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Abstract: Sliced-Normal (SN) distributions enable the characterization of complex multivariate data as
both a vector of possibly dependent random variables and as a semi-algebraic, tightly enclosing set. SNs
inject the physical space into a higher dimensional (so-called) feature space using a polynomial mapping.
Optimization-based strategies for estimating SNs from data in both physical and feature space were
recently developed. The formulations in physical space yield non-convex optimization programs whose
solutions exhibit the best performance, whereas the formulations in feature space yield either an analytical
solution or a convex program thereby facilitating their application to higher dimensional datasets. In both
cases, however, the exponential dependency of the number of optimization variables on the dimension
of feature space limits their application to moderately sized problems. Two strategies to mend for this
deficiency are proposed herein. The first strategy identifies groups of highly interdependent parameters
exhibiting a possibly nonlinear dependency using a distribution-free framework. This classification
enables estimating a SN for any of such groups independently of the other groups thereby reducing
the computational complexity of the estimation process. The second strategy reduces the dimension of
feature space by only retaining the monomials of the polynomial mapping that significantly increase the
likelihood of the data while leveraging lower dimensional SNs. A system identification example is used

for illustration.
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1. INTRODUCTION

The characterization of the distribution of data as well as of
their spread is of great significance to system identification and
robust control. Variability in measured data arises from aleatory
variation in physical parameters, varying operating conditions,
model-form uncertainty, and measurement error. In contrast,
variability in calculated data arises from numerical, approxima-
tion and convergence errors. This characterization is particularly
challenging when the data exhibits strong parameter depen-
dencies. Such dependencies are often modeled using copulas
(Nelsen (2007); Kurowicka and Cooke (2006)). Copulas are
estimated by determining an individual marginal distribution for
each variable separately, and then adding a dependence structure
that captures the joint behavior. In the multivariate case, this
behavior is often modeled by the pair-copula decomposition
approach introduced as C-vine and R-vine copulas (Kjersti et al.
(2009); Czado (2019); Haff et al. (2013)). Several parametric
and non-parametric families of copula models can be used to es-
timate dependencies. The acceptability of a dependency model
depends strongly on the selection of an appropriate family of
copulas. Unfortunately, standard families of copulas often fail
to accurately describe complex dependencies.

A Sum of Squares (SOS) optimization approach to modeling
multivariate data using SNs was recently proposed in Crespo
et al. (2019a). A system identification strategy based on SNs
is outlined therein, whereas Crespo et al. (2019b) exemplifies
its application. In contrast to copulas, SNs model the marginal
distributions of individual parameters and their joint behavior
simultaneously. Numerical experiments suggest that SNs are
more versatile than most copula families since they can handle
multi-modal distributions with non-monotonic dependencies.

Copyright lies with the authors

Furthermore, whereas the selection of a copula structure is a
cumbersome process requiring extensive expertise, the selec-
tion of a SN structure only requires prescribing the degree of
a polynomial. However, as with all other SOS methods, the
computational cost of estimating a SN restricts its application to
moderately sized problems ! . This paper develops strategies for
extending the SN’s range of application by lowering this cost.

2. SLICED-NORMAL DISTRIBUTIONS

This section summarizes key developments of Crespo et al.
(2019a). The Normal density 2 of z € R”: is given by
1 =9GP
fz(Z;/’l’P)=;e 2 5 (1)
where ¢ € R":z is the mean, P € R":*": is the inverse of the
covariance matrix, v = (ZE)TZ y/det(P~1), and
¢z, 4. P) = (2= )" P(z ~ ). ©)
P is symmetric and positive definite, which will be denoted as
P > 0. Consider the polynomial mapping from physical space
6 to feature space z given by the function
z=Z(6,d), 3
where Z(8,d) : R" — R"z withn, = ("5;‘1) — 1, is the vector
3
of monomials in variables 6 of degree greater than zero and less
than or equal to d. The monomials of Z (6, d) will be in graded

lexicographic order: they are first ordered by the canonical order
in the degree, and, second by using lexicographic order based

1 SNs that maximize the likelihood of the data in feature space are only
restricted by the ability to invert a matrix. As such, they are readily applicable
to large dimensional datasets and high-dimensional feature spaces.

