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Abstract: This paper deals with the problem of robust fault detection for continuous-time switched
Takagi-Sugeno (T-S) fuzzy models. A procedure based on interval observers is proposed. First, an
interval observer is designed under the assumption that the disturbances as well as the uncertainties
are unknown but bounded. Stability and nonnegativity properties are given in terms of Linear Matrix
Inequalities (LMIs) taking into account disturbances attenuation. Next, residual intervals generated by
the interval observer are used for fault detection decision. Finally, a numerical example is provided to

show the usefulness of this approach.
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1. INTRODUCTION

Over the past decades, we have witnessed growing interests in
Takagi-Sugeno (T-S) fuzzy models (Takagi and Sugeno (1993)).
They have been considered as a powerful tool to cope with non-
linearities. T-S fuzzy systems use the center-of-gravity method
for defuzzification (Nguyen et al. (2019)) decomposing a non-
linear system into different zones. The validity of each one is
quantified by a nonlinear weighting function which depends
on the so-called premise variables. As many nonlinear systems
with switching features can be modeled as switching fuzzy sys-
tems, it is obvious that the class of switched fuzzy systems can
describe more precisely both continuous and discrete dynamics
as well as their interactions in complex real-world systems, see
e.g. (Zouari et al. (2014); Garbouj et al. (2019); Ojleska and
Stojanovski (2008)). In the literature, few works are devoted
to this family of systems (Benzaouia (2012)) and the present
paper is so motivated. Actually, our objective is to consider the
following compact form

p
%(1) = Y 1 (x(0)) (AZx(1) + BCu()) + d (1)
i=1
y(t) =C°x(1)
where x(r) € R" is the state vector, u(t) € R is the input,
y(r) € R? is the output, d(r) € R" is the bounded additive dis-
turbances, r is the number of local models and o is the switch-
ing law such that o € {1,...,N} is the index of the active mode
with N is a positive integer. The weighting function u? (x(z))
depending on the premise variables which are composed of the

QY
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system state x(r). We assume that they are unmeasurable. The
following convex sum property is satisfied:

0<pul(x(r)<1,Voe{l,..N},Vie{l,...r}
Y 1 (1) = 1 - ®
i=1

Furthermore, model-based fault detection represents an im-
portant research field and many results have been obtained
in this context. Basically, the key of model-based diagno-
sis approaches is to use a mathematical model representation
of the system to generate fault indicators called residuals.
These signals are obtained by the comparison of the system
and its fault-free model. Set-theoretic approaches for fault de-
tection have been recently developed (Puig (2010); Stoican
and Olaru (2013)). Two main techniques are proposed: Set-
invariance method (Hanafi et al. (2015)) and set-membership
approach (Ferndndez-Canti et al. (2016)). Among several set-
membership methods, interval observers are often used thanks
to their aibility to generate adaptive thresholds for the system’s
outputs under the common assumption that the disturbances
and the uncertainties are unkonw but bounded (Gouzé et al.
(2000)). Consistency checks between the measurements out-
puts and the interval observer outputs provide robust residuals
which are used for robust fault detection (Raissi et al. (2010)).
According to the above mentioned studies, this paper deals with
the problem of designing T-S interval observer based fault de-
tection for a class of switched fuzzy systems. It is worth noting
that most of existing works in the literature related to interval
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estimator design for fuzzy systems, even in the non-switching
case, handled only the measurable premise variables case (Li
et al. (2019); Menasria et al. (2017); Martinez Garcia et al.
(2017)). To the best of the author’s knowledge, unmeasurable
premise variables have not been yet fully investigated. The main
feature of our design is in fact, to transform the considered sys-
tem into an uncertain system subject to unknown but bounded
disturbances through some changes of variables. Thanks to the
convex properties (2), we can assume that uncertain terms in-
cluding unmeasurable premise variables are bounded by known
bounds. Then, interval observer can be constructed.

For the rest, preliminaries and the problem formulation are
presented in Section 2. Section 3 provides the main results for
designing robust fault detection based on T-S interval observer.
A numerical example is given in section 4 followed by a
conclusion in section 5.

