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Abstract: We derive novel criteria for designing stabilizing dynamic output-feedback controllers
for a class of aperiodic impulsive systems subject to a range dwell-time condition. Our synthesis
conditions are formulated as clock-dependent linear matrix inequalities (LMIs) which can be
solved numerically, e.g., by using matrix sum-of-squares relaxation methods. We show that our
results allow us to design dynamic output-feedback controllers for aperiodic sample-data systems
and illustrate the proposed approach by means of a numerical example.
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1. INTRODUCTION

Impulsive systems form a rich class of hybrid system which
have applications, e.g., in system biology, robotics as well
as communication systems, and which have been studied,
e.g., by Goebel et al. (2009), Hespanha et al. (2008), Ye
et al. (1998), Bainov and Simeonov (1989), Haddad et al.
(2006) and Yang (2001). They evolve continuously but
also undergo instantaneous changes. This leads to a com-
bination of both continuous- and discrete-time dynamics
and makes their analysis challenging. We emphasized that,
most interestingly, the class of impulsive systems even
encompasses switched and sample-data systems, as shown
for example in Briat (2017), Sivashankar and Khargonekar
(1994) and Naghshtabrizi et al. (2008).

In the present paper we consider impulsive systems where
the sequence of impulse instants (tk)k∈N0

satisfies a range
dwell-time condition, i.e., the time distance between two
successive jumps is uniformly bounded from below and
from above. In particular, the impulses are not restricted
to occur in a periodic fashion. In Holicki and Scherer
(2019) we considered output-feedback gain-scheduling con-
troller synthesis for periodic impulses and added only a few
comments on the aperiodic case, which is often more rele-
vant in practice. The related details are worked out in full
detail in this paper. In particular, we provide streamlined
and insightful LMI conditions for the design of output-
feedback controllers for aperiodic impulsive systems. For
reasons of clarity and space, we do not address the ex-
tension to gain-scheduling, but emphasize that this is
also possible. Our synthesis procedure relies on a stability
result from Briat (2013), which involves so-called clock-
dependent LMIs and is well-suited for controller design.
Due to the nature of the analysis result in Briat (2013),
the system matrices of the designed impulsive controllers
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will in general be clock-dependent and thus time-varying.
We also propose another analysis result based on a com-
bination of the one from Briat (2013) and the so called
S-variable approach as extensively discussed in Ebihara
et al. (2015); this allows for designing numerically favor-
able impulsive controllers with constant system matrices.

Output-feedback design results for aperiodic impulsive sys-
tems are scarce but can, e.g., be found in Antunes et al.
(2009), Medina and Lawrence (2010), Lawrence (2012) and
Zattoni et al. (2017). These rely on separation principles
and/or on suitable generalizations of geometric techniques.
While Medina and Lawrence (2010); Lawrence (2012) fo-
cus merely on stabilization, output-feedback regulation is
considered in Zattoni et al. (2017). A differential LMI ap-
proach to input-output finite-time stabilization is given in
Amato et al. (2016). Apart from Lawrence (2012), all of the
above mentioned papers consider a rather specific struc-
ture of the underlying impulsive open-loop system descrip-
tion. In contrast, our design results allow for general linear
impulsive systems and can, in particular, be employed for
designing controllers for sample-data systems. Moreover,
we go beyond Amato et al. (2016) by showing that con-
troller design is possible via parameter elimination, which
leads to numerically favorable criteria if compared to a
parameter transformation approach, and by providing a
systematic procedure for the design of controllers with
constant system matrices. Finally, we emphasize that our
findings on stabilization can be seamlessly extended to
more general situations such as gain-scheduling synthesis.

Outline. The present paper is structured as follows. After
a short paragraph on notation, we introduce the consid-
ered class of impulsive systems and formulate the relevant
underlying stability analysis conditions in terms of clock-
dependent linear matrix inequalities. Based on the latter,
we derive novel dynamic output-feedback criteria for such
impulsive systems by carefully combining several tech-
niques for convexifying synthesis problems. Afterwards,
we demonstrate that our findings even extend to output-
feedback design for aperiodic sample-data systems by rep-
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Fig. 1. The clock (2) for some (tk)k∈N0
satisfying (3).

resenting the open-loop interconnection as an impulsive
system. Finally, we illustrate our approach with a numeri-
cal example. Technical proofs are moved to the appendix.