2 The density and the Cumulative Distribution Function (CDF) of z with
parameter 6 will be denoted as f,(z;6) and F,(z; ) respectively.
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oné; =a,d, =b, .... For example, if n; = 2, then Z(6,2) =
(61,65, 67,8165, 651"

The joint density of a Sliced-Normal distribution supported in
A C R is defined as

Yf.(ZG6.dypu, P) if6 €A,
C

otherwise
where d, p, P and A are the parameters of the distribution and

c(d,,u,P,A)=/va (Z(6,d); u, P) do, (5)
A

is a normalization constant (see Section 3 for a method for esti-
mating c¢). Hence, the density of a SN results from evaluating the
Normal density (1) on the polynomial manifold given by Z (6, d)
for all 6 € A, and performing the corresponding normalization.
This gives rise to the SN name. Note that the minus argument of
the exponential in f5, ¢ (Z(8, d), u, P), is a SOS of polynomials
in 6. Features of the physical variables, such as boundedness or
positiveness, can be enforced by choosing a suitable A. In the
following developments the SN parameters d and A will be fixed
upfront. Therefore they will be dropped from the notation when
their role is not essential.

The superlevel sets of f5 are
S(¢u.P)={6€A:p(z.uP) <P}, (6)

where ¢ is a fixed constant. Equation (6) defines a nested
family of closed, semi-algebraic sets satisfying S(¢;, u, P) C
S(¢y, u, P) for ¢; < ¢,. The polynomial structure of these sets
makes them suitable for rigorous worst-case analysis and design
methods.

2.1 Estimation of Sliced Normals

Assume that n independent and identically distributed observa-
tions of a stationary Data Generating Mechanism are available.
Denote the physical parameter as 6 € R"s, and the correspond-
ing data sequence as D = {61, ..., 8" }. Means of estimating
u and P according to the data sequence D using Maximum
Likelihood (ML) formulations are presented next.

Optimality in Physical Space: The SN that maximizes the (log)
likelihood of the data in physical space,

n
L(u, P, D) = 2 Ls (89, p, P), (7
i=1

where L;(6, u, P) = log f5(6; u, P), is given by

1l < .
{—nlogc— 3 ;qﬁ(z(),ﬂ,P)}
3

where z £ Z (6(i), d) fori = 1, ... n. The integration constant
¢ makes (8) a non-convex optimization program. This program,
to be referred to as ML hereafter, can be solved using standard
gradient-based algorithms.

(u*, P*) = argmax
HER"z, P>0

Optimality in Feature Space: The SN that maximizes the (log)
likelihood of the data in feature space,

n
L P, ZD,d) =Y L, (z"uP), )
i=1
where L, (z; u, P) =log f,(z; u, P), is given by

n
(u™, P¥) = argmax Z L, (Z(i);ﬂ,P) )
HeER"z, P>0 12

10)

whose solution is

n
1 .

Yo (i)
= - zv,

-1
n
"= (l 2 (20 =) (2 - M*)T> -
n
i=1

Equations (11) and (12) are the empirical mean and the inverse
of K, the empirical covariance of the data in feature space. This
formulation will be denoted as ML, hereafter.

an

A variant of ML, that improves £(D) by augmenting the co-
variance of the SN (Colbert et al. (2020)) uses 4 = u* and
P = y* P* where y* is the solution to

max {—anogc (ﬂ*,yP*) - Zd) (z(i),u*,yP*) .

yER* =

(13)
This convex program will be denoted as ML} hereafter. Note
that the collection of superlevel sets in (6) for ML, and ML;r
are the same. The formulation in physical space often yields SNs
that model the distribution of the data better than those in feature
space. However, ML and ML} allow efficient modeling of data
sequences with large n,’s.

