
Automatic Code Generation Tool for
Nonlinear Model Predictive Control

with Jupyter ?

S. Katayama ∗ T. Ohtsuka ∗

∗ Department of Systems Science, Graduate School of Informatics,
Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan

Abstract: We present an automatic code generation tool, AutoGenU for Jupyter, for non-
linear model predictive control (NMPC) with a user-friendly and interactive interface utilizing
JupyterLab and Jupyter Notebook. We utilize a symbolic computation package SymPy for
automatic C++ code generation. We also developed numerical solvers of NMPC using the
continuation/GMRES (C/GMRES) method and multiple-shooting-based C/GMRES method
in C++. AutoGenU for Jupyter provides the simulation environment of NMPC with these
solvers and visualization of the simulation results. We give an example of code generation and
numerical simulation of a swing-up control of a cart pole using AutoGenU for Jupyter.

Keywords: Predictive Control, Optimal Control, Nonlinear Control, Software Tools

1. INTRODUCTION

Nonlinear model predictive control (NMPC) (Magni et al.
(2008)) has attracted much attention in both academic
and industrial fields along due to dramatic improvements
in numerical algorithms and CPUs. In NMPC, the finite
horizon optimal control problem (FHOCP), on the basis
of the dynamics of the system and the current state, is
solved at each sampling time, and the initial value of the
optimal control input is applied to the actual system.
NMPC achieves state feedback control law by treating
nonlinear dynamics and constraints explicitly as long as
the FHOCP is solved within the given sampling period.
However, the bottleneck of NMPC is the computational
time to solve the FHOCP. Typically, we cannot solve the
FHOCP analytically but only numerically because the
system has nonlinear dynamics and nonlinear constraints.
It may take more than the given sampling period to
compute the numerical solution of the FHOCP when the
sampling period is short, dimension of the variables is
large, and dynamics of the system is complicated.

To solve the FHOCP numerically in a short computational
time, various methods have been proposed. There are two
types of such methods: one for solving the Hamilton-
Jacobi-Bellman equation (HJBE) and the other for solving
the two-point boundary-value problem (TPBVP). With an
HJBE-based method, differential dynamics programming
(DDP) approximates the value functions of the HJBE
and updates the value function and the state trajectory
iteratively (Tassa et al. (2008)). Several variants of the
DDP are proposed (Sideris and Bobrow (2005); Tassa et al.
(2012)). For TPBVP-based methods, many numerical al-
gorithms based on Newton’s method have been proposed.
Diehl et al. (2005) proposed the real-time iteration (RTI)
scheme that solves the quadratic programming (QP) at

? This work was partly supported by JSPS KAKENHI Grant
Number 15H02257.

each sampling time. The continuation/GMRES (C/GM-
RES) method proposed by Ohtsuka (2004) tracks the
optimal solution using the continuation method (Richter
and DeCarlo (1983)).

Software tools as well as numerical algorithms have been
proposed. ACADO toolkit (Houska et al. (2011)) generates
efficient C code for the generalized-Gauss-Newton-based
RTI scheme and has an interface with C++ and Matlab.
Herceg et al. (2013) developed the Multi-Parametric
Toolbox (MPT), a MatLab toolbox that supports NMPC
for the discrete-time piecewise affine system. AutoGen
(Ohtsuka and Kodama (2002)) is an automatic C code gen-
erator for the real-time algorithm of NMPC proposed by
Ohtsuka and Fujii (1997) and developed using the symbolic
computation language Mathematica. AutoGenU, which was
introduced by Ohtsuka (2004), was developed using Math-
ematica and supports automatic C code generation for
the C/GMRES method. AutoGenU for Maple (Ohtsuka
(2015)) generates C codes for the C/GMRES method using
another symbolic computation language, i.e., Maple. Gift-
thaler M., et al. (2018) developed the Control Toolbox
(CT), which provides NMPC solvers based on iLQR in
C++. Deng and Ohtsuka (2018) developed a MatLab tool-
box ParMNMPC, which generates efficient C/C++ codes of a
Newton-type parallel computing method for NMPC (Deng
and Ohtsuka (2019)). These software tools are written in
Matlab, Mathematica, Maple, or C++. However, Python
is the most popular programming language today be-
cause of its ease of development, numerous state-of-the-art
open-source libraries, and interactive interfaces Jupyter-
Lab and Jupyter Notebook (Pérez and Granger (2007);
Kluyver T., et al. (2016); Granger and Grout (2016)).
Python also has a symbolic computation package SymPy
(Meurer A., et al. (2017)), which makes automatic code
generation possible. Therefore, it is worth developing a
tool of NMPC written in Python and has an interface using
JupyterLab and Jupyter Notebook. CasADi (Andersson

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 7115

et al. (2019)) is an open-source software for nonlinear opti-
mization supporting C code generation and having Python
API. It also has a Python interface specialized for NMPC,
MPCTools (Risbeck and Rawlings (2015)). However, for
more intuitive use, Jupyter interfaces are preferable.

