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Abstract: Proportional-Derivative type Iterative Learning Controller (PD-ILC) is combined with an
Adaptive Sliding Mode Controller (ASMC) using a plug-in structure to a rotary pendulum. The ASMC
adaptation law is used to update a switching gain of sliding surface in Sliding Mode Control (SMC)
controller. The proposed hybrid controller stability and convergence are mathematically shown and
then experimentally demonstrated using two-degree-of-freedom (2-DOF) Quanser c© QUBET M Servo 2
Rotary Pendulum. Results illustrate that adaptation law helps the controllers to achieve higher accuracy
tracking performance compared to the classic SMC controller. Based on the experimental results, the
hybrid control of PD-ILC and ASMC has faster and more accurate tracking results than ILC controller
indicating the combined controller has better performance than the individual controllers.
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1 Introduction

Iterative Learning Control (ILC) is a control method that uses
previous cycle information to learn how to control a system
which has repetitive dynamics (Owens, 2015). For example in
the industrial automation robotic manipulators repeat a certain
action or motion. Each repeating action is called a “cycle,”
and the ILC controller uses error and control input from the
previous cycle to learn the control input of upcoming cycle. The
learning procedure in ILC is similar to humans learning a task
where they gain skill by repeating it. Learning a new language
is an example of skills that humans learn by repeating it over
time. ILC has a simple structure which is computationally
inexpensive and easy to design. Also, the model-free design has
low complexity which is useful for real-time implementation
and when it is difficult to model the system with high accuracy.
Additionally, it has the potential to achieve perfect tracking by
using a “non-causal” control signal (Xu et al., 2008).

Different types of ILC controllers have been used in literature
such as proportional type ILC (P-type ILC) (Slepicka and Koch,
2016), proportional-derivative type (PD-type ILC) (Liu and
Ruan, 2018), and proportional-integral-derivative type (PID-
type ILC) (Kim and Kim, 1996). ILC has been implemented
on a wide variety of systems. Dual-loop D-type ILC law was
used to control a flapping wing Micro Aerial Vehicle under
distributed disturbances (He et al., 2018). ILC was designed
for a class of nonlinear uncertain system, and the convergence
of the controller was analyzed based on composite energy
function (Xu et al., 2004). PD-type ILC was used to control a
Multiple Flexible Manipulator Robot System, and the results
showed that PD-type ILC is an effective method to obtain
exact reference tracking (Dong et al., 2019). Adding a fuzzy
mechanism to a PD-type ILC increased convergence speed
of ILC and generalized it to be useful for different plants
(Norouzi and Koch, 2019) and (Norouzi et al., 2019a). Error-
tracking iterative learning control was used to control a robot
manipulator with random initial errors (Yan et al., 2019). In

addition, ILC can be combined with conventional controllers
as a plug-in hybrid controller to improve the performance of
conventional controllers. Learning-based control using norm-
optimal iterative learning control with embedded PID controller
was used to control soft robotic arm (Hofer et al., 2019).

Sliding Mode Controller (SMC) is a Lyapunov based controller
which is designed based on the nonlinear system model (Khalil,
2002). This controller is robust and can overcome system un-
certainty and input disturbances (Norouzi et al., 2019b). SMC
was combined with different control laws such as adaptive
control (Norouzi et al., 2018), Backstepping Control (Norouzi
et al., 2019d), and Fuzzy Control (Jiang et al., 2018). Higher-
order sliding surface (Amini et al., 2017) and integral sliding
surface (Integral SMC) (Norouzi et al., 2019c) were used to
control nonlinear systems. SMC has been integrated with iter-
ative learning based sliding surface to enhance SMC tracking
performance of wire tension of an automatic motor winding
machine control (Lu et al., 2018). An adaptive law was com-
bined with ILC to design output reference tracking control for
a class of nonlinear plants (Yan et al., 2018). Adaptive ILC was
combined with non-singular fast terminal sliding mode, and
second-order SMC was used to increase convergence speed.
The experiment using a 6-DOF robotic manipulator results in
increasing in convergence of controller by using second-order
SMC and ILC combination (Wu et al., 2018).

