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Abstract: A framework for tuning the parameters of model predictive controllers (MPCs) based
on gradient-free optimisation (GFO) is proposed. Efficient calibration of MPCs is often a difficult
task given the large number of tuning parameters and their non-intuitive correlation with the
output response. We propose an efficient and systematic framework for the tuning of MPC
parameters that can be implemented iteratively within the closed-loop setting. The performance
of the proposed GFO-based algorithm is evaluated through its application to air-path control
for diesel engines over simulations and experiments. We illustrate that the tuned parameters
provide satisfactory tracking of reference trajectories over engine drive cycles with only a few
iterations. Thereby, we extend existing MPC tuning approaches that calibrate parameters using
step responses on the fuel rate and engine speed onto tuning over a full drive cycle response.

Keywords: Gradient-free optimisation, model-based control, controller calibration, diesel
engines, automotive control

1. INTRODUCTION

Model predictive control (MPC) is of significant and grow-
ing interest, and it has been widely utilised in industry
since the 1970s, see e.g. (Mayne et al., 2000; Morari and
Lee, 1999). These controllers are particularly attractive
because they can naturally and easily deal with multi-
variable linear and non-linear systems, whilst handling
input/output constraints by directly incorporating these in
the optimisation. In order to successfully implement MPCs
and obtain a satisfactory performance, several tuning pa-
rameters need to be chosen properly. These parameters
strongly affect performance and are related to the process
dynamics in a very complex way, making controller tuning
a non-trivial task. Although a number of papers can be
found in the literature which discuss MPC calibration (see
e.g. (Garriga and Soroush, 2010) for a complete survey)
these are often based on ad-hoc heuristic guidelines. Ana-
lytical studies of MPC parameter tuning are proposed in
(Bagheri and Khaki-Sedigh, 2014; Shah and Engell, 2011;
Shridhar and Cooper, 1998). However, these results hold
for specific scenarios and MPC formulations, thus trial-
and-error approaches are unavoidable adopted in practice.

More general tuning frameworks based on meta-heuristic
algorithms can be found in the literature, such as multi-
scenario (Santos et al., 2019), zone-control strategies (Ya-
mashita et al., 2016), particle swarm optimisation (Júnior
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et al., 2014; Suzuki et al., 2007), genetic algorithms
(Van der Lee et al., 2008), gradient-descent algorithms
(Bunin et al., 2012), and machine learning methods (Ira
et al., 2018). The works (Ira et al., 2018; Santos et al.,
2019; Suzuki et al., 2007; Van der Lee et al., 2008) focus on
set-point tuning by using characteristics of a step response
on the corresponding operating condition, e.g. overshoot,
settling and rise times, steady-state errors, etc. This hin-
ders their application to control loops that require proper
MPC tuning for trajectory tracking, including chemical
batch processes, robotics, and engine control. The authors
in (Yamashita et al., 2016) deal with trajectory tuning
of MPC but these trajectories are generated by first-
order transfer function models and hence do not apply
to broader problems.

Frameworks that can deal with tuning over general trajec-
tories are provided by (Bunin et al., 2012; Júnior et al.,
2014). Particularly, (Júnior et al., 2014) develops an opti-
mal tuning strategy based on particle swarm optimisation
(PSO) that is capable of explicitly dealing with model un-
certainty in their formulation. (Bunin et al., 2012) presents
a gradient-based algorithm in which the MPC tuning pa-
rameters may be brought to a locally optimal set. A prac-
tical disadvantage of PSO-based algorithms like (Júnior
et al., 2014), is that the number of particles depends on
the specific problem and it usually oscillates around 20 to
50 particles, meaning the algorithm needs to run 20 to 50
experiments per iteration, which is not practical for many
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real applications. Gradient-based methods such as (Bunin
et al., 2012) require less experiments per iteration, but
results are presented only for diagonal tuning matrices.