In this paper, we present AutoGenU for Jupyter, an
automatic code generation tool for NMPC with a user-
friendly and interactive interface utilizing JupyterLab and
Jupyter Notebook. We use SymPy for the symbolic com-
putation and automatic C++ code generation, including
simplification and common expression elimination. We also
developed C/GMRES-based numerical solvers for NMPC
in C++ for flexible use (e.g., for robotics). We implement
not only the original single-shooting C/GMRES method,
but also the multiple-shooting-based C/GMRES method
with condensing (Shimizu et al. (2009)), which is not
provided in the existing code generation tool (Ohtsuka
(2015)). We also add the semi-smooth Fischer-Burmeister
(FB) function for inequality constraints (Liao-McPherson
et al. (2019)) in the code generation. This tool provides
the simulation environment for NMPC using CMake and
visualizes the simulation results using Matplotlib (Hunter
(2007)) and seaborn (Waskom M., et al. (2012-2019)).

This paper is composed as follows. In Secion 2, we discuss
the problem settings of NMPC. In Section 3, we intro-
duce the C/GMRES and multiple-shooting-based C/GM-
RES methods. In Section 4, we present AutoGenU for
Jupyter, and in Section 5, we give an example of code
generation and numerical simulation using AutoGenU for
Jupyter. In Section 6, we conclude our paper.

2. PROBLEM SETTINGS OF NONLINEAR MODEL
PREDICTIVE CONTROL

We consider the nonlinear system

ẋ(t) = f(x(t), u(t), p(t)), (1)

where x(t) ∈ Rn denotes the state vector, u(t) ∈ Rmu

the control input vector, and p(t) ∈ Rmp the time-varying
parameter. We also consider mc dimensional equality
constraints of the form

C(x(t), u(t), p(t)) = 0, (2)

and mh dimensional inequality constraints of the form

h(x(t), u(t), p(t)) ≤ 0, (3)

imposed on the system (1). Suppose that (3) is treated by
the semi-smooth FB function. Note that inequality con-
straints can also be transformed into equality constraints
(2) by introducing a dummy input (Ohtsuka (2004)) or
considered in the cost function by introducing barrier func-
tions (Nocedal and Wright (2006)). In NMPC, an FHOCP
from the current time t to the finite future t+ T is solved
each sampling time. That is, we want to find the optimal
control input u∗(t′; t;x(t)) (t ≤ t′ ≤ t+ T) that minimizes
the cost function

J = ϕ(x(t+T), p(t+T))+

∫ t+T

t

L(x(t′, u(t′), p(t′))dt′ (4)

under (1)–(3), where ϕ(·, ·) : Rn × Rmp → R denotes
the terminal cost and L(·, ·, ·) : Rn × Rmu × Rmp → R
denotes the stage cost. The time interval [t, t + T] is
called the horizon of NMPC. After obtaining the optimal
control input u∗(t′; t;x(t)) (t ≤ t′ ≤ t + T) by solving

the FHOCP, the initial value of the optimal control input,
i.e., u(t) = u∗(t; t;x(t)), is applied to the actual system. To
numerically obtain the optimal control input, we derive the
Karush–Kuhn–Tucker (KKT) conditions, which are the
necessary conditions of the optimal control. We introduce
a new time axis on horizon τ (0 ≤ τ ≤ T) and a new state
on the horizon x∗(τ ; t), which denotes the state trajectory
along the τ axis from x(t) at τ = 0. The FHOCP is then
defined by finding the optimal control input along the τ
axis u∗(τ ; t) (0 ≤ τ ≤ T) that minimizes the cost function

J = ϕ(x∗(T ; t), p(T ; t))

+

∫ T

0

L(x∗(τ ; t), u∗(τ ; t), p(τ ; t))dτ, (5)

subject to
x∗(0; t) = x(t), (6)

d

dτ
x∗(τ ; t) = f(x∗(τ ; t), u∗(τ ; t), p(τ ; t)), (7)

C(x∗(τ ; t), u∗(τ ; t), p(τ ; t)) = 0, (8)
and

h(x∗(τ ; t), u∗(τ ; t), p(τ ; t)) ≤ 0. (9)
Note that p(τ ; t) corresponds to p(τ + t). To derive the
KKT conditions, we introduce λ ∈ Rn, µ ∈ Rmc , and
ν ∈ Rmh , which denote the Lagrange multipliers for the
state equation (7), equality constraints (8), and inequality
constraints (9), respectively. We then introduce the Hamil-
tonian defined by

H(x, u, λ, µ, ν, p) := L(x, u, p) + λTf(x, u, p)

+ µTC(x, u, p) + νTh(x, u, p). (10)

The KKT conditions (Bryson and Ho (1975); Nocedal and
Wright (2006)) are then given as

λ∗(T ; t) = ϕT
x (x∗(T ; t), p(T ; t)), (11)

λ̇∗(τ ; t) =

−HT
x (x∗(τ ; t), u∗(τ ; t), λ∗(τ ; t), µ∗(τ ; t), ν∗(τ ; t), p(τ ; t)),

(12)

HT
u (x∗(τ ; t), u∗(τ ; t), λ∗(τ ; t), µ∗(τ ; t), ν∗(τ ; t), p(τ ; t)) = 0,

(13)

ν∗(τ ; t) ≥ 0, ν∗T(τ ; t)h(x∗(τ ; t), u∗(τ ; t), p(τ ; t)) = 0.
(14)

Note that a scalar function with a subscript denotes the
partial derivative of the scalar function with respect to
the subscript. The unknown variables of the FHOCP are
given by x∗(τ ; t), u∗(τ ; t), λ∗(τ ; t), µ∗(τ ; t), and ν∗(τ ; t) for
0 ≤ τ ≤ T , which have to satisfy (6)–(14). Note that (9)
and (14) denote the complementarity condition between
ν∗(τ ; t) and h(x∗(τ ; t), u∗(τ ; t), p(τ ; t)). The semi-smooth
FB function (Liao-McPherson et al. (2019)) is defined for
a complementarity condition a ≥ 0, b ≥ 0, ab = 0 by