In this research, PD-type Iterative Learning control (PD-ILC)
combined with an Adaptive Sliding Mode Controller (ASMC)
using a plug-in structure is used. Convergence and stability of
the ILC controller are mathematically analyzed, and stability
of SMC and ASMC are checked based on Lyapunov stability
theory. Compared to a classic ILC controller, the proposed
ASMC-PD-ILC controller improves the performance resulting
in fast and accurate reference tracking control. The proposed
controller is used to control a 2-DOF Quanser c© QUBET M

Servo 2 Rotary Pendulum.
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2 System Model

Consider the Multi-Input-Multi-Output (MIMO) system dy-
namic model which has m inputs and p outputs as

q̈ = f (q, q̇)+g(q) u, (1)
where q is the generalized coordinate vector, u is the input
vector as

q = [qi]p×1 i = 1, ..., p
u = [u j]m×1 j = 1, ...,m.

(2)

Now f and g are introduced as the uncertainty as
f = [ fi]p×1 i = 1, ..., p
g = [gi j]p×m i = 1, ..., p, j = 1, ...,m,

(3)

where it is assumed that the minimum and maximum of fi and
gi j are known and can be calculated as f−i , f+i , g−i j , and g+i j .
The estimation of these functions and error of estimation are
f̂ = [ f̂i]p×1, ĝ = [ĝi j]p×m,γ = γi j,F = [Fi]p×1 and G = [Gi j]p×m
with the terms defined as

f̂i =
f+i + f−i

2
, ĝi j =

√
g+i j g−i j , γi j =

√√√√g+i j

g−i j

Fi ≥ | f+i − f̂i| or Fi ≥ | f̂i− f−i |.

(4)

The system, linearized around a certain point, is defined in the
state space form:

ẋn×1 = An×nxn×1 +Bn×mum×1, yp×1 =Cp×nxn×1, (5)
where xn×1, yp×1, and um×1 are the model states, outputs,
and inputs, respectively. The transfer function of system is
calculated based on linearized system as

Gsys(s) =C[sI−A]−1B, (6)
where Gsys is the p × m transfer function matrix. For the
remainder of the paper it is assumed the number of outputs
equals the number of inputs (p = m).

3 Sliding Mode Control

For the system Eq. 1, the sliding surface is selected as

s = (λ +
d
dt
)e = λe+ ė, (7)

where λ is diagonal matrix including λii (i = 1, ..., p). The error
vector of system is defined as

e = q−qd (8)
where e= [ei]p×1 and qd is the desired reference input. The best
control law for sliding mode controller is achieved by setting
the time derivative of sliding surface equal to zero (Slotine
et al., 1991). The time derivative of Eq. 7 is

ṡ = λ ė+ ë = 0, (9)
and substituting Eq. 8 into Eq. 9 and solving results in:

λ q̇−λ q̇d + q̈− q̈d = 0, (10)

where q̈ can be find by substituting f̂ (q, q̇) and ĝ(q) into Eq. 1
as (Slotine et al., 1991)

q̈ = f̂ (q, q̇)+ ĝ(q) ueq, (11)
where ueq is a control input which makes the derivative of
sliding surface equal to zero. Substituting Eq. 11 into Eq. 10
results in

λ q̇−λ q̇d + f̂ (q, q̇)+ ĝ(q) ueq− q̈d = 0. (12)

Taking ueq = ĝ(q)−1û and solving Eq. 12 for û results in
û =−λ q̇+λ q̇d− f̂ (q, q̇)+ q̈d . (13)

The sliding condition is defined as
1
2

d
dt

sT s≤ η ||s||, (14)

where η is a strictly positive diagonal matrix η = [ηii]p×p
(Slotine et al., 1991). To satisfy the sliding condition, a switch
term is added to ueq as

u = ueq− ĝ(q)−1 k sign(s), (15)
where k is diagonal switching gain matrix. Now, k sign(s) is
defined as a diagonal matrix

k sign(s) = [kii]p×p [sign(si)]p×1. (16)
The sliding mode controller is obtained as

uSMC = ĝ(q)−1
(
−λ ė− f̂ (q, q̇)+ q̈d− k sign(s)

)
. (17)

3.1 Adaptive Sliding Mode Control

An adaptive law can be added to update the switching gain
based on the sliding surface (Norouzi et al., 2018) as

˙̂kii(t) = βii |si(t)|, ˙̂kii(t|t=0) = 0, (18)
where in the matrix format it can be defined as

˙̂k(t) = β |s(t)|, ˙̂k(t|t=0) = 0, (19)

where β is the diagonal matrix of elements βii. So, the adaptive
sliding mode controller is calculated as

uASMC = ĝ(q)−1
(
−λ ė− f̂ (q, q̇)+ q̈d− k̂ β sign(s)

)
, (20)

where now k̂ is a function of time.