In this paper, and as our main contribution, we propose
an efficient and systematic MPC tuning framework based
on gradient-free optimisation (GFO), which covers broader
scenarios than the aforementioned works in the literature.
Particularly, it can deal with MPC tuning over trajectories
in a general setting as opposed to (Ira et al., 2018; Santos
et al., 2019; Suzuki et al., 2007; Van der Lee et al., 2008;
Yamashita et al., 2016), and it provides MPC weighting
matrices that satisfy the required constraints of being
symmetric and positive (semi) definite, and thus are more
general and provide more degrees of freedom than the
usual diagonal choices in (Bunin et al., 2012; Júnior et al.,
2014). Moreover, our proposed GFO-based algorithm re-
quires only two experiments per iteration, making it more
efficient in practice than PSO-based algorithms (Júnior
et al., 2014). In a nutshell, our proposed algorithm utilises
the random search method for non-smooth and stochastic
optimisation provided in (Nesterov and Spokoiny, 2017).
Gradient-free methods may be preferred in practice since
they only require cost function values as opposed to gradi-
ent (or any higher derivative) information. These methods
are particularly helpful when an analytical expression for
the cost function is not available, or when it is impractical
to obtain. In the MPC tuning context, the cost function
is often chosen to be a relevant closed-loop performance
index, e.g. tracking error. This cost function value might
only be computed after the entire experiment response is
available, and since experiments are relatively expensive
to perform, having only two experiment runs per iteration
in the proposed GFO-based algorithm is useful in practice.

Lastly, to illustrate the performance of the algorithm, we
study the MPC tuning problem in the context of air-
path control for diesel engines. By doing so, we extend
the existing MPC tuning methods for air-path control
(see e.g. (Ira et al., 2018; Sankar et al., 2019)) that rely
on characteristics of a step-response like overshoot, rise
time, etc., which are only indirect performance indicators
when the engine is required to track trajectories over drive
cycles. We iteratively tune the MPC parameters within
the closed-loop setting with the goal of improving the
overall tracking performance over drive cycles. Although
theoretical guarantees for convergence of GFO-based al-
gorithms require a large number of iterations, and these
algorithms converge to a local optima thus relying in the
choice of initial condition, we illustrate that even with a
few iterations and a heuristic choice of initial condition,
the corresponding GFO-tuned MPC parameters provide a
significant improvement of tracking performance in both
simulations (offline tuning) and experiments (online tun-
ing with real-time data).

Notation: Denote by Rm×n the set of real matrices of
dimension m × n. Let R>0

.
= (0,∞), N .

= {1, 2, . . . }, and
N0

.
= {0, 1, 2, . . . }. Given a matrix M , M> denotes its

transpose, and M > 0 (resp. M ≥ 0) denotes that M is
positive (resp. semi-) definite. We use diag{M1, . . . ,Mn}
to denote the standard block diagonal matrix. The identity
matrix of dimension m × n is denoted by Im×n. For a
vector, ‖ · ‖2 denotes its Euclidean norm, and the same

notation is used to denote the induced 2-norm of a matrix.
E{·} denotes the expectation operator.

2. SETUP AND PROBLEM DEFINITION

We consider discrete-time systems of the form

xk+1 = Aσxk +Bσuk, (1a)

yk = Cσxk +Dσuk, (1b)

where xk ∈ Rnx , uk ∈ Rnu , and yk ∈ Rny are the state,
input, and output at time instant k ∈ N0, respectively,
nx, nu, ny ∈ N, and (Aσ, Bσ, Cσ, Dσ) for σ ∈ {1, 2, . . . ,M}
are matrices of appropriate dimensions. These models may
come from linearisation of a non-linear model at various
linearisation points, or from system identification of a real
plant at different operating points.