ψ(a, b) :=
√
a2 + b2 + ε2 − (a+ b), (15)

so that it has a property that

ψ(a, b) = 0⇔ a ≥ 0, b ≥ 0, ε =
√

2ab, (16)

where ε ≥ 0 relaxes the orthogonality ab = 0 to avoid
ψ(a, b) being undifferentiable when (a, b) = (0, 0). Note
that the original complementarity condition a ≥ 0, b ≥ 0,
ab = 0 holds when ε→ 0. We consider

Ψ(x, u, ν, p) :=

 ψ(ν(1),−h(1)(x, u, p))
...

ψ(ν(mh),−h(mh)(x, u, p))

 = 0 (17)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7116

instead of (9) and (14), where ν(i) denotes the ith element
of ν, h(i)(x, u, p) denotes the ith element of h(x, u, p). Note
that (17) is equivalent to (9) and (14) when ε→ 0 and we
can consider the original inequality constraints (3) with
sufficiently small ε > 0.

To numerically obtain the solution, we discretize the
FHOCP. We divide the horizon into N steps and define
∆τ := T/N . We discretize the state on the horizon
into x∗0(t), ..., x∗N (t), control input into u∗0(t), ..., u∗N−1(t),
the Lagrange multipliers into λ∗1(t), ..., λ∗N (t), µ∗0(t), ...,
µ∗N−1(t), ν∗0 (t), ..., ν∗N−1(t), and time-varying parameter
into p0(t), ..., pN (t). Note that pi(t) corresponds to p(t +
i∆τ). We also discretize the KKT conditions (6)–(8), (11)–
(13), and (17) into

x∗0(t) = x(t), (18)

x∗i+1(t) = x∗i (t) + f(x∗i (t), u
∗
i (t), pi(t))∆τ, i = 0, ..., N − 1,

(19)
C(x∗i (t), u

∗
i (t), pi(t)) = 0, i = 0, ..., N − 1, (20)

λ∗N (t) = ϕT
x (x∗N (t), pN (t)), (21)

λ∗i (t) = λ∗i+1(t)

+HT
x (x∗i (t), u

∗
i (t), λ

∗
i+1(t), µ∗i (t), ν

∗
i (t), pi(t))∆τ,

i = 1, ..., N − 1, (22)

HT
u (x∗i (t), u

∗
i (t), λ

∗
i+1(t), µ∗i (t), ν

∗
i (t), pi(t)) = 0,

i = 0, ..., N − 1, (23)

and

Ψ(x∗i (t), u
∗
i (t), ν

∗
i (t), pi(t)) = 0, i = 0, ..., N − 1. (24)

The optimal variables x∗0(t), ..., x∗N (t), u∗0(t), ..., u∗N−1(t),
λ∗N (t), ..., λ∗1(t), µ∗0(t), ..., µ∗N−1(t), and ν∗0 (t), ..., ν∗N−1(t)
must satisfy (18)–(24), which define the TPBVP.

3. NUMERICAL ALGORITHMS OF NMPC BASED
ON C/GMRES METHOD

3.1 C/GMRES method

The C/GMRES method regards u∗0(t), ..., u∗N−1(t), µ∗0(t),
..., µ∗N−1(t) and ν∗0 (t), ..., ν∗N−1(t) as variables to be deter-
mined. Under given u∗0(t), ..., u∗N−1(t) µ∗0(t), ..., µ∗N−1(t),
and ν∗0 (t), ..., ν∗N−1(t), we can determine x∗0(t), ..., x∗N (t)
from (18) and (19) and λ∗N , ..., λ

∗
1 from (21) and (22).

The errors in the optimality of given u∗0(t), ..., u∗N−1(t),
µ∗0(t), ..., µ∗N−1(t), and ν∗0 (t), ..., ν∗N−1(t) are then com-
puted by (23), (20), and (24). Let U(t) be a vector com-
posed of the variables to be determined and F (U(t), x(t), t)
be a vector-valued function composed of (23), (20), and
(24), i.e., we define U(t) and F (U(t), x(t), t) as (25). Then
the FHOCP is reduced to a nonlinear problem to find
U(t) satisfying F (U(t), x(t), t) = 0. This is also called
the single-shooting method in contrast to the multiple-
shooting method, which is introduced in the next subsec-
tion. With the C/GMRES method, we do not solve the
nonlinear problem F (U(t), x(t), t) = 0 directly because it
requires inefficient iterative search of the solution, such
as Newton’s method. Instead, the C/GMRES method
tracks U(t) without such iterations by computing the time

derivative U̇(t) so that U(t) satisfies F (U(t), x(t), t) = 0.
If U(0) satisfies F (U(0), x(0), 0) = 0, then we can track

U(t) satisfying F (U(t), x(t), t) = 0 by integrating U̇(t)

satisfying the time derivatives of F (U(t), x(t), t) = 0. By
applying the continuation method (Richter and DeCarlo
(1983)) to F (U(t), x(t), t) = 0, we obtain

Ḟ (U(t), x(t), t) = −ζF (U(t), x(t), t), (26)

where ζ is a positive real value. The right side of (26) plays
a role of stabilizing the numerical computation. Equation
(26) is further transformed into