Example 1: The versatility of the SN is illustrated by consid-
ering the Van der Pol oscillator. In this example 6 is the state
and the initial condition is an uncorrelated normal with means
and standard deviations equal to 1/4 and 1/10 respectively.
Figure 1 shows the data sequence corresponding to the time
response in the [0, 7]s time interval, as well as the density of the
estimated ML; and ML, SNs for d = 4. The peaks/modes of
the distribution near the limit cycle correspond to states where
the dynamics are slower.

Fig. 1. ML SN (top) and ML, SN (bottom). The left subplots
show observations (X), the boundaries of the sets .S in (6)
(black lines), and the set containing 95% of the data (green
line), whereas the right subplots show the joint density.

3. COMPUTATIONAL COMPLEXITY

Large values of ng and d complicate the numerical search for the
optimum of (8) and the calculation of the inverse of the positive
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definite matrix in (12). The rapid increase in the dimension of
the feature space n, that results from increasing values of ns and
d is illustrated in Table 1. The entries of this table prescribe the
size of the matrix in (12) to be inverted. Numerical experiments
show inaccurate inverse matrices and long computational times
for n, exceeding 5000 (assuming P is not nearly singular).

Table 1. Dimension of feature space .

d=2 d=3 d=4 d=5
ns=2 | 5 9 14 20
ng=5 | 20 55 125 251
ns=10 | 65 285 1000 3002
ns=15 | 135 815 3875 15503

Seeking a SN using MLj requires the repeated estimation of
the integration constant in (5). The number of such calculations
grows with the number of decision variables of (8), which are
listed in Table 2. In addition to the large number of required

Table 2. Number of decision variables of (8).

d=2 d=3 d=4 d=5
ng=2 | 20 54 119 230
ng=5 | 230 1595 8000 31877
ns=10 | 2210 41040 501500 4510505
ng=15 | 9315 333335 7513625 120194759

estimations of ¢, the value of nj also affects the accuracy of the
estimates. A sampling-based approximation to c is

Vol [A] ¢ ;
c(u, P) = > £ (60id. . PA), (14)
i=1
where 5,(}) for i = 1,...m are samples uniformly distributed

over A and Vol [-] is the volume operator. Equation (14) al-
lows using the same set of samples during the search for
{(u*, P*). However, the approximation becomes inaccurate

when f5(5,(4'); d,u, P,A) =~ 0 for most of the m samples. This
will likely be the case when m is too small for the corresponding
ns. Methods that perform integration by quadrature suffer from
similar deficiencies in large dimensions. Furthermore, large val-
ues of ng; complicate the sampling of a SN regardless of the
formulation used to estimate it. Even though Markov Chain
Monte Carlo methods do not require evaluating ¢ to sample a
SN, the chance of the random walk missing isolated modes or
producing repeated samples increases with this dimension.

A means to lower the complexity of the above tasks is to use
dependency information to group the ns parameters according
to their degree of interdependency. By estimating a SN for each
group of strongly interdependent parameters independently of
the rest, we replace a single larger ngz (and, thus, n,) by several
smaller ones. This practice also enables adjusting the fidelity of
the SN for each group of parameters according to the complexity
of the particular parameter dependency. This is the rationale of
the first model reduction technique presented below. Another
approach is to eliminate the monomials in the polynomial map-
ping that do not significantly increase the likelihood of the data.
This can be accomplished by starting from a low-dimensional
SN and then testing whether an additional monomial improves
the model significantly or not. The monomials that do so will be
kept while the rest will be discarded. This is the rationale of the
second model reduction technique proposed.