4 PD-type Iterative Learning Control (PD-ILC)

Iterative Learning Control is often defined as
u j+1(t) = Q(u j(t))+L(e j(t)), (21)

where L is a learning filter, Q is a Q-Filter (Control input filter),
and j is cycle index. Both Q and L are matrices with dimension
of p× p. If the learning filter has only constant values on the
main diagonal elements of matrix, then a the P-type controller
is generated. Taking Q to be a identity matrix results in (Ahn
et al., 2007)

u j+1(t) = u j(t)+Le j(t), (22)
where the current cycle control input is function of the previous
cycle’s error and control input. By modifyng the matrix L a PD-
type ILC controller is obtained as

u j+1(t) = u j(t)+Pe j(t)+Dė j(t), (23)
where P and D is the proportional and derivative learning gain,
respectively (Ahn et al., 2007).

5 Hybrid Plug-in PD-type ILC with ASMC- ASMC-PD-ILc

The Plug-in ILC with parallel structure is (Lei et al., 2015)
u j(t) = uASMC, j(t)+uPD−ILC, j(t), (24)

where uASMC, j(t) is the ASMC controller, uPD−ILC, j(t) is the
PD-type ILC, u j(t) is the combined control signal of the sys-
tem, and j is iteration cycle. The proposed hybrid controller
block diagram is shown schematically in Fig. 1. Substituting
Eq. 23 and 20 into Eq. 24 the hybrid control law is calculated
as

u j = ĝ−1(q j)

(
−λ ė j− f̂ (q j, q̇ j)+ q̈d− k̂ β sign(s j)

)
+u j−1 +Pe j−1 +Dė j−1.

(25)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6292



To avoid chattering, a saturation function with constant bound-
ary layer is used instead of the [sign(si)]p×1 function as

sat(
si

φ
) =


1 si

φ
> 1

si
φ

−1 < si
φ
< 1

−1 si
φ
<−1

i = 1, ...,n (26)

6 Stability Analysis

6.1 Stability Analysis of ILC controller

The term Q−GsysL is used as the stability criteria to analysis
the stability of an ILC controller for a linear system. So, for ILC
asymptotic stability, a necessary but not sufficient conditions
for this case is defined as

||Q−GsysL||∞ < 1, (27)
or σ̄(Q−GsysL)< 1 where L is a diagonal matrix and Gsys is a
symmetric matrix, and σ̄ is a maximum singular value (Owens,
2015). Monotonic convergence occurs when σ̄(M) < 1 where
M = [Q−Gsys(s)L] in e j+1 = Me j. Using the same concept for
convergence and stability analysis of P-type ILC, the stability
and convergence criteria for PD-type ILC can be calculated as

e j+1 = qd− y j+1 = r−Gsysu j+1

= qd−GsysQu j−GsysPe j− sGsysDe j.
(28)

So, by assuming that the Q-filter equals to identity matrix, M is
calculated as

e j+1(s) = [I−Gsys(s)(P+ sD)]e j(s). (29)

Thus, for the PD-type controller stability and convergence
conditions are

σ̄(I−Gsys(s)(P+ sD))< 1. (30)
The second norm of error can be calculated as

||eq( j)||2 =
√

e∗q( j)eq( j), (31)

where j is the repetitive cycle number and eq is the tracking
error vector of q in Eq. 8.

6.2 Adaptive Sliding Mode control

To establish the sliding condition (Eq. 14), the range of k is
found to be

k ≥ γ (F +η)+(γ− I) |û|, (32)

where this equation is obtained based on Lyapunov stability
theorem (Slotine et al., 1991) for SMC. For the stability analy-
sis of ASMC a candidate Lyapunov function is defined as

V (t) =
1
2

sT s+
ĝ−1g

2
k̃T k̃, (33)

where k̃ is defined as

k̃ = k̂− k. (34)

Taking the time derivative of candidate Lyapunov function (Eq.
33) and substituting the system dynamic model (Eq. 1) and
ASMC control law (Eq. 20) results in