FU U̇ + Fxẋ+ Ft = −ζF, (27)

which can be seen as a linear problem of U̇ , e.g., as

FU U̇ = −ζF − Fxẋ− Ft. (28)

Note that we omit the arguments in (27) and (28). With
the C/GMRES method, the products of the Jacobians and
vectors in (28) are computed efficiently by the finite differ-
ence approximation, and (28) is solved using the GMRES
method (Kelly (1995)), a fast computational method for

linear problems. After obtaining U̇(t) by solving (28), the
solution is updated by

U(t+ ∆t) = U(t) + U̇(t)∆t, (29)

where ∆t > 0 is a sampling period. The C/GMRES
method solves (28) only once per update of U(t), and the
computational cost of the update of U(t) corresponds to
only one iteration with Newton’s method.

Note that we may have to obtain the initial solution U(0)
satisfying F (U(0), x(0), 0) = 0 within a given sampling
period. A strategy to compute U(0) with a short com-
putational time is to set the length of the horizon as a
time-dependent smooth function such that T (0) = 0 and
T (t)→ Tf (t→∞) , e.g.,

T (t) = Tf (1− e−αt), (30)

where Tf and α are positive values. Then u∗i (0) = u(0),
µ∗i (0) = µ(0), ν∗i (0) = ν(0), x∗i (0) = x(0), and λ∗i (0) =
ϕT
x (x(0), p(0)) hold for arbitrary i because T (0) = 0. We

may obtain u(0), µ(0), and ν(0) by solvingHT
u (x(0), u(0), ϕT

x (x(0), p(0)), µ(0), p(0))
C(x(0), u(0), p(0))

Ψ(x(0), u(0), ν(0), p(0))

 = 0 (31)

with a short time even with Newton’s method because
nonlinear problem (31) is sufficiently small.

3.2 Multiple-Shooting-Based C/GMRES Method

Problem Formulation In contrast to the single-shooting
method, the multiple-shooting method regards the all vari-
ables u∗0(t), ..., u∗N−1(t), x∗1(t), ..., x∗N (t), λ∗1(t), ..., λ∗N (t),
µ∗0(t), ..., µ∗N−1(t), and ν∗0 (t), ..., ν∗N−1(t) as variables to be
determined of the TPBVP. Because the errors in optimal-
ity are expanded in all the variables, this formulation im-
proves numerical stability from the single-shooting method
in which the errors appear just in U(t). Introducing

X(t) :=
[
x∗1

T(t) λ∗1
T(t) · · · x∗N

T(t) λ∗N
T(t)

]T
, (32)

then the FHOCP of the multiple-shooting method is
reduced to the following nonlinear problem: find U(t)
defined by (25) and X(t) defined by (32) satisfying
F (U(t), X(t), x(t), t) defined as the same form of (25) and
G(U(t), X(t), x(t), t) defined as (33).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7117

U(t) :=



u∗0(t)
µ∗0(t)
ν∗0 (t)

...
u∗N−1(t)
µ∗N−1(t)
ν∗N−1(t)


, F (U(t), x(t), t) :=



HT
u (x∗0(t), u∗0(t), λ∗1(t), µ∗0(t), ν∗0 (t), p0(t))

C(x∗0(t), u∗0(t), p0(t))
Ψ(x∗0(t), u∗0(t), ν∗0 (t), p0(t))

...
HT
u (x∗N−1(t), u∗N−1(t), λ∗N (t), µ∗N−1(t), ν∗N−1(t), pN−1(t))

C(x∗N−1(t), u∗N−1(t), pN−1(t))
Ψ(x∗N−1(t), u∗N−1(t), ν∗N−1(t), pN−1(t))


. (25)

G(U(t), X(t), x(t), t) :=



x∗1(t)− x(t)− f(x(t), u∗0(t), p0(t))∆τ
λ∗1(t)− λ∗2(t)−HT

x (x∗1(t), u∗1(t), λ∗2(t), µ∗1(t), ν∗1 (t), p1(t))∆τ
...

x∗N−1(t)− x∗N−2(t)− f(x∗N−2(t), u∗N−2(t), pN−2(t))∆τ
λ∗N−1(t)− λ∗N (t)−HT

x (x∗N−1(t), u∗N−1(t), λ∗N (t), µ∗N−1(t), ν∗N−1(t), pN−1(t))∆τ
x∗N (t)− x∗N−1(t)− f(x∗N−1(t), u∗N−1(t), pN−1(t))∆τ

λ∗N (t)− ϕT
x (x∗N (t), pN (t))


= 0. (33)

Condensing By using the continuation method, (25) and
(33) are transformed into

FU U̇ + FXẊ + Fxẋ+ Ft = −ζF, (34)

and

GU U̇ +GXẊ +Gxẋ+Gt = −ζG, (35)

and the solution U and X can be updated by integrating
U̇ and Ẋ as well as (29). For example, we can obtain U̇

and Ẋ by solving[
FU FX
GU GX

] [
U̇

Ẋ

]
= −ζ

[
F
G

]
−
[
Fx
Gx

]
ẋ−

[
Ft
Gt

]
. (36)

However, this problem is more expensive than that of
the original C/GMRES method because the size of lin-
ear problem (36) is larger than that of (28). To reduce
the computational cost in solving the linear problem of
the multiple-shooting formulation, Shimizu et al. (2009)
applied condensing (Bock and Plitt (1984)) and removed