Notation. N (N0) denotes the set of positive (nonneg-
ative) integers and Sn is the set of symmetric real n × n
matrices. For a normed space X, a function f : [0,∞)→ X
and t > 0 we let f(t−) := lims↗t f(s) denote the limit from
below once it is well defined; for notational simplicity we
set f(0−) := f(0). Finally, objects that can be inferred by
symmetry or are not relevant are indicated by “•”.

2. ANALYSIS

For a sequence of impulse instants 0 = t0 < t1 < t2 < . . .
and for some initial condition x(0) ∈ Rn, let us consider a
linear impulsive system with the description

ẋ(t) = A(θ(t))x(t), (1a)

x(tk) = AJ(θ(t−k ))x(t−k ) (1b)

for t ≥ 0 and k ∈ N. The function θ, which is defined as

θ(t) := t− tk for all t ∈ [tk, tk+1) and k ∈ N0, (2)

is the so-called clock and depends on the actual sequence
of impulse instants (tk)k∈N0 as illustrated in Fig. 1. Note
that even for systems with constant system matrices,
we will design controllers with clock-dependent matrices
similarly as in Briat (2013). Since the resulting closed-loop
interconnection will be again of the form (1), we start with
presenting analysis conditions for such systems.
In this paper we refer to (1) as impulsive LTV system and
as impulse LTI system if the system matrices are constant.

We assume that the sequence (tk)k∈N0 satisfies the range
dwell-time condition

tk − tk−1 ∈ [Tmin, Tmax] for all k ∈ N (3)

for some fixed 0 < Tmin < Tmax. In particular, we do not
require the jumps in (1) to appear in a periodic fashion.
Other dwell-time conditions such as tk − tk−1 ∈ [Tmin,∞)
(minimum dwell-time) or tk − tk−1 = Tmax (exact dwell-
time) for all k ∈ N can be handled with minor modi-
fications, but in this paper we focus on (3) for clarity.
In the sequel, we assume that A : [0, Tmax] → Rn×n
and AJ : [Tmin, Tmax] → Rn×n are continuous functions,
which, together with (3), ensures the existence of a unique
piecewise continuously differentiable solution of (1).

Our clock-dependent design is based on the following
stability result that is essentially taken from Briat (2013).

Lemma 1. System (1) is stable, i.e., there exist constants
M,γ > 0 such that

‖x(t)‖ ≤Me−γt‖x(0)‖ for all t ≥ 0,

all initial conditions x(0) ∈ Rn and all (tk)k∈N0
with (3),

if there exists some X ∈ C1([0, Tmax],Sn) satisfying

X(τ) � 0 (4a)

and (
I

A(τ)

)T (
Ẋ(τ) X(τ)
X(τ) 0

)(
I

A(τ)

)
≺ 0 (4b)

for all τ ∈ [0, Tmax] as well as(
I

AJ(τ)

)T (−X(τ) 0
0 X(0)

)(
I

AJ(τ)

)
≺ 0 (4c)

for all τ ∈ [Tmin, Tmax].

Several remarks and additional insights about Lemma 1
are given, e.g., in Briat (2013). We merely emphasize that,
in contrast to, e.g., lifting or looped-functional based ap-
proaches, the conditions (4) are particularly well suited for
deriving synthesis criteria as the system matricesA andAJ
enter in a convex and very convenient fashion. Moreover,
these so-called clock-dependent LMI conditions can be
turned into numerically tractable ones by restricting X to
be polynomial and by applying the matrix sum-of-squares
(SOS) approach (Parrilo (2000); Scherer and Hol (2006)).
Further note that Lemma 1 can be viewed as a robust
analysis result since the conditions (4) guarantee stability
for all sequences of impulse instants (tk)k∈N0

satisfying (3).

Next to impulsive LTV output-feedback controllers, we
also show how to design impulsive LTI controllers. It is
well-known in robust control theory the latter requires
clock-independent certificates X(·) in Lemma 1. Instead
of enforcing X(·) to be constant, we rely on the following
less conservative analysis result which is based on the S-
variable approach, as elaborated on in Ebihara et al. (2015)
and as originating from de Oliveira et al. (1999).