V̇ (t) = sṡ+ ĝ−1gk̃ ˙̃k

= s(q̈− q̈d +λ ė)+ ĝ−1g(k̂− k)β |s|
= s( f +gu− q̈d +λ ė)+ ĝ−1g(k̂− k)β |s|
= s( f +gĝ−1(−λ ė− f̂ + q̈d− k̂ β sign(s)

)
− q̈d +λ ė)+ ĝ−1g(k̂− k)β |s|

= s( f − f̂ + f̂ +gĝ−1(−λ ė− f̂ + q̈d− k̂ β sign(s)
)

− q̈d ++λ ė)+ ĝ−1g(k̂− k)β |s|
= s
(
( f − f̂ )+(gĝ−1−1)(− f̂ + q̈d−+λ ė)

−gĝ−1k̂sign(s)
)
+gĝ−1(k̂− k)β |s|.

simplifying using the triangle inequality and using Eq. 4, results
in

V̇ (t)≤ |s||F |+ |s||gĝ−1−1||û|−gĝ−1kβ |s|. (35)

Based on Eq. 4, |1−gĝ−1| ≤ |1− γ−1| and −gĝ−1 ≤−γ−1 are
obtained. Then, substituting these into the Eq. 35 results in

V̇ (t)≤ |s||F |+ |s||1− γ
−1||û|− γ

−1kβ |s|. (36)

Finally, substituting Eq. 32 into Eq. 36, results in

V̇ (t)≤ |s||F |+ |s||1− γ
−1||û|

− γ
−1(γ (F +η)+(γ− I) |û|)β |s|

≤
(
(I−β )(F + |I− γ

−1||û|)|s|
)
−ηβ |s|.

(37)

So, if βi ≥ 1 the time derivative of Lyapunov function would be
V̇ (t) ≤ 0. So, the system is stable based on Lyapunov stability
theory, if and only if βi ≥ 1 for all i.
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Fig. 1. Hybrid Adaptive Sliding Mode Control with PD-type Iterative Learning Control (ASMC-PD-ILC)
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7 Experiment Results and Discussion

To experimentally test the proposed controller, the Quanser c©
QUBET M Servo 2 rotary pendulum is used. A schematic of
system is shown in Fig. 2. Using the Euler-Lagrange method,
the dynamic model of system is obtained as (Apkarian et al.,
2016) [

M11 M12
M21 M22

][
θ̈

α̈

]
+

[
C1
C2

]
=

[
T1
T2

]
, (38)

where

M11 = mpL2
r +

1
4

mpL2
p−

1
4

mpL2
p cos(α)2 + Jr

M12 =
1
2

mpLpLr cos(α), M21 =
1
2

mpLpLr cos(α)

M22 = Jp +
1
4

mpL2
p, C1 =

(1
2

mpL2
p sin(α)cos(α)

)
θ̇ α̇

+
(1

2
mpLpLr sin(α)

)
α̇

2 +
k2

mθ̇

Rm
+Dr

C2 =−
1
4

mpLp cos(α)sin(α)θ̇ 2 +
1
2

mpLpgsin(α)+Dpα̇.

The right hand of Eq. 38 is the input torque to the first and
second link defined as [B1 B2]

T Vm where B1 = Km/R/m and
B2 = 0. The DC motor voltage (Vm) is control input (actuator
dynamic is included) and rotary link angle (θ ) and pendulum
angle (α) are system outputs. The experimental setup using
QUBE rotary Pendulum is shown in Fig. 3. Based on Eq. 38, the
standard for of dynamic equation of motion (Eq. 1) as achieved
where f (q, q̇), g(q), q, and u are defined as

q = [θ α]T , u =Vm,

f (q, q̇) =−[M]−1C, g(q) = [M]−1B.

𝑇2

𝑇1

𝑋

𝑌

𝑍

𝑚𝑝, 𝐽𝑝

𝐿𝑝/2

𝑚𝑟 , 𝐽𝑟

𝜃

𝛼

𝐿𝑟

Fig. 2. kinematic diagram of the QUBE rotary pendulum

Fig. 3. Experiment setup of QUBE rotary pendulum

Fig. 4 shows the experimental results of SMC and ASMC con-
trollers. In all experimental results a back and forth reference