For a given σ ∈ {1, 2, . . . ,M} and corresponding model
(1), we formulate a model predictive controller. Define the
cost function as

J(xk,u) , Vf (xk+H , w
σ
f ) +

H−1∑
i=0

`(xk+i, uk+i, w
σ),

where H ∈ N is the prediction horizon, Vf and ` de-

note the terminal and stage costs respectively, u ,
{uk, uk+1, . . . , uk+H−1} is the sequence of control val-
ues applied over the horizon H, and wσf , w

σ are vec-
tors containing all the tuning weights of controller σ.
The corresponding MPC problem of minimising J(xk,u)
subject to the control, state, and terminal constraints
is solved, yielding the optimising control sequence u∗ =
{u∗k, u∗k+1, . . . , u

∗
k+H−1}. The first element of the sequence

u∗ is applied to the system and the whole process is
repeated as k is incremented.

For transient operations between operating points, we use
a switching LTI-MPC architecture so that the controllers
are switched based on the current system operating con-
dition. That is, as in (Sankar et al., 2019), the LTI-MPC
strategy selects the MPC controller at the nearest operat-
ing point to the current operating condition.

In the remainder of this paper, we assume that the termi-
nal and stage costs are quadratic, i.e. Vf , x>k+HP

σxk+H
and ` , x>k+iQ

σxk+i + u>k+iR
σuk+i, where Pσ ∈

Rnx×nx , Qσ ∈ Rnx×nx , and Rσ ∈ Rnu×nu are matrices
containing the tuning weights.

Assumption 1. We assume that Rσ is a symmetric positive
definite matrix, and that Pσ and Qσ are symmetric and
positive semidefinite. �

Under this setup, our goal is to propose an efficient
and automated tuning framework for the MPC weighting
matrices {Pσ, Qσ, Rσ} in order to achieve a satisfactory
performance metric for a given prediction horizon H ∈ N.

Remark 2. Given Assumption 1, the number of tuning
parameters for each MPC is n , 2nX + nU , where nX ,
nx(nx+1)/2 and nU , nu(nu+1)/2. That is, nX parame-
ters for each Pσ and Qσ, and nU parameters for each Rσ.
Any automated tuning method must therefore be able to
efficiently deal with a large number of tuning variables and
satisfy the constraints imposed by Assumption 1.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14220



Plant

MPC

Gradient-free optimiser

Fig. 1. Overall gradient-free tuning scheme in-the-loop.

3. MPC TUNING FRAMEWORK

3.1 Description

In this section, we describe the proposed algorithm for the
tuning of {Pσ, Qσ, Rσ} within the closed-loop composed
of the plant and MPC controllers. Suppose there exists
an initial heuristic calibration {Pσ0 , Qσ0 , Rσ0} for every
{Pσ, Qσ, Rσ}, σ ∈ {1, . . . ,M}. The choice of {Pσ0 , Qσ0 , Rσ0}
may be based on model dynamics, experience, or using ad-
hoc guidelines as per (Garriga and Soroush, 2010).

The first stage of the proposed framework is to identify a
controller σ∗ that shows poor closed-loop performance af-
ter the initial calibration, e.g. poor tracking error. The sec-
ond stage is then to automatically optimise the parameters
{Pσ∗

, Qσ
∗
, Rσ

∗} in the sense of minimising a performance
function f(Pσ

∗
, Qσ

∗
, Rσ

∗
) which depends on the closed-

loop response. This function measures closed-loop perfor-
mance of controller σ∗ for a given triplet {Pσ∗

, Qσ
∗
, Rσ

∗}.
The goal is to improve the closed-loop performance by
fine-tuning the underperforming controller σ∗. That is, we
attempt to solve the problem

f? , min
Pσ∗ ,Qσ∗∈S,Rσ∗∈S+

f(Pσ
∗
, Qσ

∗
, Rσ

∗
),

where S ⊆ Rnx×nx and S+ ⊆ Rnu×nu denote the set of
symmetric positive semi-definite matrices and the set of
symmetric positive definite matrices, respectively.