2. PRELIMINARIES AND PROBLEM FORMULATION
2.1 Preliminaries

The set of real numbers is denoted by R and the set of
nonnegative real numbers is denoted by Rsp, ie., R>p :=
[0, +e0). Inequalities are understood component-wise, i.e., for
Xa = [Xq1, ...,)c,m]T e R and xp = [xp1, ...,)cbvn]T ER", x, < xp
if and only if, for all i € {1,...,n}, x4; < xp ;. The symbol P - 0
(resp. P < 0) means that the symmetric matrix P is positive
(resp. negative) definite. E,, is a (p x 1) vector whose elements
are equal to 1. I, is the identity matrix with dimension n X n.
The symbol * denotes the transposed element in the symmetric
positions of a matrix. The left and right endpoints of an interval
[x(¢)] are denoted by x(r) and X(z) such as [x(¢)] = [x(¢), X(2)].
A matrix A € R"" is called Metzler if all the off-diagonal
elements are nonnegative. A matrix A € R"*" is said to be
nonnegative if each entry of A is nonnegative. Given a matrix
A€ R™"M we define AT =max {0,A},A” =A™ — A and denote
the absolute value of a matrix by |A| = A™ + A~ (similarly for
vectors). For square matrices T, we define diag([T...Ty]) =
T, - 0

0 - Ty
Lemma 1. (Farina and Rinaldi (2011)). The system described
by:
x(t) =Ax(t) +u(r) 3)

is said to be nonnegative if A is a Metzler matrix and u(r) > 0.
For any initial condition x(0) > 0, the solution of (3) satisfies
x(t) > 0,¥t > 0.
Lemma 2. (Chebotarev et al. (2015)). Let x € R" be a vector
such that x < x <%x.
(1) if A € R™" is a constant matrix, then

ATx—A T<Ax<Atx—A"x. @
(2) if A € R™" is a matrix satisfying A < A < A, for some
A,A € R™" then

®)

Lemma 3. (Rami et al. (2008)). A matrix A € R"*" is Metzler
if and only if there exists 7 € R>¢ such that A+ nI € RL".

Consequently, if there exist a positive diagonal matrix P € R"*"
and a constant 1) > 0 such that

PA+nMP >0, (6)

then, A is Metzler.

Lemma 4. (Boyd et al. (1994); Jiang et al. (2002)). Consider x
and y with appropriate dimensions and Q a positive definite
matrix. The following property is verified:

Iy+ylx <xfQx+yTQly. 7

Consequently, let A > 0 be a scalar and P € R"*" be a symmet-
ric positive definite matrix, then:

1
uly < IJCTP)chlyTP_Iy7 Vx,y € R". 8)

2.2 Problem formulation

For robust fault detection purpose, an interval observer is first
designed for the continuous-time switched T-S fuzzy system
(1). Let introduce some assumptions which are used throughout
the paper.

Assumption 1.
<d,vt=>0 )
where d = —d € R".

Assumption 2. The state of the system x(¢) and the known input
vector u(t) are supposed to be bounded in norm.

Now, given the lower and upper bounds x(¢),%(¢), € R" of the
state x(¢), the system (1) can be rewritten equivalently to the
two following forms Vo € {1,2,...,N} and Vi € {1,...,r}:

r

=Y u?(x(

i=1
257

or =1

x(t) + B u(1))

1)+ Bfu(t))+d(1)

Zu, )+ Bou)
+26" t)+BPu(t)) +d(t)
y(t) = (Ox (t)
with & (1) = pf (%() — u2(x(t)) and 87(r) = uf (x(r)) —
p (x(1))-
Let us define:
_ Y5047, AA%() ilsf’o)Af
i=1 i=
= /%, (1)Ex =@°S(1)Ex  (11)
A =[AT - AT] Ea= [l - L] (12)
T (1) = diag([8] (1)1, ... 8 (1)) (13)
23 (1) = diag([87 (1)l - .. 87 (t)1]) (14)
RB°(1) = Y 87()B%, AB°(1)= Y 87 (1)BY
i=1 i=1
= #B°%5 (1)Ep = #°53(Es  (15)
#° =By - BS|,Eg=[ly - In]" (16)
5 (1) = diag([8} (). 8, (1)1n]) (17)
23 (t) = diag([87 (1)1 - .. 87 (t)1]) (18)