Ẋ and a part of U̇ from (36). Note that for the condensing

of a part of U̇ , F and U have to be partitioned as

F = [F̄T F̂T]T, U = [ŪT ÛT]T (37)

so that the following three conditions are satisfied: 1) F̄

and Ū have the same size. 2) GÛ = 0 and F̂X = 0

hold. 3) The product of F̂−1
Û

and an arbitrary vector can

be obtained with small computational burden. Under 1)–

3), we can remove
˙̂
U from (36). For example, consider a

saturation on the control input, i.e.,

umin ≤ uj(t), uj(t) ≤ umax, (38)

where j ∈ {1, 2, ...,mu} specifies the constrained element
of u. By introducing a dummy input û ∈ R, inequality con-
straints (38) are transformed into the equality constraint

u2j + û2 −
(
umax − umin

2

)2

= 0. (39)

The dummy input is treated as a variable to be determined
in the TPBVP. To consider (39), a Lagrange multiplier
for (39), µ ∈ R, is also appended to the variables to be
determined. Then (39) satisfies the above three conditions
for condensing, and we can remove the time derivatives of
û and µ from the solution of the linear problem.

4. AUTOGENU FOR JUPYTER

4.1 Overview of AutoGenU for Jupyter

AutoGenU for Jupyter (Katayama (2018-2020)) is an
open-source software tool for NMPC. It is mainly com-
posed of three parts:

• AutoGenU.ipynb: A main interface of AutoGenU for
Jupyter (we can rename the .ipynb file as we like).

• autogenu: A directory containing Python modules
used in AutoGenU.ipynb for the automatic C++ code
generation, building of C++ source files, execution
and visualization of numerical simulations.

• include/cgmres, src: A directory containing C++
header files and source files of the C/GMRES and
multiple-shooting-based C/GMRES methods. A sub-
directory containing C++ header files and source files
for numerical simulations are also included.

Through AutoGenU.ipynb, we can generate C++ source
files of NMPC problem settings, build C++ source files,
run numerical simulations, and draw graphs of the simu-
lation results. Python modules in autogenu are developed
just for AutoGenU.ipynb, i.e., developed under an assump-
tion that users call them through AutoGenU.ipynb. On
the other hand, C++ libraries can be used without Auto-
GenU.ipynb as long as users prepare C++ source files of
NMPC problem settings. Hence, we explain all workflows
of AutoGenU.ipynb and the C++ libraries. Note that we
assume that AutoGenU.ipynb, autogenu, include, and src
exist in the same working directory. We also assume that
Python 3.6 or later, Jupyter notebook or JupyterLab,
SymPy, Numpy, Matplotlib, seaborn, C++11 compiler,
and CMake are installed in the environment.

Workflows of AutoGenU Figure 1 illustrates an overview
of the workflows of AutoGenU for Jupyter. These work-
flows can be roughly divided into five parts. The first
part is “problem description” in which users are required
to input dimensions of x, u, C(x, u, p) and h(x, u, p)
and define the symbolic functions f(x, u, p), C(x, u, p),
h(x, u, p), L(x, u, p), and ϕ(x, p). The second part, “sym-
bolic computation”, derives the TPBVP based on the
symbolic functions defined in the previous part. The third
part is “code generation”, which generates C++ source

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7118

User Input
AutoGenU.ipynb

Problem Description

Symbolic Computation

Code Generation

Symbolic Functions
! ", $, % , & ", $, % ,
ℎ ", $, % , (", $, % ,

) ", %

autogenu

nmpc_model.cpp

nmpc_model.hpp

main.cpp

CMakeLists.txt

Data Files (.dat)

Build and Run
Simulation

Graph Drawing

Python Modules

include/cgmres
C++ Header Files

src
C++ Source Files

Parameters for
NMPC Solver

Values of Symbolic
Variables

Fig. 1. Overview of AutoGenU for Jupyter

files of the NMPC problem settings. In this part, users
are required to input the values of the symbolic vari-
ables used in the symbolic functions. AutoGenU.ipynb
then generates nmpc model.cpp and nmpc model.hpp that
describe a C++ class NMPCModel representing NMPC
problem settings including f(x, u, p), C(x, u, p), ϕx(x, p),
Hx(x, u, λ, µ, ν, p), Hu(x, u, λ, µ, ν, p), Ψ(x, u, ν, p), and the
parameters for them. The fourth part is “build and run
simulation” in which users are required to select which
NMPC solver to use, input parameters for the solver,
and input parameters for numerical simulation. Auto-
GenU.ipynb then generates main.cpp, which calls the
C/GMRES-based numerical solver, sets parameters of the
solver, and calls a function to run the numerical simu-
lations. A script for the building of C++ source files,
CMakeLists.txt, is also generated in the same part. After
that, C++ source files are built through CMakeLists.txt
and numerical simulations are executed. After the numer-
ical simulations, .dat files saving the time histories of the
simulation results are generated. The last part is “graph
drawing” in which the graphs of the simulation results are
drawn based on the .dat files.

C/GMRES-Based Numerical Solvers of NMPC The fol-
lowing three solvers of NMPC are provided in src/solver
directory:

• The original C/GMRES method (single shooting).
• The multiple-shooting-based C/GMRES method with

condensing of Ẋ.
• The multiple-shooting-based C/GMRES method with

condensing of Ẋ and
˙̂
U concerning (39).