The overall tuning scheme is illustrated in Fig. 1. The
GFO block iteratively updates the MPC parameters
{Pσ∗

, Qσ
∗
, Rσ

∗} to minimise f(Pσ
∗
, Qσ

∗
, Rσ

∗
), which is

calculated from closed-loop response experiments (or sim-
ulations) carried out within the dashed box.

3.2 GFO tuning algorithm

The algorithm we propose is based on the gradient-free
method in (Nesterov and Spokoiny, 2017), which uses
the so-called random gradient-free oracles for the random
search. In our context, the oracle is defined as

g?(X,Y, Z) ,
1

µ

(
f(X + µMX , Y + µMY , Z + µMZ)

− f(X,Y, Z)
)
M?, (2)

where ? ∈ {P,Q,R}, M? are random symmetric matrices
of appropriate dimensions, and µ ∈ R>0 is the smoothing
parameter.

The underlying algorithm of the scheme in Fig. 1 is rep-
resented in pseudocode in Algorithm 1. The operators πS

Algorithm 1 GFO tuning scheme in Fig. 1

1: Choose {Pσ∗

0 , Qσ
∗

0 , Rσ
∗

0 }.
2: for j = {0, . . . , J}, J ∈ N do
3: Perform a closed-loop response with parameters
{Pσ∗

j , Qσ
∗

j , Rσ
∗

j } for the σ∗-th controller.

4: f1 ← f(Pσ
∗

j , Qσ
∗

j , Rσ
∗

j ).
5: Generate random symmetric matrices

MP
j ,M

Q
j ,M

R
j .

6: Perform a closed-loop response with parameters

{Pσ∗

j + µMP
j , Q

σ∗

j + µMQ
j , R

σ∗

j + µMR
j } for the σ∗-th

controller.
7: f2 ← f(Pσ

∗

j + µMP
j , Q

σ∗

j + µMQ
j , R

σ∗

j + µMR
j ).

8: Compute the random oracles

gP (Pσ
∗

j , Qσ
∗

j , Rσ
∗

j )← 1

µ
(f2 − f1)MP

j

gQ(Pσ
∗

j , Qσ
∗

j , Rσ
∗

j )← 1

µ
(f2 − f1)MQ

j

gR(Pσ
∗

j , Qσ
∗

j , Rσ
∗

j )← 1

µ
(f2 − f1)MR

j

9: Compute the next update for tuning parameters

Pσ
∗

j+1 ← πS
(
Pσ

∗

j − hjgP (Pσ
∗

j , Qσ
∗

j , Rσ
∗

j )
)

Qσ
∗

j+1 ← πS
(
Qσ

∗

j − hjgQ(Pσ
∗

j , Qσ
∗

j , Rσ
∗

j )
)

Rσ
∗

j+1 ← πS+

(
Rσ

∗

j − hjgR(Pσ
∗

j , Qσ
∗

j , Rσ
∗

j )
)

10: end for
11: Return {P̂σ∗

, Q̂σ
∗
, R̂σ

∗}.

and πS+
correspond to the Euclidean projection onto S and

S+, respectively, and the parameter hj denotes the step
size. We compute the projections πS and πS+

by following

well known results in (Higham, 1988). Let K = V ΛV >

be the eigenvalue decomposition of a matrix K. Then,
πS(K) , V max{0,Λ}V > and πS+

(K) , V max{d,Λ}V >
for some d ∈ R>0. To generate the random symmetric

matrices MP
j ,M

Q
j , and MR

j at each iteration j ∈ N0,

we construct matrices of the form M?
j = U?j L

?
j (U

?
j )>,

? ∈ {P,Q,R}, where L?j is a diagonal matrix with diagonal
elements uniformly chosen from an interval of interest,
and U?j is a random unitary matrix constructed using the
technique described in (Ozols, 2009). Lastly, the output of

the algorithm {P̂σ∗
, Q̂σ

∗
, R̂σ

∗} is defined as

{P̂σ
∗
, Q̂σ

∗
, R̂σ

∗
} ,

argmin
(X,Y,Z)∈{(Pσ∗0 ,Qσ

∗
0 ,Rσ

∗
0 ),...,(Pσ

∗
J
,Qσ

∗
J
,Rσ

∗
J

)}
f(X,Y, Z).