Thus by using the convex sum properties given in (2) for all
x(r) € R" and x(r) € R", the system (10) becomes :
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Z“z X(1))[(A7 —AA (1))x(0)+
<B° 8B (1))u(0)] +d()

Z#l (0)[(A7 +AA° (1)x()+
(B"+AB“<) (0] +4(:)
y(t) = COx(t)
Remark 1. Due to the convex property of the weighting func-
tions (2), we have —1 < 6?(t) <1land —1<87(r) <1.The
terms X5 (¢), £ (1), £9(r) and £ (¢) satisfy g ()5 (1) < Iy
£5T (NES (1) < I 55 (155 (1) < Ty and, 57 (1EG (1) < o
Assumption 3. There exist known constant matrices Ay ,
ﬂgm, Axr‘;in and Ax;’lax where y denotes the letter A or B,
such that, for all ¢ > 0, for all ¢ € {1,2,...,N},

H[gnn S EZ (t) S H;mﬁ
Almin S Al (t) S A7%max

or (19)

3. MAIN RESULTS
3.1 Interval observer synthesis

Consider the following upper and lower dynamics with o €

{1,2,...,N}andi€e{l,...,r}:
=) u? (x(t))[(AT — L CO)x(r) + B u(t)+
i:l -
()+d q)Amin() q)Bmm([) (20)
Zu, A7 —L7CO)x(1) + B u(t)+
L? ()+d+<p min D)+ 5 i (O
where
B min(1) = Mpunx™ (1) — Appx (1) — Aoy, (1)
+AAmax (1) (21
Eg,min(t) m1n ( ABde 7(1‘) (22)
P minl?) = AA&I, (1) = MG X (1) —AAT X (1)
+AAT X (1) (23)
P min (1) = ABRinut ™ () — ABZu” (7). (24)

Note that the superscripts + in the equations from (21) to (24)
have been defined in the preliminaries. Let introduce the upper
and lower observation errors e(f) =x(¢) —x(¢) and e(¢) = x(t) —
x(). To obtain e(¢) in (25), we use the first expression of x(¢)
given in (19) while to obtain ¢(¢) in (26), the second form of
(19) is used. Hence,

r

é(r) = Y u? (X(0)) (A7 — L7 C)e(r) +d —d(1)

+AA° (1)x(t) +AB° ()u(t) +W(r)  (25)

ét) = ;uf’ (x(1)) (A7 —L7C?)e(t) +d(t) —d
FAA (t)x(t) + AB® (t)u(t) + y(t)  (26)
where Y(1) = =@ in(1) — @5 min (1) and y(1) = —@7 . (1) -

gg_’min (t) Wlth ag,min (t)7 ag,min( )
fined in (21)-(24).
It is clear that the dynamics of the error estimation given in

mm( ) and (PB mm( ) de-

(25) and (26) depend on the state x(¢) and the disturbance
d(t), then the problem of designing the interval observer (20)
is reduced to finding appropriate gains LY € R"*? for each
mode o € {1,2,...,N} in order to ensure the global asymptotic
stability and the nonnegativity property of the errors dynamics
and to minimize the influence of d(¢) on the upper and lower
errors dynamics e(¢) and e(t).

Let define the augmented upper and lower vectors as ,(¢) =

[e"(t) x" ()] and ¢,(r) = ["(¢) x"(r)]" from which the

following dynamics are obtained with ¢ € {1,2,...,N} and
ihje{l,....r}h
(1) = Y (5()) 1 4 () 5 00
= j=
+B;(u(t))+Ed+Fd(t)+Gy(t)  (27)
£,(1) = Y () Y 47 () A5 0, 0
i= j=
+B5(t)u(r)) + Fd(t) + Ed + Gy(r) (28)
where
=[5 A‘Z;’(’)] = [A@;’m]
E=[10]" E=[-I 0]
F=[-1I [10)"