Lemma 2. Suppose that A and AJ are constant. Then
(1) is stable for all (tk)k∈N0

satisfying (3) if there exist
X ∈ C1([0, Tmax],Sn) and ρ > 0, G,GJ ∈ Rn×n satisfying

X(τ) � 0 (5a)

and(
Ẋ(τ) +ATGT +GA X(τ) + ρATGT −G
X(τ) + ρGA−GT −ρ(G+GT )

)
≺ 0 (5b)

for all τ ∈ [0, Tmax] as well as(
−X(τ) ATJG

T
J

GJAJ X(0)−GJ −GTJ

)
≺ 0 (5c)

for all τ ∈ [Tmin, Tmax].

Following de Oliveira (2005), the proof is based on apply-
ing the elimination lemma to eliminate the slack-variables
G and GJ , which results in the conditions (4).

Note that the conditions (5) are more conservative than
those in Lemma 1, because the matrix variables G, GJ are
parameter independent. Equivalence could be retrieved by
taking G and GJ to be clock-dependent (even with a clock-
independent ρ), but this would prevent the derivation of
convex conditions for impulsive LTI controller design.

3. SYNTHESIS

3.1 Impulsive LTV Controller Design

For a sequence (tk)k∈N0
satisfying (3), some initial condi-

tion x(0) ∈ Rn and real matrices A, B, C, AJ , BJ , CJ , we
now consider an impulsive open-loop system of the form
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(
ẋ(t)
y(t)

)
=

(
A B
C 0

)(
x(t)
u(t)

)
, (6a)(

x(tk)
yJ(k)

)
=

(
AJ BJ
CJ 0

)(
x(t−k )
uJ(k)

)
(6b)

for t ≥ 0 and k ∈ N. Here, the signals u, uJ and y,
yJ denote the control inputs and measurement outputs,
respectively. Our objective in this subsection is the design
of stabilizing dynamic output-feedback controllers for the
system (6) and described as(

ẋc(t)
u(t)

)
=

(
Ac(θ(t)) Bc(θ(t))
Cc(θ(t)) Dc(θ(t))

)(
xc(t)
y(t)

)
, (7a)(

xc(tk)
uJ(k)

)
=

(
AcJ(θ(t−k )) BcJ (θ(t−k ))
CcJ (θ(t−k )) Dc

J (θ(t−k ))

)(
xc(t

−
k )

yJ(k)

)
(7b)

for t ≥ 0 and k ∈ N with continuous maps Ac, Bc, Cc, Dc,
AcJ , BcJ , CcJ , Dc

J by relying on Lemma 1. Observe that the
interconnection of (6) and (7) admits the structure

ẋcl(t) = A(θ(t))xcl(t), (8a)

xcl(tk) = AJ(θ(t−k ))xcl(t
−
k ) (8b)

for t ≥ 0 as well as k ∈ N and with xcl = ( x
xc

). Here, the
maps A and AJ are given by(
A+BDcC BCc

BcC Ac

)
=

(
A 0
0 0

)
+

(
0B
I 0

)(
Ac Bc

Cc Dc

)(
0 I
C 0

)
and(
AJ+BJD

c
JCJBJC

c
J

BcJCJ AcJ

)
=

(
AJ 0
0 0

)
+

(
0BJ
I 0

)(
AcJ B

c
J

CcJ D
c
J

)(
0 I
CJ 0

)
,

respectively. Note that (7) can be viewed as a gain-
scheduling controller whose implementation requires the
knowledge of the clock-value θ(t) and its left-limit θ(t−)
at time t; this is the same as knowing the last jump time
tk with tk < t and is reminiscent of the approach for
static state-feedback controllers in Briat (2013). Further,
observe that we can indeed apply Lemma 1 to (8) since
this interconnection is of the form (1). As usual, trouble
arises through the simultaneous search for some certificate
X and a controller (7) which is a non-convex problem.

A possibility to circumvent this issue is the application of
a convexifying parameter transformation that is by now
well-known in the LMI literature and has been proposed
in Masubuchi et al. (1998) and Scherer (1996). In our
case, an extra issue results from the need to apply this
transformation on the flow (8a) and jump component (8b)
of the system (8) simultaneously.

