real system as

min
Θi,j

F (Θi,j) (30)

The procedure of the proposed auto-tuning method is
shown in Fig. 3. The iterative process begins with the
nominal value (i.e., Θ0

i,j = (∆θ0
i ,∆θ

0
j )
> = (0, 0)>). At

each iteration k, the weighting parameter value is updated
based on the tuning coefficient (i.e., ∆θkj = αi,j∆θ

k
i ). As

the search direction is fixed on the tuning coefficient αi,j
for all iterations, the auto-tuning process becomes a line
search problem with the following update scheme:

Θk+1
i,j = Θk

i,j + γdi,j (31)

where di,j = (1 αi,j)
> gives the search direction and the

γ is the step length. In this work, we calculate γ based
on the Armijo − Goldstein condition (Armijo (1966)).
The process is iterated until the performance difference
decreases under a user-defined tolerance, i.e., F (Θk

i,j) < ε.

The cost Dcp will be decreased by implementing the feed-
back gain matrix Kcp. When F converges, the optimal
controller in the compensator will restore the control per-
formance of the real system. Correspondingly, the model
parameter variation will be estimated since (Arl, Brl) are
approximated by (Acp, Bcp), i.e., the optimal solution will
provide the estimated model parameter variation as well
as the optimal weighting parameter value.

5. CASE STUDY

In this section, we demonstrate the effectiveness of the
proposed auto-tuning method with numerical experiment
on an example with the system deviation caused by an
unknown variation of a single parameter. The optimal

Fig. 4. The performance difference F evaluate with differ-
ent parameter pairs. (a) Parameter pair (θb2 , θq1). (b)
Parameter pair (θb2 , θq2). (c) Parameter pair (θb2 , θr).

control problem is formulated as the performance index
described in (2) for a second order LTI system (1) with
the following description:

A =

(
a11 a12

a21 a22

)
, B =

(
b1
b2

)
, Q =

(
q1 0
0 q2

)
, R = r

The elements defined in (A,B) are model parameters with
physical meanings such as mass and length of a vehicle.
The nominal values of the model parameters are known,
but their values may vary during the system operation.
Our objective is to restore the optimal control performance
when the model parameters deviate from their nominal
values.

In the first case, we consider an acceleration model of a
rocket car with the set of matrices defined (1) and (2)
given as

A =

(
0 1
0 0

)
, B =

(
0
M

)
, Q =

(
1 0
0 2

)
, R = 1

where M is the mass of the object which is the model
parameter involved in θV and denoted as θb2 . The weight-
ing parameters θW are the diagonal elements of Q and
R denoted as (θq1 , θq2 , θr). The initial states are x1(0) =
2, x2(0) = 1, respectively.

Using the correlation analysis, the correlation coefficients
of the three parameter pairs are evaluated and given as

ρb2,q1 = 0.815 ρb2,q2 = 0.229 ρb2,r = 1.0

This means that the pair (θb2 , θr) are fully correlated
and the other two pairs are partially correlated. The
corresponding tuning coefficients are given as

αb2,q1 = −1.207 αb2,q2 = 2.615 αb2,r = 2.0

Next, we show the compensation effects made by θq1 , θq2
and θr. The nominal value of the mass is M = 1kg and
assumed to be underestimated. Then the vector B in the
nominal and the real system, respectively, is given as

B0 =

(
0
1

)
, Brl =

(
0

0.833

)
Therefore, the (unknown) parameter variation in the real
system is ∆θb2 = 0.167. The corresponding trajectory
deviation is D(∆θpb2) = 0.046.
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Fig. 5. The minimum cost of the state trajectory deviation
Drl achieved after tuning different parameter pairs.

The performance difference evaluated during the tuning
process for each parameter pair is shown in Fig. 4. The x-
axis indicates the number of iterations in the line search.
The y-axis indicates the performance difference F (Θk

i,j) at
each iteration k. It can be seen that the search scheme
leads to a high convergence rate in minimizing the perfor-
mance difference.

After the search scheme converges, the resulting cost of
the state trajectory deviation Drl is shown in Fig. 5.
The largest value Drl = 0.046 is resulted by tuning
the weighting parameter using the least correlated pair
(θb2 , θq2). In addition, it is seen that there is almost no
improvement by tuning θq2 . A better result comes from
tuning θq1 in the pair (θb2 , θq1) with Drl = 0.011. The
best value Drl = 6.34e−4 is obtained by tuning θr in the
fully correlated pair (θb2 , θr). The corresponding optimal
solution provides the values of the parameter variations
Θ∗b2,r = (−0.167,−0.334). As a result, our method is able
to find the optimal value of the weighting parameter to
restore the optimal control performance and the a priori
unknown parameter variation is accurately estimated.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we propose an auto-tuning method for
LQR with unknown variations of model parameters. The
tuning is based on the analysis of the pairwise correlation
of a model parameter with a weighting parameter in
LQR which reveals the explicit relationship in terms of
a tuning coefficient and a correlation coefficient. Based on
the correlation analysis, the search direction for effectively
tuning the weighting parameter and estimating the model
parameter variation can be obtained. A line search scheme
is used to iteratively search for the optimal solution so
as to minimize the performance difference between the
compensator and the real system.

Two aspects are expected to be studied in the future work.
First, if no fully correlated parameter pairs can be found in
the pairwise correlation analysis, the compensation effect
will be degraded by the proposed method. Therefore, a
multiple-to-multiple correlation analysis needs to be de-
veloped so that the system deviation can be compensated
by tuning multiple weighting parameters. Second, a more
efficient tuning strategy needs to be worked out which can
converge faster and more reliable to the optimal solution.
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