Theorem 1. Let the system (19) satisfy Assumptions 1-3 and
assume that x(0), X(O are known and the initial state x(0)
verifies x(0) < x(0) < x(0). If there exist a diagonal positive
matrix P € R™", a positive definite matrix P, € R™*" and
strictly positive scalars n°, pP, 7and A° forall 6 € {1,...,N}
such that for all i,j € {1,...,r}, the following constrained
minimization problem

(1] G-
S
)

minimize 7Y

Py,P, K? pP
o 0 P P°
* Y;-y 0 0
subject to ¥ *x —yl 0 <0 @9
EIE S —LI
Py
PlA?- — Kf’C" + r’o'Pl >0.

where

3
—KC°+——Pi+1,

T
0 =A°TP + P A? e

K? =P L7
Y9 =A9" P+ PAT +

T T
_COTK?

3
002 tP E4Ea,
with «7°, E4 defined in (12), is solvable, then (20) is an
optimal interval observer for the system (1) that guarantees the
attenuation of additive disturbances effect with the cost function
computed by Y= ﬁ
Remark 2. Notice that the terms 1€ are fixed before solving the
LMIs (29) by Matlab. Thus, it is not a nonlinear optimization
problem.

Proof.
(1) Stability property
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Consider the following common Lyapunov function for the
augmented upper dynamic (27):

V(ea(t)) =2, (t)Pe,(t), P =diag([PI P»]) =0  (30)
Taking the derivative of the Lyapunov function (30) along

all trajectories of (27), then Vo € {1,2,...,N} and Vi,j €
{1,...,r}:
V(@alt) =2, (1)Pea(t) + 2 T(t)Pé (r)
Zu, %(1)) Z T (AT (1)Pea(r)
( )PAfj( )a(t) + 22} (t)PBy;(t)ult))
+d E'Pe,(t)+e! PEd
+2e; (1)P d(t)+Ze (t)PGY(t)) an

Based on Lemma 4, the following inequalities are deduced
where A° >0 forall ¢ € {1 .,N} can be selected arbitrarily

22} (t)PB;(t)u(t) < )L—(ye T(t)Pe,(t)
(I)Bg (1) [A° P B (1)u(t)
2P < gae 0Pl a2
+dT(t) [A°P|Fd(t)
2LOPGYE) < 7 (OPealr)

+¥' (1)G" [A° PG (1)
Using the property of the weighting function given in (2), the
combination of (31) and (32) leads to:

V(ea(t)) <&l ()T%%,(1)+d E Pe,(t)+
NY i je{l,...r}

3
I° =47 P+ PA;, Ryl

e’ PEd+0v° (33)
where for o € {1, ...

BY (1) (27 PIBY (0ulr) )

+d" (1)F [ACPIFd(t)+ W (1)G" [A°P|GW(t) (34)

Based on Assumption 2, ¥(¢) given in (25) is bounded and

based on Assumption 1, it follows that v° in (33) is bounded

forall o € {1,...,N}. Besides, the upper estimation error given
in (25) can be seen as

e(t)=He,(t),H=[10] (35)

In the system (25), the effect of the known bound of the additive

disturbances d(¢) on the upper observation error € is bounded

by the positive real number 7 = 72 if the following condition
holds (Boyd et al. (1994)):

V(ea(t)) +2" (0)e(t) —7d d <0 (36)

Since ¥° given in (33) is bounded, thus, by substituting (33)
and (35) in (36), (27) is Input to State Stable (ISS) (Vu et al.
(2007)) if the following inequality holds

el (1)[%,(t)+d E' Pe,(t)+e! PEd 37)
+el () H He, —7d d <0
or equivalently
1T
e| |[T°+H"H PE
TR e

Replacing the term I'° by its expression given in (34), the
inequality (38) holds if the subsequent one is satisfied

. . 3 _
AY P+PAG+5P+1, PE |

* v/

(39)

Recall that P = diag([P1 P»]), and replacing XST by its expres-
sion given in (27), we have:

3 . _
0°TP +POF + aeP PIAA° (1) PE
3 5
* AP+ PAT + b 0
* * 7'}_/1
<0 (40)

where ©f = (A7 — L7 C?). Let rewrite (40) by separating the
time-depending term P{AA° (), we obtain