Theorem 3. There exists a controller (7) for the system
(6) such that the LMIs (4) are feasible for the corre-
sponding closed-loop system if and only if there exist con-
tinuously differentiable X,Y and continuous K,L,M,N ,
KJ , LJ ,MJ , NJ satisfying

X(τ) � 0 (9a)

and
Z(τ) + A(τ)T + A(τ) ≺ 0 (9b)

for all τ ∈ [0, Tmax] as well as(
X(τ) AJ(τ)T

AJ(τ) X(0)

)
� 0 (9c)

for all τ ∈ [Tmin, Tmax]. Here, the boldface matrix-valued
maps are defined as

X :=

(
Y I
I X

)
, Z :=

(
−Ẏ 0

0 Ẋ

)
,

A :=

(
AY A
0 XA

)
+

(
0 B
I 0

)(
K L
M N

)(
I 0
0 C

)
and

AJ :=

(
AJY AJ

0 X(0)AJ

)
+

(
0BJ
I 0

)(
KJ LJ
MJ NJ

)(
I 0
0CJ

)
.

A constructive proof is given in the appendix. In contrast
to the case of periodic impulses considered in Holicki and
Scherer (2019), the variables KJ , LJ ,MJ , NJ and thus also
the system matrices AcJ , BcJ , CcJ , Dc

J vary continuously on
[Tmin, Tmax] instead of being constant. Moreover, observe
that the LMIs (9) are indeed affine in all decision variables
and thus tractable, e.g., by using the SOS approach.

As an alternative, we can utilize the elimination lemma
in (Gahinet and Apkarian (1994); Helmersson (1999))
in combination with the continuous selection theorem of
Michael (1956). They can either be applied directly to the
conditions (4) for the closed-loop system (8) or to the LMIs
in Theorem 3. In particular, we can eliminate almost all
of the appearing variables to obtain the following result.

Theorem 4. Let U , V , UJ and VJ be basis matrices of
ker(BT ), ker(C), ker(BTJ ) and ker(CJ), respectively. Then
there exists a controller (7) for the system (6) such that
the LMIs (4) are feasible for the corresponding closed-loop
system if and only if there exist continuously differentiable
X,Y satisfying (

Y (τ) I
I X(τ)

)
� 0, (10a)

V T
(
I
A

)T (
Ẋ(τ) X(τ)
X(τ) 0

)(
I
A

)
V ≺ 0 (10b)

and

UT
(
−AT
I

)T (
0 Y (τ)

Y (τ) Ẏ (τ)

)(
−AT
I

)
U � 0 (10c)

for all τ ∈ [0, Tmax] as well as

V TJ

(
I
AJ

)T (−X(τ) 0
0 X(0)

)(
I
AJ

)
VJ ≺ 0 (10d)

and

UTJ

(
−ATJ
I

)T (−Y (τ) 0
0 Y (0)

)(
−ATJ
I

)
UJ � 0 (10e)

for all τ ∈ [Tmin, Tmax].

The maps in (7) can be reconstructed by building the
certificate X as in the proof of Theorem 3 and by pointwise
using the elimination lemma as described in Gahinet and
Apkarian (1994) on the LMIs (4b) and (4c) for (8). The
continuous selection theorem ensures that it is always
possible to obtain continuous maps in (7) in this fashion.

Remark 5. • Due to the much smaller number of deci-
sion variables, it is typically preferable to work with
Theorem 4 instead of Theorem 3.

• Both theorems can be extended in a straightforward
fashion to also incorporate quadratic performance
criteria on the flow, jump or mixtures of both com-
ponents of the resulting closed-loop system.