4. DEPENDENCY ANALYSIS

Denote as g; = {6y,...6, } and g, = {6, 41,...6,,} two
groups of parameters having no elements in common and whose
union is equal to 6. When all of the elements of g; are indepen-
dent from all of the elements of g, we have

fﬁ:f&fgz'

Means to model g; and g, as independent multivariate SNs are
considered next. Assume that Z(6, d) has been rearranged as

Z(6.d) = |my(8)). my(gr), Z(8,d)\ (myumy)|,  (16)
where m; contains all the monomials in Z(6, d) that only de-
pend on the elements of g;, and m, contains all the monomials
in Z(6,d) that only depend on the elements of g,. For the
independence condition (15) to hold, it is required that

P 0O
0 POl
0 00

where P; > 0 € R4 with a = ("1}:‘1) —1,and P, > 0 € RP

as)

P= (17)

with b = (""n_il:d) — 1. The monomials combining elements
of g; and g, iiltr(l)duce the zero rows and columns in P. When
the parameters in g; are weakly dependent on the parameters
in g,, we can estimate a SN for the elements of g; indepen-
dently from the SN for the elements of g,. This practice enables
the analyst to solve two smaller optimization programs: one in
which Z(6,d) = m;(g,) and the unknowns are y; and P;, an
another one where Z(6,d) = m,(g,) and the unknowns are i,
and P,. This rationale can be extended to a multi-group setting
where 6 = U?ggi and g; N g; = @ fori # j. Note that the
pursuit of a SN comprised of independent groups of parameters
by enforcing sparsity conditions to P will suffer from the nu-
merical difficulties explained above. Furthermore, the resulting
P becomes singular as the numerical search approaches the
optimum regardless of the value of n,. Means to identify the
non-overlapping groups gy, &, ... » 8n, are presented next.

4.1 Parameter Grouping

A means to evaluate the degree of dependency among the
components of é seen in D is presented first. The copula of the
continuous random vector 6 with joint CDF Fj is defined as the
joint CDF of u, where u = F3(6), i.e.,

Fw=P|s < Fé—ll(u]),_..,ams < F(;n;(un&) ) (18)

A copula contains all information on the dependence structure
between the components of 6 independently of its marginals.
When the components of § are independent (18) reduces to
)
F‘;“d(u) = Hu,-.
i=1
When Fj is unknown but D is available, we can approximate
(18) with the empirical copula

19)

n
F™@w D) =5 Y 1(F; (689:D) <),

(20)
j=1
where 1(-) is the indicator function, and
n
1 .
Fi6:D) = Y 1(5 <5,). @1
j=1

the empirical CDF of §;, is a component of F5(5, D).
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The degree of dependency among the components of 6 will be
evaluated using
p(By, .. s8,, D)=V [FM@w) - F,"™w;D)],  (22)
where V[-] is the variance operator, and u is a uniform random
vector in [0, 1]". This equation can be readily evaluated by
sampling. When the components of 6 are weakly dependent
p(0q, ... ,6,,5, D) ~ 0. The degree of dependency between the
elements of g; and g, will be evaluated using
max {p(é,, 6;,D) : 06, €8, 6; € gz}.

p(81, 8, D) = (23)

Therefore, the degree of multivariate dependency between g,
and g, is given by the largest degree of bivariate dependency
among all possible parameter pairs. This implies that the groups
g, and g, will be considered weakly dependent when all pos-
sible pairs of parameters are weakly dependent, i.e., when
p(6;,0 j,D) is below a cut-off value e. Otherwise, g; and g,
will be considered dependent to a degree proportional to p. An
algorithmic implementation of these ideas is presented next.

Dependency Analysis Algorithm: Assume that the data sequence
D is available and the cut-off value ¢ has been fixed. Instantiate
the set of groups as g; < {6, }, the number of groups as n, < 1,
and proceed as follows:

(1) Let é be any element of 6 \ U:E (&

(2) Fori=1,...n, do calculate p(g;, &) using (23) end do

(3) Determine s = {i C (1,_...,ng) : p(g;,0) > €}

(4) If s =, theng « {g,6} and n, < n,+1. Otherwise, in g
replace the groups g;, i € s by the single group U;¢,g; U &
and update ng accordingly.

5) Ifs = U:qi ,&i stop. Otherwise, go to Step 1.