3 _
TP + P OY + TPt 0 PE
3
* AGTPZ JerAG ),G 0
* * —yl
v
-0
0 PAA (1) O
+ | * 0 0] =<0
* * 0
(41)

The matrix # can be decomposed such that # = 2 + 27
where

0 PLAA° (1) 0
2=10 0 0 (42)
0 0 0

Using the definition of the uncertainty AA° (1) given in (11), it
yields the following partition of 2

X Y

P 07" :

1 =0

9- [ 0 0] {8 ZA%)EA 8] 43)
0 O

Choosing Q = diag([p{L, p71.]) = 0 with p?, p$ are any

strictly positive scalars for all o {l,...,N}. Applying Lemma

4 to (43) yields

w<xQ 'xT+YTQy. (44)

Bearing in mind that =5 (£)E5 (1) < I, (see Remark 1), the
following inequality holds

1
W < diag(| pfoﬂd"ﬂ‘”ﬂ pPEAEs 0])  (45)
1
Substituting (45) in (41) leads to:
=7 0 PE
* YE’ 0 | <0 (46)
*  x —vl
where
E? =0°TP +P 3 p +1 +LP /°A°TP
ES | +Pio7 + Aottt Saht I
Y9 =A"P+ PAT + Mpﬁpf’EAEA

From LMI (29), based on the Schur complement (Boyd et al.
(1994)) with K? = P,L? we can conclude that from (46), the
augmented upper dynamic (27) is ISS. Similarly one can prove
that the augmented lower dynamic (28) is ISS.

2 Nonnegativity property
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First, from (21)-(24) and (5) of Lemma 2, the following in-
equalities hold

AA® (1)x(t) = F in(t), AA® (1)x(t) > O nin(0) @
AB (1)u(t) > @F in(t), ABC (H)u(t) > 95 mm(f)
From Assumption 1, we have for all o € {I,...,N}, i €
{1,....r},d—d >0and d —d > 0. Thus from (25)-(26), it
holds that
W([)—&—E—d(t) () () () ()>0 (48)
d(t) —d +AA° (t)x(t) + ABC (t)u(t) + y(t) >

Subsequently, thanks to (29) and Lemma 3, one can en-
sure that (A7 —LZC) is Metzler for all ¢ € {1,...,N}, for
all i € {1,...,r} since Pi(AY —L?C°)+n°P > 0,Yo €
{1,...,N},Vi e {1,...,r} and P; is diagonal positive matrix.
Lastly, according to Lemma 1, if X(0) and x(0) are supposed to
be known such that

{ 2(0) = %(0)
(0) =x(0)

—x(0) >0
_E(O) > 0’

then the dynamics of the estimation errors given in (25)-(26)
stay positive and consequently, x(¢) < x(¢) < X(¢) which com-
pletes the proof.

Remark 3. For ensuring the stability property, we employ a
common Lyapunov function (30) which is restrictive but stan-
dard in designing interval observer for switched systems, and it
has previously been used by many works in the same context,
see e.g., (Ethabet et al. (2018); Dinh et al. (2019)).

3.2 Robust Fault Detection based on interval observer

In this section, the previous results are used to generate resid-
uals for fault detection. Under the presence of a sensor fault,
system (1) can be represented by:

Zu,

() ()+f()
VGe{lz SN} Vie{l,... r},

where f(t) € R” denotes p™ sensor fault. The principle of
model-based fault approaches is to compare the measurements
y(t) with their estimates y(¢) provided by a faultless model. The
comparison leads to the generation of a residual r(¢) € R? given

by:

r(r) =y(t) = y(0). (50)
In fault-free operation, the residual are arround zero. Neverthe-
less, when considering a system’s model affected by perturba-
tions and uncertainties given in (19), the residuals deviate from
zero even in the fault-free scenario. To cope with this problem,
a passive approach is used based on the interval observer (20)
designed in the previous section.

x(t) +BYu(t)) +d(t)
(49)

Based on (4) of Lemma 2, the lower and upper outputs of the
system (1) are given by:

3(1) = Cox(1) — €O ()
{ ¥(t) = C*x(r) — COx(r) D
Let [y(r),y(t)] be the domain of the output y(t) the fault
detection test can be formulated as y() ¢ [y(t),(¢)] which is
equivalent to:
0 ¢ [r(z),7(r)]. (52)

where

y(f) —C7 (x(t)
=C%(x(t) —

—x(t)) =€ (x(1) = x(1))
x(1)) = C (x(1) — (1))
(53)

Thus, the residual is described by and adaptative threshold.

