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Abstract: Within the framework of the classical problem of Lyapunov redesign, the barrier
function-based adaptation control is presented. The proposed approach does not require the
knowledge of an upper bound of the uncertainty. However, producing a continuous control
signal adjusts the chattering problem and ensures that the solution will converge in finite time
to a region with a priori prescribed ultimate bound.
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1. INTRODUCTION

In the middle of the 20th century, with the advent of
the space race, optimal control theory was an intensive
area of research among the scientific community. Yet,
unpractical assumptions such as the complete knowledge
of the parameters of the system, do not consider that
a small variation on the systems’ parameters, or the
presence of external perturbations, disrupt an optimal
design. The latter led to the theoretical study of the control
of uncertain systems.

1.1 Lyapunov redesign

The term Lyapunov redesign, coined in (Khalil, 2002),
refers to the classical approach developed by Gutman
(1979) and Leitmann (1979) for the stabilization of un-
certain systems based on the Lyapunov’s second method.
Under the premise that a Lyapunov function is given
for the closed loop system with a stabilizable nominal
controller and without the prescence of uncertainty terms,
Gutman (1979) presented his approach to robustification
of the system uncertainties in the derivative of the LF. This
approach requires to add a discontinuous unit controller
to the nominal one to robustly compensate the uncertain-
ties. Simultaneosly, Leitmann (1979) presented the same
idea for stabilization of uncertain linear systems, proving
that the system with the robustifying control designed is
asymptotically stable despite bounded uncertainties. The
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robustifying term is discontinuous on a manifold with rel-
ative degree one, defined by the derivative of the nominal
Lyapunov function. Two main drawbacks of this approach
are the following:

• Discontinuous control causes the undesirable chatter-
ing effect. The size of chattering grows with the level
of the controller’s gain (Boiko, 2008; Pérez-Ventura
and Fridman, 2019).

• The control gain should be chosen bigger than the
uncertainty, that is why the upper-bound of uncer-
tainty should be known. In reality such upper bound
is unknown or overestimated.

Even in the case when the upper-bound of uncertainty
is known, the gain of unit controller is fixed and do
not follow the uncertainty variations. This overestimation
causes an unwanted energy consumption. Recently, the
combination of discontinuous controllers with adaptive
gains has paved the way to weaken the assumptions on
the knowledge of the upper bound of perturbation to
its mere existence. Moreover, if possible, to generate a
smooth control signal improving the energy consumption
and reducing the chattering.

1.2 Analysis of principal adaptive strategies in sliding
mode controllers

The following four types of adaptation resume the efforts
in that direction (Shtessel et al., 2016).

Usage of filtered value of discontinuous control.
In this strategy, the controller’s gain is increased such
that the sliding mode (SM) is enforced. Once the SM
is established, this strategy uses the modulus value of
low-pass filtered discontinuous control in order to follow
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the perturbation and reduce the amplitude of chattering
(Oliveira et al., 2016; Edwards and Shtessel, 2016).

It is worth mentioning that for the design of the low-
pass filter, its time constant should be known, i.e, the
upper-bound of the velocity of the perturbation. However,
if this information is available, continuous sliding mode
controllers (Moreno, 2018) provide better precision, and
guarantee theoretically exact compensation without adap-
tation. Moreover, at least in the presence of fast actuators
continuous sliding mode controllers provide smaller level
of chattering and energy consumption (Pérez-Ventura and
Fridman, 2019).

Monotonically increasing gain. This strategy consists
in monotonically increasing the gain until the SM is
reached. Two disadvantages of this approach are clear:

• The gain does not decrease as perturbation decreases,
thus chattering level and the power consumption
needed for the actuator to maintain the system in
SM will be unreasonable big (Pérez-Ventura and
Fridman, 2019).
• However one cannot be sure that the SM will be lost

if the perturbation continues to increase (Negrete-
Chávez and Moreno, 2016; Shtessel et al., 2010). SM
can be lost in any moment when perturbation grows.