The results in (Nesterov and Spokoiny, 2017) guarantee
convergence of the sequence {Pσ∗

j , Qσ
∗

j , Rσ
∗

j } to some
local minimiser {P∗,Q∗,R∗} given a proper choice of
the algorithm parameters. Particularly, by (Nesterov and
Spokoiny, 2017, Theorem 6), if we pick µ ≤ ε

2L0(f)
√
n

and

hj = G
(n+4)

√
j+1L0(f)

, the accuracy E{f(P̂σ
∗
, Q̂σ

∗
, R̂σ

∗
)}−

f∗ ≤ ε is guaranteed by Algorithm 1 in

J =
4(n+ 4)2

ε2
L0(f)2G2, (3)

iterations, where n is the number of tuning parameters
(see Remark 2), L0(f) is the Lipschitz constant for the
cost function f which can be computed numerically as
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Fig. 2. A diesel engine air-path schematic.

in e.g. (Bunin and François, 2016), G , GP + GQ + GR
where GP , GQ and GR are such that ‖Pσ∗

0 −P∗‖2 ≤ GP ,

‖Qσ∗

0 − Q∗‖2 ≤ GQ, and ‖Rσ∗

0 − R∗‖2 ≤ GR (these can
also be estimated numerically).

Remark 3. Note that, at each iteration step j of Algorithm
1, the oracles are computed once the entire closed-loop
response is available. Particularly, two experiments (or
simulations) are required to compute these oracles, one

with parameters {Pσ∗

j + µMP
j , Q

σ∗

j + µMQ
j , R

σ∗

j + µMR
j }

and one with {Pσ∗

j , Qσ
∗

j , Rσ
∗

j }. Once the two closed-loop
responses are finished, then Algorithm 1 computes the
oracles and the next update {Pσ∗

j+1, Q
σ∗

j+1, R
σ∗

j+1}. Two
new closed-loop experiments are then performed with
these new controller parameters and the process continues
iteratively in this fashion.

4. GFO TUNING FOR A DIESEL ENGINE AIR-PATH

4.1 Diesel engine air-path model

A schematic representation of the diesel air-path is shown
in Fig. 2. By following (Sankar et al., 2019), the engine
operating range is divided into twelve regions, as shown
in Fig. 3, with a linear model representing the engine
dynamics in each region. The model state is chosen to
consist in the intake manifold pressure pim (also known
as boost pressure), the exhaust manifold pressure pem, the
compressor flowWcomp, and the EGR rate yEGR. The input
consists of the throttle position uthr, EGR valve position
uEGR, and VGT valve position uVGT. Lastly, the measured
output consists in (pim, yEGR).

For a given operating point parametrised by the engine
speed ωe and fuel rate ṁf , (ωσe , ṁ

σ
f ), σ ∈ {1, . . . , 12}, the

engine control unit applies certain steady-state actuator
values. We denote the steady-state values of the input,
state, and output by ūσ ∈ R3, x̄σ ∈ R4, and ȳσ ∈ R2,
respectively, at each operating condition (ωσe , ṁ

σ
f ). By

following the system identification procedure detailed in
(Shekhar et al., 2017), we get a model for the diesel engine
air-path in the form of (1), that is

x̃k+1 = Aσx̃k +Bσũk, (4a)

ỹk = Cσx̃k +Dσũk, (4b)

where σ ∈ {1, . . . , 12}, x̃k = xk− x̄σ is the perturbed state
around the corresponding steady-state x̄σ, ũk = uk − ūσ
is the perturbed input around the corresponding steady-
state input ūσ, and ỹk = yk − ȳσ is the perturbed output
around the corresponding steady-state output ȳσ.