Therefore, every parameter within a group will be strongly
dependent to at least one parameter of the same group while
being weakly dependent to all the parameters of all other groups.
By performing this classification, we can model each group
independently of the rest thereby reducing the computational
complexity of estimating the SN for the full 6.

The value of e can significantly impact the dependency analysis.
Overly small values will let weak and spurious dependencies
affect the resulting grouping whereas large values will only
capture strong dependencies. As such, expert judgment should
be used when prescribing such a value. As expected, high-
dimensional data sets will require the consideration of a large
number of pairs. Processing of each pair however is a compu-
tationally efficient task requiring only algebraic manipulations.
Equation (23) might not require evaluating all parameter pairs.
Once any of the pairs yields p(6;,8,) > e, the calculation for
the remaining pairs can be avoided. The grouping in g along
with all the supporting metrics are naturally displayed using an
undirected graph (see e.g., Figure 4).

The results of the parameter grouping method are more general
and informative than those resulting from correlation analyses
because they also capture nonlinear parameter dependencies.
Note that this method can be applied outside the context of SNs.

Example 2: In this example we consider the system identifica-
tion of an unknown plant given the » = 2000 time responses to
a doublet input shown in Figure 2. To this end we assume the
linear time invariant model given by

pis* + pys® + p3s® + pys + ps
D6 + p7s* + pgs3 + pos? + pros + piy
The estimation of the parameters of the transfer function for

H(s) = (24)

y(t)

Time, [s]

Fig. 2. Time responses to a doublet input. The mean response is
shown in red.

each of the data functions yields the data sequence shown in
Figure 3. Each point in the sequence, §#) € R!!, results from
minimizing the prediction error. The subplots on the diagonal
show the empirical marginal densities whereas the off-diagonal
subplots are projections of the cloud of parameters onto 2-
dimensional subspaces. Note that the marginals are bell-shaped,
and that some significant parameter dependencies exist (depen-
dencies might not be apparent by visually inspecting the spread
of data cloud).

AES s s srBaun

%é&#%&##”&iLi
gL et JE AP L ik VY

Fig. 3. Data sequence resulting from parameter estimations.

Further notice that the common practice of normalizing the
estimated coefficients of the transfer function by the coefficient
of the largest power in the denominator, pg, will induce analyst-
made interdependencies. The estimation of a SN using ML
for d = 5 requires 9541895 decision variables whereas the
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estimation of a SN via ML, (or ML}) for the same degree
requires inverting a covariance matrix of size 4368 x 4368.

The dependency analysis for € = 5 led to dependency graph in
Figure 4. This figure shows the values of p(5;, 6;) leading to the
parameter grouping [8,3,9], [1], [2,5], [4], [6, 10, 11] and [7].
It is worth noting that this grouping differs from the grouping
that results from evaluating the degree of dependency using cor-
relation coefficients. The estimation of SNs of degree 5 for each
of these 6 groups can be efficiently performed using any of the
ML formulations. Samples of the SN that result from ML and
ML (not shown) are practically indistinguishable from those in
Figure 3. More importantly, the number of decision variables re-
quired by ML; are 1595, 20, 230, 20, 1595 and 20 respectively.
This is about 0.04% of the number of decision variables of the
original program. Furthermore, the proposed approach enables
the analyst to adjust the fidelity of the SN for each subgroup, i.e.,
choosing d according to the complexity of the dependencies of
each subgroup. This cannot be accomplished by estimating a SN
for the full 6.

In regard to ML,, the size of the covariances that must be
inverted are 55, 5, 20, 5, 55, and 5 respectively. The effort of
carrying out such tasks is considerably smaller than inverting
the 4368 x 4368 covariance matrix of a fully dependent 6. This
illustrates the benefits of accounting for parameter dependencies
before estimating a SN model. In addition, estimating SN for
each group further increases the likelihood of the data.

p8
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922 S
2
p1 o
i@ 2
5 o &
© e g
\J
R ¥ 8 P2e 3
§ & 15 &
8 £ - 5%
i - i
o Lt 0
8 g % ® pa 2
g 21 %
o -
o p6E 7 8
3 o :
o N
s o N
pi0- ° .
2 2
p7

Fig. 4. Dependency graph with supporting p(d;, 6;) values.