Increasing and decreasing gain. The main idea behind
it consists in increasing the gain until the SM is reached,
then the gain is decreased and follow the perturbation
changes. Thus, the sliding variable is driven towards some
vicinity of zero that depends on the upper bound of the
perturbation (Plestan et al., 2010; Shtessel et al., 2012).
However, only ultimately boundedness of the sliding vari-
able can be ensured and this vicinity cannot be prescribed
in advance.

The following challenges in adaptation are concluded from
the advantages and disadvantages of above strategies:

• The gain should be adapted to follow perturbation
variations without being overestimated.
• A vicinity towards the sliding variable is driven should

be a priori prescribed.

Barrier function-based approach. This type of adap-
tation solves the aforementioned challenges. First the gain
increases until the sliding variable reaches a value lower
than a predefined ε/2-neighborhood of zero. Then the
gain defined by barrier function ensures that the solution
will never leave a prescribed domain of origin. Moreover,
the gain decreases practically to the value of the norm of
perturbation whenever the solution of the system decreases
to the origin (Obeid et al., 2018) .

The main differences of the barrier function approach and
previous efforts can be summarized as follows:

• Once the solution reaches the prescribed vicinity of
the sliding manifold, the solution can never leave it.
• The adaptive gain follows the solution variations

instead of the perturbations ones, i.e., if the solution
converges to the sliding surface, then the controller
gain is close to the perturbation norm.

Notice that all the aforementioned results consider the
cases of single variable control input through perturbed
integrator.

This paper proposes a new approach to a classical control
problem: barrier function-based Lyapunov redesign for a
class of MIMO uncertain nonlinear systems. The main
advantages the approach are the following:

• A continuous control signal is produced to overcome
the chattering problem by means of the adaptation in
the unitary controller’s gain.

• It is ensured that the solution will converge in finite
time to a region with a priori prescribed ultimate
bound and without the knowledge of the upper bound
of perturbation.

• If the solution converge to the desired manifold, the
adaptive gain will converge to perturbation norm, i.e.,
energy consumption will be diminished.

2. PRELIMINARIES

Notation. The absolute value and Euclidean vector norm
are denoted by | · | and ‖ · ‖, respectively. Arguments of
functions are omitted when they are understood from the
context.

2.1 Barrier Functions

Definition 1. Let s denote the value of the Euclidean norm
of some vector of appropriate dimension. Given ε > 0,
multi-variable barrier functions β : [0, ε) → [β̄,∞) are
defined as the class of strictly increasing functions in the
interval [0, ε), with vertical asymptote lims→ε β(s) = +∞,
s ∈ R+ and a unique global minimum at zero, i.e.,
β(0) = β̄ ≥ 0.

Let w ∈ Rm, a simple example of a function that satisfies
Definition 1 is the following positive semi-definite barrier
function (PSBF) which is used throughout this paper:

β(‖w‖) = ‖w‖
ε−‖w‖ , β̄ = 0. (1)

Note that its time derivative is given as follows,

β̇(‖w‖) = ε
(ε−‖w‖)2

wT ẇ
‖w‖ . (2)

3. PROBLEM FORMULATION AND MAIN RESULT

3.1 Classical Lyapunov redesign

Consider the nonlinear uncertain system (cf. Khalil
(2002)):

ẋ = f(x) + g(x) [u + ξ(t,x)] , (3)
where x ∈ Rn, u ∈ Rm. Function f : Rn → Rn is
smooth; the matrix function g : Rn → Rn×m is the control
input matrix whose columns are m-linearly independent
smooth vector fields gi(x), i = 1, 2, . . . ,m. The function
ξ(t,x) ∈ Rm is an absolutely continuous matched and
bounded uncertain term.

Assumption 1. Suppose that, for the nominal system cor-
responding to system (3) with ξ(t,x) = 0, there exist a
nominal control law u = ψ(x) and a Lyapunov function
V (x), satisfying

c1 (‖x‖) ≤ V (x) ≤ c2 (‖x‖) , (4a)

V̇ = ∂V (x)
∂x [f(x) + g(x)ψ(x)] ≤ −c3 (‖x‖) , (4b)
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with class K∞ functions ci, for i = 1, 2, 3.