To use these solvers, the solver class has to include C++
source files that define a class NMPCModel, which has the
member functions shown in Fig. 2. The public member
functions stateFunc, phixFunc, and hxFunc in Fig. 2
correspond to f(x, u, p), ϕx(x, p), and Hx(x, u, λ, µ, p),
respectively. huFunc in Fig. 2 denotes a vector composed
by Hu(x, u, λ, µ, p), C(x, u, p), and Ψ(x, u, p). Other public
member functions dimState and dimControlInput return
the dimensions of x and u and dimConstraints returns
the total dimension of C(x, u, p) and h(x, u, p), respec-
tively. Note that AutoGenU.ipynb automatically generates

class NMPCModel {

private:

...

public:

void stateFunc(const double t, const double* x,

const double* u, double* f);

void phixFunc(const double t, const double* x,

double* phix);

void hxFunc(const double t, const double* x,

const double* u, const double* lmd ,

double* hx);

void huFunc(const double t, const double* x,

const double* u, const double* lmd ,

double* hu);

int dimState () const;

int dimControlInput () const;

int dimConstraints () const;

...

};

Fig. 2. Necessary member functions of NMPCModel

!

"#

$ %&

%'

Fig. 3. Cart pole

nmpc model.hpp and nmpc model.cpp, which describe
NMPCModel.

5. APPLICATION EXAMPLE OF AUTOGENU FOR
JUPYTER

In this section, we present an example of code generation
and numerical simulation using AutoGenU for Jupyter.
We consider a swing-up control of a cart pole, which is
illustrated in Fig. 3, using the single-shooting C/GMRES
method. The swing-up control of the pole in the cart pole
is a difficult problem because it is under-actuated and its
dynamics contain high nonlinearity. The state vector of

the cart pole is given by x :=
[
y θ ẏ θ̇

]T
, and the state

equation is given by

ẋ = f(x, u)

:=



ẏ

θ̇

u+mp sin θ(lθ̇2 + g cos θ)

mc +mp sin2 θ
−u cos θ −mplθ̇

2 cos θ sin θ − (mc +mp)g sin θ

l(mc +mp sin2 θ)

 .
(40)

We assume the physical parameters of the cart pole as
mc = 2 [kg], mp = 0.2 [kg], and l = 0.5 [m]. We consider
imposing limits on the control input, i.e., umin ≤ u, u ≤
umax with umin = −15, umax = 15. We introduce a dummy
input û ∈ R and transform these inequality constraints
into the equality constraint of the form (39). The objective
is to invert the pole and stabilize the cart, i.e., to make the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7119

Fig. 4. “Problem description” part of AutoGenU.ipynb

Fig. 5. “Symbolic computation” part of AutoGenU.ipynb

state converge to xref = [0 π 0 0]T. For this purpose, we
design the terminal cost as

ϕ(x) =
1

2
(x− xref)TQ(x− xref), (41)

where Q = diag {2.5, 10, 0.01, 0.01}, and the stage cost as

L(x, u) =
1

2
(x− xref)TQ(x− xref) +

1

2
ru2 − r̂û, (42)

where r = 1, r̂ = 0.1. Note that the last term in (42) is
to decide the sign of û uniquely and avoid failures in the
numerical calculation (see Ohtsuka (2004)).

The user inputs of these problem definitions on Auto-
GenU.ipynb and code generation of C++ source files of
the NMPC problem settings are illustrated in Figs. 4,
5, and 6 corresponding to the “problem description”,
“symbolic computation”, and “code generation” parts,
respectively. In the “problem description” part, we first
input the dimensions of the state, control input, equality
constraints, and inequality constraints treated by the semi-
smooth FB function, which are defined as dimx, dimu,
dimc, and dimh, respectively, in the first cell of Fig. 4.
Note that the control input is now given by [u û]T ∈ R2

Fig. 6. “Code generation” part of AutoGenU.ipynb

i.e., dimu is 2. dimc is given by 1 and dimh by 0. The
symbolic variables t, x, u, and λ are then defined on
AutoGenU.ipynb, as shown in the second cell of Fig. 4. We
then define symbolic variables used in f(x, u, p), C(x, u, p),
h(x, u, p), L(x, u, p), ϕ(x, p), as shown in the third and
fourth cells of Fig. 4, and define these symbolic functions,
as shown in the fifth cell of Fig. 4. In the next part, i.e., the
“symbolic computation” part, φx(x, p), Hx(x, u, λ, µ, p),
Hu(x, u, λ, µ, p), and Ψ(x, u, ν, p) are computed symboli-
cally, as shown in the first cell of Fig. 5. The second cell
simplifies these symbolic functions. In the “code genera-
tion” part, we input the values of the symbolic variables
including physical parameters of the cart pole and weight
parameters in the cost function, as shown in the first cell
of Fig. 6. We also define the name of the directory where
the C++ source files are generated and decide whether
to use common subexpression elimination (CSE) in the
code generation by cse flag. If cse flag is True, new
variables are introduced to replace the common terms
in the generated codes so that the computational time
is reduced. After these settings, gencpp.generate cpp
and gencpp.generate hpp generate nmpc model.cpp and
nmpc model.hpp that contain class NMPCModel. Figure 7
shows an example of the generated nmpc model.cpp with
setting cse flag by True. In Fig. 7, x0, ..., x4 are intro-
duced for CSE. The generated nmpc model.hpp defines
NMPCModel, as shown in Fig. 2. Note that the generated
nmpc model.hpp also contains the physical parameters of
the cart pole and weight parameters in the cost function
as its private member variables.