5. MAPPING REDUCTION

The mapping in (3) uses all the monomials of degree greater
than zero and less than or equal to d. This practice along with
large values of ns and d make the estimation of SNs compu-
tationally expensive. In this section we propose a sequential
approach for estimating SNs that mitigates this cost. This is
accomplished by (i) restricting the dimension of feature space so
only monomials that significantly increase the likelihood of the
data are mapped, and by (ii) using lower-dimensional SN to cal-
culate higher-dimensional SNs. As before, we will present one
approach in physical space and another one in feature space. >

3 In contrast to (3), the one-argument notation Z(8) will refer to an arbitrary
polynomial mapping hereafter.

5.1 Maximum Likelihood in Physical Space

The SN parameter P > O can be written as

Py Py
P = T s
P12 Py

where P;; > 0 € RP*?| P, € RP*? and P,, € R?. Our goal
is to find an optimal P for a given Pj;. Next we seek to compute
the P corresponding to the mapping Z*(8) = {Z,(5), Z,(8)},
ie., P in (25), by using the known P corresponding to the
mapping Z = Z (), i.e., P;; in (25). The application of Schur
complement properties to P implies that P > 0 if and only if

(25)

Py >0 and P — P, P;,' P/, > 0. (26)
When g = 1 these conditions are equivalent to
Py >0and Py — P, P;' P, >0, (27)

which is a set of convex constraints in the decision variables
P, and P,,. Equation (25) and constraints (26) allow for the
sequential augmentation of P. This process, which solves for a
comparatively small number of decision variables at each step
of the sequence, allows for the elimination of terms of the poly-
nomial mapping, i.e., dimensions of future space, that do not
increase the likelihood of the data significantly. In particular*
given a PZ corresponding to the baseline mapping Z;(6), the

parameters of a SN corresponding to the augmented mapping
Z*(8) = {Z,(8), Z,(8)} are given by

(W Py, P) = {—nlogc(y,on— (28)

12° 120 argmax

HER"z, Py, Py

n

1 : _

3 Z ¢ (20,4, Pze) 1 Py >0, P5 — PPy Pl > 0} ,
i=

and
P* px P; P,
P}, = l f'T f] , where P, = l le .9
P Py P, Py

This is a non-convex program subject to positive definite con-
straints. The non-convexity is caused by c(u, P,+). Wheng = 1,
which corresponds to Z,(6) being a single monomial, the con-
straints in (28) are given by (27) with P|; = PZ . The algorith-
mic implementation of these ideas is presented next.
Mapping Reduction Algorithm for MLgs: Assume that the data
sequence D is available, and values for d,,, and for the ac-
ceptance ratio » > 1 have been set. Furthermore, group the
monomials of mapping Z(6,d,,,,) to form [Z,,... Z;], and
make Z « Z;.

(D (M;,P;) « Equation (8).

) Fori=2,...kdo

() J < LuLPyD)

“4) AR S VYA

(3) #%.. < Equation (28)3, P, < Equation (29).

6) I LG, Pr,.D)>rJ then

) (uy. Py) — (3 P}). Z <« Z*
®) end if
(9) end do

4 Hereafter we will make Z a subindex of u and P to highlight the dependency.
5 Computing the matrix inverse using the developments in the next section
yields computational savings.
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The resulting parameters of the SN are 4 = 7, and P = P},

which correspond to the mapping Z(6) = Z*. This formu-
lation will be referred to as RML; hereafter. As expected, the
performance of this SN is suboptimal, i.e., E(,u; s P; D) <

L(u*, P*, D), where u* and P* are given by (8) for Z = Z+.
5.2 Maximum Likelihood in Feature Space