In the prescence of the uncertain term ξ(t,x) 6= 0 and
to recover the asymptotic properties in Assumtion 1, a
compensation term v should be added to the control law,
and the new control law will have the form u = ψ(x) + v.
Differentiating Lyapunov function V along the trajectories
of uncertain system (3), yields to

V̇ =∂V (x)
∂x [f(x) + g(x) (ψ(x) + v + ξ(t,x))]

=∂V (x)
∂x [f(x) + g(x)ψ(x)] + ∂V (x)

∂x g(x) (v + ξ(t,x))

≤− c3 (‖x‖) + ∂V (x)
∂x g(x) (v + ξ(t,x)) ,

(5)
Define the variable wT =

∂V (x)
∂x

g(x). Then it is possible to

rewrite the bound of V̇ as

V̇ ≤ −c3 (‖x‖) + wT (v + ξ(t,x)) . (6)

It is easy to see that the effect of the uncertainty term is
in the same channel that the robustifying control v.

Assumption 2. The uncertain term ξ(t,x) is bounded,
such that

‖ξ(t,x)‖ ≤M (7)

holds almost everywhere with an unknown positive bound
M .

To compensate uncertainty term ξ, (Leitmann, 1979) and
(Gutman, 1979) suggested a discontinuous unit control law

v = −k(t,x) w
‖w‖ , (8)

understanding solution of system (3) in Filippov (1988)
sense. Now,

V̇ ≤ −c3 (‖x‖) + wTv + ‖w‖‖ξ‖
≤ −c3 (‖x‖)− k(t,x)‖w‖+M‖w‖.

(9)

So, choosing k(t,x) = M , it is easy to see that the stability
of the origin of system (3) is recovered despite of the

presence of uncertain term ξ(t,x). Moreover, V̇ satisfies
(4b), which is independent of the uncertainty. However, (8)
produces a discontinuous control signal and moreover the
knowledge of the bounds M produces a big overestimation
of the gain k(t,x) in u(t) and as a consequence a great
amplitude of chattering and power consumption needed
for the actuator.

Derive an adaptive control law to compensate the effect
of the uncertain term in the derivative of the Lyapunov
Function in (6) without overestimation of the upper-bound
of the uncertain term.

3.2 Main result

The time derivative of w has the form

ẇ = Lf̄(x)w(x) + Lg(x)w(x) (v + ξ(t,x)) (10)

where Lf̄w(x) := [∂w/∂x]f̄(x), f̄(x) := f(x) + g(x)ψ(x) and
Lgw(x) := [∂w/∂x]g(x). To recover the stability conditions
in assumption 1, it is necessary to restrict w in (6) to
the manifold w = 0 in finite time while compensating
the effect of the uncertain term ξ in (6). This is possible
whenever the upper-bound of the uncertain term ξ is
exactly known and the following assumption is fulfilled.

Assumption 3. The vector relative degree of w(x) is r =
1T
m, i.e., Lg(x)w(x) is invertible for all x ∈ Rn and there

exist γ̄ > γ > 0 such that 0 < γ ≤ ‖Lg(x)w(x)‖ ≤ γ̄ < 1.

In regard to alleviate the assumptions on the known bound
of the uncertain term, consider the following adaptive gain
which does not require the knowledge of the bound of ξ
but its mere existence:

k(t, ‖w‖) =

{
α̇(t) = ᾱ‖w‖, ᾱ > 0, if 0 ≤ t ≤ t̄,
β(t) = ‖w‖

ε−‖w‖ , if t > t̄
(11)

where t̄ = t̄(‖w(x(0))‖, ε).

Setting the control v = −
[
Lg(x)w(x)

]−1 (
Lf(x)w(x) − usm

)
with the adaptive unitary control law:

usm := −k(t, ‖w‖) w
‖w‖ , (12)

yields to the closed-loop dynamics of the extended variable
w, i.e.,

ẇ = −k(t, ‖w‖) w
‖w‖ + δ(t,x) (13)

with δ := Lgw(x)ξ. Note from assumptions 2 and 3 that
the following holds.

Assumption 4. The uncertain term δ(t,x) is bounded,
such that

‖δ(t,x)‖ < M

holds almost everywhere with an unknown positive bound
M .