Next, we introduce the “build and run simulation” part,
which is illustrated in Fig. 8. We first choose which solver
to use to implement NMPC from the original C/GMRES
method, multiple-shooting-based C/GMRES method with

condensing of Ẋ, and that with condensing of Ẋ and
˙̂
U . In

this example, we choose the original C/GMRES method,
as shown in the first cell of Fig. 8. Next, we have to set
parameters for the solver, those for the initialization of
the solution of NMPC, and those for numerical simulation.
We set the parameters for the horizon in (30) as Tf = 2
and α = 1, number of discretizations of the horizon as
N = 100, stabilization parameter as ζ = 1000, finite
difference increment for the difference approximation as
h = 1.0 × 10−8, and maximum number of the GMRES
iterations as kmax = 10. These parameter settings are
shown in the second cell of Fig. 8. The parameters for
the initialization of the solution are required for Newton’s
method to solve (31). We set the initial guess of the
solution of Newton’s method as [0.1, 0.1, 0.1]T, resid-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7120

#include "nmpc_model.hpp"

void NMPCModel :: stateFunc(const double t, const double*

x, const double* u, double* f) {

double x0 = sin(x[1]);

double x1 = 1.0/(m_c + m_p*pow(x0 , 2));

double x2 = cos(x[1]);

double x3 = l*pow(x[1], 2);

double x4 = m_p*x0;

f[0] = x[2];

f[1] = x[3];

f[2] = x1*(u[0] + x4*(g*x2 + x3));

f[3] = x1*(-g*x0*(m_c + m_p) - u[0]*x2 - x2*x3*x4)/l

;

}

void NMPCModel :: phixFunc(const double t, const double* x

, double* phix) {

...

}

void NMPCModel :: hxFunc(const double t, const double* x,

const double* u, const double* lmd , double* hx) {

...

}

void NMPCModel :: huFunc(const double t, const double* x,

const double* u, const double* lmd , double* hu) {

...

}

Fig. 7. Example of generated nmpc model.cpp with setting
cse flag by True. Details are omitted.

Fig. 8. “Build and run simulation” part of Auto-
GenU.ipynb

ual of torelance of Newton’s method as 1.0 × 10−6, and
the maximum number of the Newton’s iterations as 50,
as depicted in the third cell of Fig. 8. Note that the
solution of Newton’s method is composed as u, û, and
the Lagrange multiplier with respect to (39), i.e., its di-

Fig. 9. “Graph drawing” part of AutoGenU.ipynb

0 2 4 6 8 10
Time [s]

−1.0

−0.5

0.0

x
1

0 2 4 6 8 10
Time [s]

0

2

x
1

0 2 4 6 8 10
Time [s]

−2

0

x
3

0 2 4 6 8 10
Time [s]

0

5

x
4

0 2 4 6 8 10
Time [s]

−10

0

10

u
1

0 2 4 6 8 10
Time [s]

0

10

u
1

0 2 4 6 8 10
Time [s]

0

10

∥F
∥

Fig. 10. Simulation results of controlling the cart pole

mension is given by 3. In this example, we perform 10-s
numerical simulation by setting the sampling period as
1 ms and initial state as [0 0 0 0]T. The parameters
for numerical simulation are input on AutoGenU.ipynb, as
shown in the fourth cell of Fig. 8. After setting these pa-
rameters, main.cpp, which calls a function to execute the
numerical simulations, and CMakeLists.txt are generated
by gencpp.generate main, gencpp.generate cmake, and
gencpp.generate cmake for model in the fifth cell of Fig.
8. The last cell of Fig. 8 then builds C++ codes based on
the CMakeLists.txt and executes numerical simulations.

Figure 9 shows the “graph drawing” part. In this part,
we set sizes of the graph, font, and the spaces between
graphs by using plot.set scales. Figure 10 shows the
simulation results of swing-up control of the cart pole
drawn by AutoGenU.ipynb. In this figure, u1 is the actual
control input applied to the cart pole, u2 is the dummy
input, and ‖F‖ is the norm of (25). We can successfully
swing-up the pole by satisfying the inequality constraints
on the control input. The average computational time of
the control update is 0.18 ms on a 1.6-GHz Intel Core i5
CPU, and we achieved real-time NMPC.

In this paper, we introduced just an example of controlling
the cart pole using the single-shooting C/GMRES method.
Katayama (2018-2020) gives other examples using the
multiple-shooting-based methods and the semi-smooth FB
function.

6. CONCLUSIONS

We presented a tool of NMPC having a user-friendly
interface utilizing JupyterLab and Jupyter Notebook,
AutoGenU for Jupyter. This tool provides automatic

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7121

code generation of C++ source files representing NMPC
problem settings using the symbolic computational pack-
age SymPy. It also supports the building of C++ source
files with CMakeLists.txt, runs numerical simulations, and
creates graphs of the simulation results. Future work in-
cludes applying the C++ C/GMRES-based NMPC solvers
to ROS/ROS2 for easy application of the C/GMRES-
based NMPC solvers to deploy on actual systems. Par-
allelization of the multiple-shooting-based C/GMRES
method is also for future work to increase its speed.