The covariance of the data in feature space, K > 0, which is the
inverse of P* in (12), can be written as

lKn Ku]
K= . ,
K12 K22
where K]l > 0 e RPXP, K12 (S [Rqu and K22 (S [Rqu.
As before, we will consider the baseline mapping Z;(6), and
the augmented mapping Z*(8) = [Z,(5), Z,(5)]. The SN

parameter P;’ . can be derived from the corresponding K to
obtain

(30)

* -1 T pi * -1
P <I+ Kp2 K12P21> P} Kpp

PY, = 31)
z+ -1 T p¥ -1 ’
—A' KPS p
where PZ = Kl_l1 and 4 = Ky — KLPZ K, is the Schur

complement of the block K;;. Equation (31) reduces the com-
putational complexity of the SN estimation by leveraging PZ

to calculate P;, i.e., by requiring the inversion of a ¢ X ¢

matrix instead of the inversion of a p X p matrix. Recall from
Section 3 that this matrix inversion is the numerical bottle neck
of ML, and ML; As before, the sequential implementation of
(31) allows building a polynomial mapping that only contains
the monomials that significantly increase (7).

Mapping Reduction Algorithm for ML'Z": Starting® from the
same setup of the previous algorithm proceeds as follows:

(1) ,u; « Equation (11), and P;" « Equation (12).

2) Y§+ « Equation (13) given ;4"; and P;’ .

(3) Fori=2,...kdo

@ J e LSy Py D), ZY < (Z,Z;).

(5) ,u"; « Equation (11).

(6) P;’ , < Equation (31) given P}

(7) y; « Equation (13) given ;4; and P;.
(8) If L3, .75, P}, D) > rJ then
©) Wy < Hy. Py < Py Z < ZF
(10) end if
(11) end do

The parameters of the desired SN are y = /4“2} . and P =
y;ﬂP;ﬂr, which correspond to the mapping Z(8) = Z*. This

formulation will be referred to as RML;’ hereafter.

Example 3: Next we apply the mapping reduction techniques
to the data sequence in Example 1. We consider ML, ML, and
ML'Z", along with their reduced mapping variants, where the
terms sequentially added to the map are single monomials in
lexicographic order and r = 1. Figure 5 shows the likelihood
of the data as a function of the dimension of the feature space

6 Remove Steps 2 and 7 and make y; = 1 in Steps 4 and 8 to obtain RML,.

n,. Note that points of the reduced mapping variants on the
same abscissa are not in the same feature space. ML outper-
forms all other formulations by a significant margin for all n,
values whereas the performance of ML, degrades rapidly as n,
increases. Their reduced mapping variants, RML; and RML_,
improve monotonically until n, = 8 and n, = 7 respectively.
Out of these two approaches however, only RML, improves its
baseline formulation.

x10°
1L . ¥ U O O
x ¥ mo@m m @ BB s s @ 8+
* ®
45L& B8 8 g J
O x X
—~ -2t N " x .
a * ML x
] 9
o RML, x
250 | ML X |
z X
O RML, y
3r |+ ML " 1
0 RMLY X
350 ‘ ‘ ‘ ‘ ‘ Cx
4 6 8 10 12 14 16 18 20

Fig. 5. Dimension of feature space vs. log-likelihood of the data.

The SNs resulting from the ML} are significantly better than
those derived from ML,. Furthermore, RML? yields slightly
better results than ML; for n, = 18 and n, = 19. The SN did
not improve beyond such a value. Note that the reduced SNs
depend on the assumed grouping and ordering of Z (6, d,,,x) =
[Z,,... Z;], so other groups might lead to better SNs. Figure 5
also shows that the likelihood of the data corresponding to ML;
and ML: starts plateauing at n, = 10. As such, a convergence
analysis should be used to select the lowest-complexity SN that
still models the data sequence well. The good performance of
RML? along with its lower computational cost make it well
suited for high-dimensional datasets.
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