The closed-loop dynamics of w possess the following
features:

• At the beginning, the adaptive gain increases (cf.
Plestan et al. (2010)) such that the sliding variable
w(x) reaches the domain ‖w(x)‖ < ε/2 in finite time
t̄.

• Then, the adaptive gain is switched to the barrier
function which makes the sliding variable not to in-
crease beyond the predefined ε-neighborhood of zero
even when the disturbance δ continues to increase,
i.e., ‖w(x)‖ < ε for all t ≥ t̄.

Note that the gain (1) increases and decreases according
to the value of the solution of (13) (see Fig. 1). Within the
intervals (t1, t2) and (t3, t4) the gain matches the upper-
bound whenever the value of w is closed to the origin.

Fig. 1. Convergence of the norm of the output variable
‖w(x)‖ to a predefined ε-neighborhood of the origin.

The latter is resumed in the next important and main
result of this paper.

Proposition 5. Consider the perturbed system (3) and
suppose that the assumptions 1, 2, 3 and 4 are satisfied.
Let D ⊂ Rn be a domain that contains the origin and
Br = {‖x‖ ≤ r}. Set the control u = ψ(x) + v with

v = −
[
Lg(x)w(x)

]−1 (
Lf(x)w(x)− usm

)
(14)

and adaptive unitary control usm in (12), and adaptive
gain k(t, x) in (11). Given ε > 0 and N ∈ Z+\ {1}, then
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for any ‖x(0)‖ < c−1
2 (c1(r)), there exists a finite time t̄

such that the solutions of (3) reach the set ‖w‖ < ε for
all t ≥ t̄. After that, the solution of the closed-loop system
(3) satisfies,

‖x‖ ≤ b(ε), ∀t ≥ t̄
where

b(ε) := c−1
1 (c2(c−1

3 (2ε(N − 1)/N))). (15)

4. NUMERICAL EXAMPLE

Consider the 2-Degrees of Freedom robot with the model
presented in Slotine et al. (1991) pp. 396,

J(q)q̈ + C(q, q̇)q̇ + g(q) = τ + ϕ(t), (16)

where q = [q1 q2], τ = [τ1 τ2], ϕ : R+ × R2 is an additive
matched perturbation to be defined later and the matrices
J , C y g,

J(q) =

[
J11 J12

J21 J22

]
, g =

[
g1

g2

]
C(q, q̇) =

[
−hq̇2 −h(q̇1 + q̇2)
hq̇1 0

] (17)

with
J11 =m1l

2
c1 + I1 +m2[l21 + l2c2 + 2l1lc2 cos(q2)] + I2,

J22 =m2l
2
c2 + I2,

J12 =J21 = m2l1lc2 cos(q2) +m2l
2
c2 + I2,

h =m2l1lc2 sin(q2),

g1 =m1lc1g cos(q1) +m2g[lc2 cos(q1 + q2) + l1 cos(q1)],

g2 =m2lc2g cos(q1 + q2).

Taking x1 = q − qd, and x2 = q̇ − q̇d, being qd ∈ C2 a
desired trajectory, the system can be expressed as

ẋ1 =x2,

ẋ2 = [J(x1)]
−1

(−C(x)x2 − g(x1) + τ + ϕ(t)− q̈d) ,

Which can be rewritten in compact form as

ẋ = Ax +B [h(t,x) +G(x)τ ] , (18)

where A =

[
0 I
0 0

]
, BT =

[
0 I
]
, G(x) = [J(x1)]

−1
, and

h(t,x) = − [J(x1)]
−1

(C(x)x2 + g(x1)− ϕ(t) + q̈d). As-
sume that 0 < β1I ≤ J(q) ≤ β2I. Consider the feedback
control law τ = u + v, with the nominal control law u
designed in Corless and Leitmann (1990) for the classical
Lyapunov redesign,

u = −γBTPx, (19)

with γ ≥ σλmax [J(x)]. The control gain in (19) is designed
by taking Q = QT > 0, for which P is calculated as the
solution of the algebraic Ricatti equation,

PA+ATP − σPBBTP + 2Q = 0 . (20)

Then, taking the Lyapunov function V = xTPx, it can be
proved that V̇ ≤ −xTQx, when h(t,x) = v = 0. Set now
the variable w = BTPx, its time derivative is