9

10

11

12

7

8

6

5

2

1

3

4

Fig. 3. Engine operational space divisions and the corre-
sponding linearisation points.

The LTI-MPC strategy described in Section 2 is used to
control the engine air-path. In the following sections, we
illustrate the performance of our tuning framework when
tuning the MPC parameters. Note that x̃k ∈ R4, ũ ∈ R3,
and ỹ ∈ R2, then the number of parameters to be tuned
per controller are n = 26, which follows from Remark 2.

4.2 Numerical simulations

We now perform offline tuning of MPC paremeters using
GFO. That is, we implement the scheme in Fig. 1, where
the plant block is composed of an engine model. We will
test the GFO tuning framework when the engine model
is being controlled over a drive-cycle. Drive cycles are
used to assess the performance of vehicles by means of a
schedule over the vehicle’s speed. We restrict our attention
to the urban drive cycle (UDC), but this framework can
be applied to any drive cycle of choice.

We pick an initial calibration such that {P 1, Q1, R1} =
· · · = {P 12, Q12, R12} = {P0, Q0, R0}, with P0 = Q0 =
diag{0.01, 0, 0.2, 0.01} and R0 = 10−5 · I3×3. We use
the tracking error as the measure of performance in the
remainder of this paper, that is, we define

f(Pσ
∗
, Qσ

∗
, Rσ

∗
) ,

1√
N

√√√√N−1∑
k=0

∥∥yk(Pσ∗ , Qσ∗ , Rσ∗)− yrefk
∥∥2
2
,

where N ∈ N is the experiment (or simulation) length,
yrefk is the vector containing the boost pressure and EGR

rate references, respectively, and yk(Pσ
∗
, Qσ

∗
, Rσ

∗
) is the

process measured output when the σ∗-th controller is
using tuning parameters Pσ

∗
, Qσ

∗
, Rσ

∗
, and the rest of

controllers are using {P0, Q0, R0}.
The response of the engine model over the UDC using the
initial calibration {P0, Q0, R0} can be seen in Fig. 4. We
have encircled parts of the drive cycle with unsatisfactory
performance. We identify that this is associated with
controller σ∗ = 6, and we have also used light grey to
shade regions of the drive cycle in which controller σ∗ = 6
is acting. We then fine tune this controller by running
Algorithm 1 with parameters µ = 10−9, hj = 10−6/

√
j + 1

as per Section 3.2 (L0(f) = 106, ε = 0.01, R = 30). For
J = 15 iterations, the resulting tuned matrices are given
by
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Fig. 4. Engine model response over the UDC drive cycle
using the initial calibration {P0, Q0, R0}.
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Fig. 5. Engine model response over the UDC drive cycle
using the GFO-tuned {P̂ 6, Q̂6, R̂6} for controller six,
and {P0, Q0, R0} for the remaining controllers.

P̂ 6 =

68.7777 −3.9213 −7.9706 23.4118
−3.9213 77.6175 22.2896 7.1257
−7.9706 22.2896 68.7995 2.3130
23.4118 7.1257 2.3130 77.2866

 ,

Q̂6 =

86.2979 18.2538 3.3847 −0.0318
18.2538 68.6798 13.5989 22.1637
3.3847 13.5989 81.6394 −3.0665
−0.0318 22.1637 −3.0665 73.2421

 ,
R̂6 =

[
81.0912 2.7255 9.4127
2.7255 53.5783 −6.1731
9.4127 −6.1731 10.8003

]
.

The response of the engine model over the UDC using the
GFO tuned matrices is shown in Fig. 5. The improvement
in tracking performance has significantly improved in the
regions where controller six is acting. Particularly, the ini-
tial calibration provides a tracking error of f(P0, Q0, R0) =
3.5652, and the final calibration in which controller six has
been tuned using the GFO framework provides a tracking
error of f(P̂ 6, Q̂6, R̂6) = 3.0391. This corresponds to a
14.8% performance improvement. The cost function values
for the tuned controller per iteration are given in Fig. 6.
We can see that convergence can be achieved within a
few number of iterations in this simulation, which leads
us to think that the theoretical guarantee (3) is quite
conservative. In fact, the theoretical number of iterations
that ensure convergence is J = 3.24 · 1022 (see (3)), which
is really conservative.