REFERENCES

Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., and
Diehl, M. (2019). CasADi – A software framework for
nonlinear optimization and optimal control. Mathemat-
ical Programming Computation, 11(1), 1–36.

Bock, H.G. and Plitt, K.J. (1984). A multiple shooting al-
gorithm for direct solution of optimal control problems.
IFAC Proceedings Volumes, 17(2), 1603 – 1608.

Bryson, A.E. and Ho, Y.C. (1975). Applied Optimal
Control: Optimization, Estimation, and Control. CRC
Press.

Deng, H. and Ohtsuka, T. (2018). A parallel code gener-
ation toolkit for nonlinear model predictive control. In
2018 IEEE Conference on Decision and Control (CDC),
4920–4926.

Deng, H. and Ohtsuka, T. (2019). A parallel Newton-
type method for nonlinear model predictive control.
Automatica, 109, 108560.

Diehl, M., Bock, H., and Schlöder, J.P. (2005). A real-time
iteration scheme for nonlinear optimization in optimal
feedback control. SIAM J. Control and Optimization,
43, 1714–1736.

Giftthaler M., et al. (2018). The Control Toolbox - an
open-source C++ library for robotics, optimal and
model predictive control. In 2018 IEEE International
Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), 123–129.

Granger, B. and Grout, J. (2016). JupyterLab: Build-
ing blocks for interactive computing. URL https://
jupyterlab.readthedocs.io/en/latest/.

Herceg, M., Kvasnica, M., Jones, C.N., and Morari, M.
(2013). Multi-Parametric Toolbox 3.0. In European
Control Conference, 502–510.

Houska, B., Ferreau, H.J., and Diehl, M. (2011). ACADO
Toolkit – An Open Source Framework for Automatic
Control and Dynamic Optimization. Optimal Control
Applications and Methods, 32(3), 298–312.

Hunter, J.D. (2007). Matplotlib: A 2D graphics environ-
ment. Computing in Science and Engineering, 9(3), 90–
95.

Katayama, S. (2018-2020). AutoGenU for Jupyter. URL
https://github.com/mayataka/autogenu-jupyter.

Kelly, C.T. (1995). Iterative Methods for Linear and
Nonlinear Equations. Frontiers in Applied Mathematics.
SIAM.

Kluyver T., et al. (2016). Jupyter Notebooks – a publish-
ing format for reproducible computational workflows. In
Positioning and Power in Academic Publishing: Players,
Agents and Agendas, 87 – 90.

Liao-McPherson, D., Huang, M., and Kolmanovsky, I.
(2019). A regularized and smoothed fischer–burmeister
method for quadratic programming with applications

to model predictive control. IEEE Transactions on
Automatic Control, 64(7), 2937–2944.

Magni, L., Raimondo, D.M., and Allgöwer, F. (2008).
Nonlinear Model Predictive Control: Towards New Chal-
lenging Applications, volume 384. Springer.

Meurer A., et al. (2017). SymPy: symbolic computing in
Python. PeerJ Computer Science, 3, e103.

Nocedal, J. and Wright, S.J. (2006). Numerical Optimiza-
tion. Springer, second edition.

Ohtsuka, T. (2004). A continuation/GMRES method for
fast computation of nonlinear receding horizon control.
Automatica, 40(4), 563 – 574.

Ohtsuka, T. (2015). A tutorial on C/GMRES and au-
tomatic code generation for nonlinear model predictive
control. In 2015 European Control Conference (ECC),
73–86.

Ohtsuka, T. and Fujii, H.A. (1997). Real-time optimiza-
tion algorithm for nonlinear receding-horizon control.
Automatica, 33(6), 1147 – 1154.

Ohtsuka, T. and Kodama, A. (2002). Automatic code gen-
eration system for nonlinear receding horizon control.
Transactions of the Society of Instrument and Control
Engineers, 38(7), 617–623.

Pérez, F. and Granger, B.E. (2007). IPython: a system for
interactive scientific computing. Computing in Science
and Engineering, 9(3), 21–29.

Richter, S.L. and DeCarlo, R.A. (1983). Continuation
methods: Theory and applications. IEEE Transactions
on Systems, Man, and Cybernetics, SMC-13(4), 459–
464.

Risbeck, M.J. and Rawlings, J.B. (2015). MPCTools:
Nonlinear model predictive control tools for CasADi
(Python interface). URL https://bitbucket.org/
rawlings-group/mpc-tools-casadi.

Shimizu, Y., Ohtsuka, T., and Diehl, M. (2009). A real-
time algorithm for nonlinear receding horizon control us-
ing multiple shooting and continuation/Krylov method.
International Journal of Robust and Nonlinear Control,
19(8), 919–936.

Sideris, A. and Bobrow, J.E. (2005). An efficient sequential
linear quadratic algorithm for solving nonlinear optimal
control problems. In Proceedings of the 2005, American
Control Conference, 2005., 2275–2280 vol. 4.

Tassa, Y., Erez, T., and Smart, B. (2008). Receding
horizon differential dynamic programming. In Advances
in Neural Information Processing Systems 20, 1465–
1472.

Tassa, Y., Erez, T., and Todorov, E. (2012). Synthesis
and stabilization of complex behaviors through online
trajectory optimization. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
4906–4913.

Waskom M., et al. (2012-2019). seaborn: statistical data
visualization. URL https://seaborn.pydata.org/.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7122