ẇ =BTP ẋ

=BTP
[
Āx +B (h(t,x) +G(x)v)

]
=BTPĀx +BTPBG(x)v + δ(t,x) ,

(21)

with Ā = Ax − Bu and δ(t,x) = BTPBh(t,x). Selecting
the control v such that w is forced to a prescribed ε-
neighborhood of zero,

v = −
[
BTPBG(x)

]−1
(
BTPĀx− k(t, ‖w‖) w

‖w‖

)
(22)

One can take σ = 1, and the control then is u = −BTPx
with P solution of the Ricatti equation setting Q = I4.
Then,

P =

[
3.1075 0 1.4142 0

0 3.1075 0 1.4142

1.4142 0 2.1974 0

0 1.4142 0 2.1974

]
Also, the trajectories requested q(t) = [sin(t) cos(t)]

T
.

Table 1. Parameters of the simulation model

Notation value Notation value

l1 0.5 m l2 0.2 m
lc1 0.32 m lc2 0.08 m
m1 1 kg m2 0.5 kg
g 9.81 kg/s2 I1 1e-2 kg m2

I2 0.5e-2 kg m2

Moreover, consider the time dependent matched perturba-
tion given by ϕ(t) := a(t) sin(2t)[1 1]T with

a(t) =

1, 0 ≤ t ≤ 22,

0.6, 22 < t ≤ 40,

0.3, 40 < t ≤ 60.

Table 2. Parameter values for PSBF and DLR

PSBF DLR1 DLR2

Parameter α(0) = 1, ε = 0.5, k = 5 k = 15
values ᾱ = 0.1

In simulations results, three scenarios are considered: the
upper-bound of perturbation exists but it is unknown,
i.e., the barrier function approach (PBSF); the bound of
the perturbation is not too much overestimated by using
the unit control (DLR1) in (8); and the upper-bound of
perturbation is overestimated with unitary control (DLR2)
in (8). The parameters are given in tables 1 and 2 and
simulations were made using a sampling step of 1 ×
10−4 s. The tracking errors x for PBSF, DLR1 and DLR2
are shown in Figs. 2(a)-Fig. 2(c), respectively. To show
the advantages of the proposed approach, an external
perturbation which changes in amplitude ϕ(t) was added.
It decreases in amplitude at t = 22 s and t = 40 s, in
order to show that PSBF approach is capable to follow
these changes. The effect of ϕ is shown in Figure 2(d).
The gain in the classical LR cannot be changed, thus the
the chattering amplitude is maintained and this gain does
not follows the changes of the perturbation. In contrast,
the adaptive gain in the barrier function approach will
converge to the perturbation norm (see Fig. 4(d)), without
overestimating it. It is worth to mention that PSBF does
not use any information about the upper bound of the
perturbation. Hence, the chattering effect is no longer
present.

Fig. 3(a) illustrates that the auxiliary variable w in PSBF
is smooth and its norm is contained in a predefined neigh-
borhood of the origin that will never be exceeded. When
the gain is k = 5 in DLR1 (see Fig. 3(b)), this auxiliary
variable is maintained within the same neighborhood with
constant level of chattering. However, the amplitude of
chattering is bigger than the case in DLR1 whenever the
gain is chosen as k = 15. In the case DLR2, note that
the norm of the auxiliary variable surpass the prescribed
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neighborhood of the origin designed for the barrier func-
tion approach (see Fig. 3(c)).

The control signals are shown in Fig. 4. Notice that the
control signal in the case of PSBF is continuous (see Fig.
4(a)) due to the combination of the barrier function in
(1) and the unit control (12). Moreover, the adaptive gain
depicted in Fig. 4(d) decreases in a similar fashion to the
solution of the system, and it follows the perturbation
variations whenever the perturbation decreases/increases,
this is not the case when the gain is fixed such as in DLR1
and DLR2. On the other hand, in order to compensate
the uncertainties such as the perturbation is contained in
the control signal, the overestimation the unit controller
produces big undesirable levels of chattering as shown in
the scenarios DLR1 and DLR2 in Figs. 4(b)-4(c).
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5. CONCLUSIONS

In this paper a PSBF gain to the unit control law for the
classical problem of Lyapunov redesign is suggested. It is
supposed that the upper bound of the perturbation exists
but it is unknown.