3.2 Impulsive LTI Controller Design

In this subsection and in contrast to the previous one,
our goal is the design of stabilizing impulsive output-
feedback controllers for (6) with constant system matrices.
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This amounts to synthesizing stabilizing controllers with
matrices Ac, Bc, Cc, Dc, AcJ , BcJ , CcJ , Dc

J and a description(
ẋc(t)
u(t)

)
=

(
Ac Bc

Cc Dc

)(
xc(t)
y(t)

)
, (11a)(

xc(tk)
uJ(k)

)
=

(
AcJ BcJ
CcJ Dc

J

)(
xc(t

−
k )

yJ(k)

)
(11b)

for t ≥ 0 and k ∈ N The corresponding closed-loop
interconnection is then of the form

ẋcl(t) = Axcl(t), (12a)

xcl(tk) = AJxcl(t−k ) (12b)

for t ≥ 0 as well as k ∈ N and with xcl = ( x
xc

). The matri-
ces A and AJ are structured as in the previous subsection
but do not depend on any parameter. In particular, we can
apply Lemma 2 for the stability analysis of (12), but recall
that this comes along with some conservatism. Note that
for the implementation of the controller, it is still needed to
have precise knowledge about the jump instances tk up to
time t available on-line. It might be possible to circumvent
this requirement based on approaches as, e.g., the one
given in Xiao and Xiang (2014) involving techniques from
robust control, but this is beyond the scope of this paper.

Similar as before we can apply the convexifying parameter
transformation from de Oliveira et al. (2002) on the LMIs
(5) in Lemma 2 in order to obtain an LMI solution for
output-feedback impulsive LTI controller design.

Theorem 6. There exists a controller (11) for the system
(6) such that the LMIs (5) are feasible for the corre-
sponding closed-loop system if there exist some ρ > 0,
a continuously differentiable X and matrices G, H, S, GJ ,
SJ as well as K,L,M,N , KJ , LJ ,MJ , NJ such that

X(τ) � 0 (13a)

and (
Ẋ(τ) + AT + A X(τ) + ρAT −G
X(τ) + ρA−GT −ρ(G + GT )

)
≺ 0 (13b)

for all τ ∈ [0, Tmax] as well as(
−X(τ) AT

J

AJ X(0)−GJ −GT
J

)
≺ 0 (13c)

for all τ ∈ [Tmin, Tmax]. Here, the boldface matrices G,
GJ , A, AJ are defined as

G :=

(
H I
S G

)
, GJ :=

(
H I
SJ GJ

)
,

A :=

(
AH A

0 GA

)
+

(
0 B
I 0

)(
K L
M N

)(
I 0
0 C

)
and

AJ :=

(
AJH AJ

0 GJAJ

)
+

(
0BJ
I 0

)(
KJ LJ
MJ NJ

)(
I 0
0CJ

)
.

The proof proceeds along the lines of the one of Theorem 3
and is sketched as follows. Once the LMIs (13) are feasible,
we can find U , UJ and V satisfying

GH + UV T = S and GJH + UJV
T = SJ ,

such as V := HT , U := SH−1−G and UJ := SJH
−1−GJ .

The controller matrices in (11a), (11b) are then given by(
U GB
0 I

)−1(
K −GAH L

M N

)(
V T 0
CH I

)−1
,(

UJ GJBJ
0 I

)−1(
KJ −GJAJH LJ

MJ NJ

)(
V T 0
CJH I

)−1
.

Finally, all three inequalities (13) are converted by congru-

ence transformations based on Y−1 :=
(
H I
V T 0

)−1
into the

three LMIs (5) for the closed-loop system (12) and the vari-

ables G :=
(

G SH−1−G
H−T−G G−SH−1

)
, GJ :=

(
GJ SJH

−1−GJ

H−T−GJ GJ−SJH
−1

)
as well as X := Y−TXY−1.

In contrast to de Oliveira et al. (2002) for multi-objective
control, we work with matrices G and GJ that are only
partially coupled with an identical choice of the block H.
In particular, we do not require the equality G = GJ which
reduces conservatism. Note that it is not possible to com-
pletely avoid a coupling between G and GJ for synthesis
based on parameter transformations, as X appears in both
LMIs (5b) and (5c). This is also why the conditions in
Theorem 6 are no longer necessary, which is in contrast to
the clock-dependent design criteria in Theorem 3.

Note that it is generally not possible to eliminate the con-
stant matrix variables K,L,M,N , KJ , LJ ,MJ , NJ from
the clock-dependent LMIs (13) since their reconstruction
would require a robust version of the elimination lemma.
Unfortunately, such a version is only available in specific
situations as pointed out by de Oliveira (2005).