desired input is used as rotary desired angle (θ ) and 180◦ refer-
ence desired input for pendulum angle (α). Reference tracking
results of SMC versus ASMC show the adaptation law in the
SMC controller results in more accurate reference tracking in
Fig. 4. Adding an adaptive law decreases second norm of error
for one single cycle from 18.74 for SMC to 12.43 for ASMC.
The more accurate tracking of rotary angle (θ ) using ASMC,
the more oscillatory the pendulum angle (α). The experimental
result of PD-ILC controller for repetitive reference of rotary
angle (α) are shown in Fig. 5. In this test, a square Wave with
amplitude of 20 degree and frequency of 0.0625 Hz is used as
reference input and each period of this square wave is taken as a
cycle for PD-ILC controller. As illustrated, after a 31 cycles, the
controller can achieve acceptable tracking of desired reference.
This is quantified by the second norm of error of each cycle
versus number of iteration (||eθ ||2 versus j plot in Fig. 5) where
shows ILC monotonic convergence. The experimental results of
reference tracking using Hybrid ASMC-PD-ILC controller are
shown in Fig. 6 . The reference input is the same as Fig. 5. For
this case, the combined controller converges faster than pure
ILC controller and second norm of the error decreases from
23.67 to 9.69.

As shown in Figs. 4-6, the damping between the joint of rota-
tory arm and pendulum is very low. Hence, by increasing the
tracking accuracy and response time of the θ , the oscillation
on the α increases. This is a trade-off between tracking the
desired value of the θ and stabilizing the pendulum (θ = 180◦).
Based on Fig. 6, from cycle 1 to 7, oscillation is increased as
the response time, and the accuracy of θ tracking is increased.
For the last four cycles, both oscillation, and θ tracking stays
unchanged. This can be analyzed based on the second norm of
error (||eθ ||), as shown in Fig. 6. At convergence of the learning
control, the performance remains unchanged as the reference is
repeated with the same amplitude and frequencies. The same
conclusion can be made for pure ILC controller as shown in
Fig. 5.

To compare performance of different controller, the second
norm of tracking error of last cycle is compared in Table 1.
Also, the last cycle of system response for four kinds of
controllers are shown in Fig. 7.

Table 1. Performance comparison of controllers

Controller type ||eθ ||2 Accuracy wrt SMC Accuracy wrt ILC
SMC 18.74 - -32.9%

ASMC 12.43 +33.7% +1.1%
ILC 12.57 +32.9 -

ILC with ASMC 9.68 +48.3% +23%

Based on Table 1, it can be concluded that the proposed com-
bined controller has faster convergence and more accurate ref-
erence tracking than PD-type ILC controllers. The proposed
controller converges in 11 cycles while for pure ILC the con-
vergence occurs in 31 cycles (64.5% faster). The combined
controller is also an improvement on just the ASMC. The
combination of ASMC-PD-ILC produces the best results when
compared to the individual controllers.

8 Conclusion

A PD-type Iterative Learning Controller is combined with
Adaptive Sliding Mode Controller and the stability and conver-
gence of the proposed controller are analyzed. Then, a 2-DOF
QUBE rotary pendulum is used to test the designed controllers
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Fig. 4. Experimental results: reference tracking of QUBE rotary angle (θ ) and stabilizing pendulum angle (α) using Sliding Mode
Controller (SMC) versus Adaptive Sliding Mode Controller (ASMC)
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Fig. 5. Experimental results: reference tracking of QUBE rotary angle (θ ) and stabilizing pendulum angle (α) using PD-type
Iterative Learning Control (PD-ILC)
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Fig. 6. Experimental results: reference tracking of QUBE rotary angle (θ ) and stabilizing pendulum angle (α) using Hybrid
Adaptive Sliding Mode Controller and PD-type Iterative Learning Control (ASMC-PD-ILC)
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Fig. 7. Performance comparison of controllers - the last cycle of
learning-based controller are considered for comparison

by comparing experimental results of SMC and ASMC, PD-
ILC, and ASMC-PD-ILC. For this system several observation
can be made. One, adding the adaptation law helps the hybrid
controller to achieve more accurate tracking performance. Two,
adding ASMC to PD-ILC improves system convergence speed
and tracking performance. Three, as the ASMC controller is
designed based on the model, it depends on the accuracy of the
model; however, the proposed controller is able to compensate
model mismatch of plant system model to improve tracking
accuracy of the controller. This is clear by using adaptation and
learning together. Understanding how the additional methods
such as Backstepping Control, Model Predictive Control, and
Optimal Control could be added to further improve the control
performance is future research.
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