PSBF ensures the finite time convergence of the solution
to a region with a priori prescribed ultimate bound. It
is important to mention that if the positive semi-definite
barrier function is selected as the gain of the unit control,
it produces a continuous control signal capable to main-
tain the sliding variable in a predefined ε-neighborhood
of the origin. The three main advantages of the PSBF
in comparison with the classical unit control Lyapunov
redesign are the following: no any knowledge of the upper
bound of the perturbation is needed, the chattering effect
is no longer present; the adaptive gain follows the changes
in the uncertain terms considerably reducing the energy
consumption in the actuator.
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Tecnoloǵıa), Project 282013, and CVU 833748; PAPIIT–
UNAM (Programa de Apoyo a Proyectos de Investigación
e Innovación Tecnológica) IN115419

REFERENCES

Boiko, I. (2008). Discontinuous control systems: frequency-
domain analysis and design. Springer Science & Busi-
ness Media.

Corless, M. and Leitmann, G. (1990). Deterministic con-
trol of uncertain systems: A lyapunov theory approach.
In Deterministic control of uncertain systems, 220–251.
IET.

Edwards, C. and Shtessel, Y.B. (2016). Adaptive continu-
ous higher order sliding mode control. Automatica, 65,
183–190.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5141



Filippov, A. (1988). Differential equations with discon-
tinuous right hand sides. Kluwer Academic Publisher,
Dordrecht.

Gutman, S. (1979). Uncertain dynamical systems–a lya-
punov min-max approach. IEEE Transactions on Au-
tomatic Control, 24(3), 437–443.

Khalil, H.K. (2002). Nonlinear Systems. Prentice Hall,
New Jersey.

Leitmann, G. (1979). Guaranteed asymptotic stability
for some linear-systems with bounded uncertainties.
Journal of Dynamic Systems Measurement and Control-
Transactions of the Asme, 101(3), 212–216.

Moreno, J.A. (2018). Discontinuous integral control for
systems with relative degree two. In New Perspectives
and Applications of Modern Control Theory, 187–218.
Springer.

Negrete-Chávez, D.Y. and Moreno, J.A. (2016). Second-
order sliding mode output feedback controller with
adaptation. International Journal of Adaptive Control
and Signal Processing, 30(8-10), 1523–1543.

Obeid, H., Fridman, L.M., Laghrouche, S., and Har-
mouche, M. (2018). Barrier function-based adaptive
sliding mode control. Automatica, 93, 540–544.

Oliveira, T.R., Cunha, J.P.V., and Hsu, L. (2016). Adap-
tive sliding mode control for disturbances with unknown
bounds. In 2016 14th International Workshop on Vari-
able Structure Systems (VSS), 59–64. IEEE.

Pérez-Ventura, U. and Fridman, L. (2019). When is it
reasonable to implement the discontinuous sliding-mode
controllers instead of the continuous ones? frequency
domain criteria. International Journal of Robust and
Nonlinear Control, 29(3), 810–828.

Plestan, F., Shtessel, Y., Bregeault, V., and Poznyak, A.
(2010). New methodologies for adaptive sliding mode
control. International journal of control, 83(9), 1907–
1919.

Shtessel, Y., Fridman, L., and Plestan, F. (2016). Adaptive
sliding mode control and observation. International
Journal of Control, 89(9), 1743–1746.

Shtessel, Y., Taleb, M., and Plestan, F. (2012). A novel
adaptive-gain supertwisting sliding mode controller:
Methodology and application. Automatica, 48(5), 759–
769.

Shtessel, Y.B., Moreno, J.A., Plestan, F., Fridman, L.M.,
and Poznyak, A.S. (2010). Super-twisting adaptive
sliding mode control: A lyapunov design. In 49th IEEE
conference on decision and control (CDC), 5109–5113.
IEEE.

Slotine, J.J.E., Li, W., et al. (1991). Applied nonlinear
control, volume 199. Prentice hall Englewood Cliffs, NJ.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5142