Remark 4. The considered system in this paper is affected by
unknown but bounded disturbances. If these bounds are large,
so does the width of the interval observer and it may lead to
misdetection of the small faults. The proposed T-S interval ob-
server design method given in (20) allows to compute optimal
gains which attenuate the effect of the system’s disturbances
and ensure a tighter interval width which make it possible to
detect low amplitude faults.

4. NUMERICAL EXAMPLE

To show the effectiveness of the proposed fault detection
method, a switched system described by (49) is considered as

follows
0.9 0 —045 -38 0 122
Al=] 0 —21 0 |,Al=] 0 -015 0
L 0 0 —o0.1 0 0 —0.1
[—-55 0 15 -26 0 03
Al=| 0 —1.1 0 ,Az—l 0 -0.15 o]
. 0 0 —0.1 0 0 0.1
r1
B} = (1) , BY =B} =B35 =B,
C'=[0012],C2=[00 1.7].

(54
The weighting functions are hyperbolic tangent functions and
depend on the unmeasured state x;:

§() =x (t)l

Uy (x(r)) = = (1 —tanh(x; (), Yo € {1,2}

ug (x(1) = T— P (61 (1)), Yo € {1,2)
For the simulation, the disturbances are chosen such as: d(t) =

0.1] cos(3.5¢) cos(3.5¢) cos(3.5t)]", d=[0.1 0.1 0.1]" and

d = —d. Thus, Assumption 1 is satisfied. The switching signal
between the two modes of the considered system is plotted in
Figure 1. The fault signal is set up as:

0.03,2s <t <4s
0=}

(55)

0.02, 8s <t <9s
0 otherwise

(56)

The initial conditions are x(0) =[0 0 0 ]T and x(0) = —x(0) =
[0.1 0.1 0.1]". By fixing A! =85.96, 12 =85.76, 7' = 10 and
n2 = 26, the solution of LMIs (29) of Theorem 1 are obtained

using the package CVX (Grant et al. (2008)). The values of the
optimal gains are given by:

—0.3750 1.0167
= l 0.0000 ] L) = [ 0.0000 ] ,

16.4867 16.4867
0.0824 0.1765

= l 0.0000 1 3= l 0.0000 ]
11.6377 11.6377

The attenuation level is 7 = 7.5443. We verify that the matrices

AP —L?C® are Metzler for all o € {1,2} and for all i € {1,2}.

In Figure 2, it is clear that the relations y(¢) < y(r) <¥(¢) and
0 € [r(¢),7(t)] hold in fault-free case while these relations are
broken when the fault occurs. It should be noted that despite
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the low values of the considered fault (56), the detection is
successful. At the instant ¢+ = 4.01s, the fault is still detected,
which is explained by the fault extension because of the fact that
the switching instant = 3s happens during the faulty period
25 <t <ds.

I i i I I i I i i
0 1 2 3 4 5 6 7 8 9 10

Fig. 1. Switching signal & e

Time(s) °
()

Residual

Time(s
()

Fig. 2. Interval estimation of (a) the output and (b) the residual
5. CONCLUSION

In this paper, an interval observer has been designed to cope
with the problem of robust fault detection for T-S switched
fuzzy systems where the premise variables are unmeasurable.
Through changes of variables, we can transform the considered
system into uncertain one before the interval observer can
be designed. The attenuation of the disturbances effects to
optimize the interval length is also taken into account. Based on
this methodology, the interval of the residual is generated to be
able to use for fault detection. Many extensions of this approach
are possible. We plan to investigate the Fault Tolerant Control
(FTC). Moreover, employing multiple Lyapunov functions to
ensure stability property of the proposed interval observer may
be expected.
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