4. APPLICATION TO SAMPLE-DATA SYSTEMS

For a sequence (tk)k∈N0
satisfying (3), real matrices and

some initial condition x(0) ∈ Rn, we now consider a system

ẋ(t) = Ax(t) +Bu(t), yJ(k) = CJx(t−k ) (14a)

with the control input u being restricted as

u(t) = u(tk) for all t ∈ [tk, tk+1) and k ∈ N0. (14b)

In particular, only output samples are available for control
and the control input is the result of a zero-order-hold op-
eration. It is well-known that such sampled-data systems
can be reformulated as impulsive systems. This enables
us to perform dynamic output-feedback controller design
for such systems with aperiodic sampling times based on
the presented results with ease. To this end, the condition
(14b) is handled by viewing u as an additional state. This
allows us to reformulate the system (14) asẋ(t)

u̇(t)

y(t)

 =

A B 0
0 0 0

0 0 0

x(t)
u(t)

û(t)

 , (15a)

x(tk)
u(tk)

yJ(k)

 =

 I 0 0
0 0 I

CJ 0 0

x(t−k )
u(t−k )

uJ(k)

 (15b)

for all t ≥ 0 and all k ∈ N, which is clearly a special case of
the description (6). This immediately leads to the following
result which is a consequence of Theorem 4; Theorems 3
and 6 could be employed here in exactly the same fashion.

Corollary 7. Let Â= (A B
0 0 ) and let VJ be a basis matrix

of ker(CJ). Then there exists a controller (7) for (15)
such that the LMIs (4) are feasible for the corresponding
closed-loop system if and only if there exist continuously
differentiable X = (X1 •

• • ) , Y = ( Y1 •
• • ) satisfying(

Y (τ) I
I X(τ)

)
� 0, (16a)(

I

Â

)T (
Ẋ(τ) X(τ)
X(τ) 0

)(
I

Â

)
≺ 0 (16b)
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and (
−ÂT
I

)T (
0 Y (τ)

Y (τ) Ẏ (τ)

)(
−ÂT
I

)
� 0 (16c)

for all τ ∈ [0, Tmax] as well as(
VJ 0
0 I

)T ((
X1(0) 0

0 0

)
−X(τ)

)(
VJ 0
0 I

)
≺ 0 (16d)

and
Y1(0)− Y1(τ) � 0 (16e)

for all τ ∈ [Tmin, Tmax].

Due to the specific structure of (15), the resulting con-
troller (7) can also be expressed as a discrete-time linear
time-varying controller of order n+ p if B ∈ Rn×p.

Existing output-feedback design approaches for sampled-
data systems are typically based on lifting techniques
or on their interpretation as a delay system as, e.g., in
Ramezanifar et al. (2014). To the best of our knowledge, it
is nowhere addressed in the literature apart from Geromel
et al. (2019) how the representation (14) as an impulsive
system can be employed for systematic output-feedback
design. In contrast to Geromel et al. (2019), our underlying
design results for impulsive systems are not specially
tailored for an application to sample-data systems which
makes them more flexible but no more conservative. This
flexibility also manifests itself in Theorems 3, 4 and 6
offering three different design strategies. Moreover, our
conditions easily permit a seamless extension, e.g., to H∞-
performance, to gain-scheduling controller synthesis or to
the design of consensus protocols, in parallel to what has
been suggested in Holicki and Scherer (2019).

5. EXAMPLE

Among the many possibilities to illustrate our results also
on concrete applications, we choose one that nicely allows
to compare impulsive LTV with impulsive LTI controller
designs and to analyze the effect of the hold operation
(14b) in terms of conservatism. To this end, let us consider
the family of systems (14) with Tmin = 0.25,

A =

(
0.5 α
−α 0.5

)
, B =

(
0
1

)
and CJ = (1 0)

for some parameter α in [1, 5]. With bisection we compute
the largest Tmax, as a function of α, for which we can find
a stabilizing controller based on our results. For numerical
tractability we search for polynomial matrix functions of
degree 4 and apply an SOS approach with multipliers of
degree 2; a perturbation of the right-hand sides of all
inequalities by −εI or εI with ε = 0.1 ensures strictness
of the LMIs. The arising semidefinite programs are solved
with MOSEK ApS (2017) and YALMIP (Löfberg (2004)).