1 5 10 15

3

3.2

3.4

3.6

3.8

Fig. 6. Convergence of the cost function f(P 6
j , Q

6
j , R

6
j ).

4.3 Experimental implementation

We now perform online GFO tuning in-the-loop with a
physical diesel engine. That is, we use the architecture of
Fig. 1 in which the engine block is a real diesel engine
at Toyota’s Higashi-Fuji Technical Center, and the GFO
minimiser is using real-time drive cycle data coming from
the closed-loop experiment in the dashed box. We note
that the experiments were performed using the switching
LTI-MPC in Section 2 but with an added integrator aug-
mentation to deal with offsets exhibited in the real engine
(see (Rawlings and Mayne, 2009, Section 1.5.2) for more
details). In addition, since each iteration of Algorithm 1
requires two experiments (cf. Remark 3), it is useful to
reduce the experimental length. For this experiment we
focus on performing only the third (last) segment of the
UDC drive cycle. The engine outputs with the MPC initial
calibration Q0 = diag{0.01, 0.01, 0.2, 1}, P0 = Q0, R0 =
I3×3 are given in Fig. 7. We have encircled the areas
with unsatisfactory tracking performance, which are re-
lated to controller σ∗ = 6, and we have also used light
grey to shade regions in which this controller is acting.
The algorithm parameters used in this experiment are
µ = 2.5 · 10−6 and hj = 10−5/

√
j + 1 as per Section

3.2 (L0(f) = 4000, ε = 0.1, R = 1.2). The GFO-tuned
matrices for J = 8 iterations are given by

P̂ 6 =

 0.0502 −0.0117 −0.0398 0.0057
−0.0117 0.0102 0.0146 0.0118
−0.0398 0.0146 0.2003 −0.0426
0.0057 0.0118 −0.0426 1.0022

 ,

Q̂6 =

0.4699 0.0708 0.0192 0.0901
0.0708 0.2329 −0.1597 −0.1684
0.0192 −0.1597 0.3459 0.0016
0.0901 −0.1684 0.0016 1.1911

 ,
R̂6 =

[
1.1227 −0.1419 0.0305
−0.1419 1.0621 0.0534
0.0305 0.0534 1.2843

]
.

The engine response with GFO-tuned matrices is given
in Fig. 8, where we can see a clear improvement in the
reference tracking for controller six. Particularly, the tuned
matrices provide an improvement of performance of 7.73%
with only eight iterations. As in the simulations carried
in Section 4.2, this illustrates the conservativeness of
the theoretical convergence guarantee (3) from (Nesterov
and Spokoiny, 2017). The relatively fast convergence of
the algorithm in this high dimensional space maintains
a degree of hope for tuning with hardware-in-the-loop
over complicated drive cycles, even though the theoretical
degrees are conservative.
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Fig. 7. Real engine response over the third UDC segment
using the initial calibration {P0, Q0, R0}.
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Fig. 8. Real engine response over the third UDC segment
using the GFO-tuned {P̂ 6, Q̂6, R̂6} for controller six,
and {P0, Q0, R0} for the remaining controllers.

5. CONCLUSION

This paper described a gradient-free strategy to success-
fully tune MPC parameters iteratively within the control
loop. We applied this method to air-path control in diesel
engines both in simulations and experiments. The observed
nature of the tuning algorithm in practice belies the ap-
parent conservative nature of the theoretical results, and
therefore creates potential for the development of efficient
tuning tools for advanced controllers (and potentially even
retuning online). Insights on how to choose the algorithm
parameters is left for future work.
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