The curves resulting from an impulsive LTV (LTI) design
for (14) with and without (14b), respectively, are depicted
in Fig. 2. This illustrates that (14b), as expected, can be
restrictive for larger values of Tmax and that there is indeed
a cost for designing impulsive LTI controllers (11) instead
of ones with clock-dependent system matrices (7).

6. CONCLUSION

We propose a novel streamlined approach for designing
stabilizing dynamic output-feedback controller for a class

1 1.5 2 2.5 3 3.5 4 4.5 5

0.5

1

1.5

2

T
m

ax

LTV design w/o (14b)
LTV design w/ (14b)

LTI design w/o (14b)
LTI design w/ (14b)

Fig. 2. Largest Tmax, as a function of α, for which we find
an impulsive LTV (LTI) stabilizing controller for (14)
with and without (14b), respectively.

of aperiodic impulsive systems subject to a range dwell-
time condition. Our synthesis criteria are based on an
analysis result by Briat (2013) and formulated as clock-
dependent LMIs. These can be solved numerically, e.g.,
by using matrix SOS relaxations. We also demonstrate
the design of controllers with clock-dependent as well as
constant system matrices, and show how our findings can
be employed for output-feedback synthesis for aperiodic
sample-data systems. Our findings are illustrated and com-
pared with each other by means of a numerical example.

Future research could, for example, involve studies on
output-feedback design in the case that the controller and
the underlying system jump in an asynchronous fashion.
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Appendix A. TECHNICAL PROOFS

Proof of Theorem 3. We only prove sufficiency as ne-
cessity is essentially obtained by reversing the arguments.
Whenever we take an inverse of a matrix valued map in
the sequel, this is meant pointwise, i.e., for a map F the
function F−1 satisfies F−1(τ)F (τ) = I for all τ in its
domain.

Step 1: Construction of a Certificate X : Due to (9a),
we can infer the existence of differentiable and pointwise
nonsingular functions U, V satisfying UV T = I − XY ; a
possible choice is U = X and V = X−1 − Y . We can then
define Y :=

(
Y I
V T 0

)
, Z := ( I 0

X U ) and X := Y−TZ.

Step 2: Transformation of Parameters: Let us define

the controller matrices
(
Ac Bc

Cc Dc

)
and

(
Ac
J Bc

J

Cc
J Dc

J

)
as(

U XB
0 I

)−1(
K −XAY − ẊY − U̇V T L

M N

)(
V T 0
CY I

)−1
and(
U(0) X(0)BJ

0 I

)−1(
KJ −X(0)AJY LJ

MJ NJ

)(
V T 0
CJY I

)−1
,

respectively. These choices are motivated by the following
observations. Note at first that

YTXY = YTY−TZY = ZY =

(
Y I
I X

)
= X

and

YT ẊY = ŻY − ẎTZT = Z +

(
0 (•)T

ẊY + U̇V T 0

)
hold since YTX = Z and YT Ẋ + ẎTX = Ż. Moreover, we
infer by routine computations that YTXAY equals

Z
[(
A 0
0 0

)
+

(
0 B
I 0

)(
Ac Bc

Cc Dc

)(
0 I
C 0

)]
Y

=

(
AY A
0 XA

)
+

(
0 B
I 0

)[(
K L
M N

)
−
(
ẊY +U̇V T 0

0 0

)](
I 0
0 C

)
= A−

(
0 0

ẊY + U̇V T 0

)
.

By combining the last two identities we obtain

YT
(
Ẋ +ATX + XA

)
Y = Z + AT + A.

Finally, we compute in a similar fashion

Y(0)TX (0)AJ(τ)Y(τ) = AJ(τ)

for all τ ∈ [Tmin, Tmax].

Step 3: Transformation of LMIs: Due to the identities
from the previous step, the LMIs (9a) and (9b) read, after
a congruence transformation with Y−1, as

X � 0 and Ẋ +ATX + XA ≺ 0 on [0, Tmax].

Similarly, a congruence transformation with the matrix
diag(Y(τ),Y(0))−1 leads from (9c) to(

X (τ) AJ(τ)TX (0)
X (0)AJ(τ) X (0)

)
� 0

and, by an application of the Schur complement, to

X (τ)−AJ(τ)TX (0)AJ(τ) � 0 for all τ ∈ [Tmin, Tmax].

This finishes the proof. �
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