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Abstract: This work considers the problem of designing an attack strategy on remote state
estimation under the condition of strict stealthiness and ε-stealthiness of the attack. An attacker
is assumed to be able to launch a linear attack to modify sensor data. A metric based on
Kullback-Leibler divergence is adopted to quantify the stealthiness of the attack. We propose a
generalized linear attack based on past attack signals and the latest innovation. We prove that
the proposed approach can obtain an attack which can cause more estimation performance loss
than linear attack strategies recently studied in the literature. The result thus provides a bound
on the tradeoff between available information and attack performance, which is useful in the
development of mitigation strategies. Finally, some numerical examples are given to evaluate
the performance of the proposed strategy.
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1. INTRODUCTION

Cyber-Physical Systems (CPSs), which integrate compu-
tational elements and physical processes closely, are play-
ing a more and more critical role in a large variety of
fields which include transportation, power grid, military
and environment. Most of them are of great importance
to the normal operation of society and even to the whole
nation. Any successful cyber-physical attacks will bring
huge damages to critical infrastructure, human lives and
properties, and even threaten the national security. Ma-
roochy water breach in 2000 (Slay and Miller (2007)),
Stuxnet malware in 2010 (Karnouskos (2011)), Ukraine
power outage in 2015 (Whitehead et al. (2017)) and other
security incidents, motivate us to pay more attention to
the security of CPSs.

Recently, an enormous amount of research effort has been
devoted to designing detection algorithms and secure state
estimation strategies to enhance the security of CPSs.
Mo and Sinopoli (2009) and Mo et al. (2015) analyzed
the effect of replay attacks, where the attackers do not
know the system information and replay the recorded
measurements, and proposed a physical watermarking
scheme to detect this kind of attacks. Liu et al. (2014)
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proposed the nuclear norm minimization approach and low
rank matrix factorization approach to create a mechanism
based on the properties of the nominal power grid to
detect data injection attacks in a power grid. Teixeira
et al. (2012) characterized the properties of zero dynamics
attacks and provided necessary and sufficient conditions
that the changes of inputs and outputs should satisfy
to reveal attacks. Fawzi et al. (2014) proposed a novel
characterization of the maximum number of attacks that
can be detected and provided an algorithm motivated by
compressed sensing to estimate the state with attacks.

To the best of our knowledge, the concept of stealthiness
of the attack was first introduced as ε-stealthiness based
on KL divergence in Bai et al. (2015, 2017b). The authors
provided the corresponding ε-stealthy attack strategy to
induce the maximal performance degradation for a scalar
system through data injection. Kung et al. (2016) gener-
alized the above results to vector systems and pointed out
the differences between scalar systems and vector systems.
Furthermore, Bai et al. (2017a) was devoted to seeking the
optimal attack by compromising sensors’ measurements.
In this paper, we adopt the stealthiness metric employed
in Bai et al. (2015, 2017a). Different from these works
focusing on obtaining the maximal performance degrada-
tion and then deriving the corresponding attack strategy,
we consider to maximize performance degradation given
a specific linear attack type. Moreover, the performance
degradation metric is slightly different from the above
works.
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The linear integrity attack in our work was first proposed
in Guo et al. (2016). An optimal linear attack policy was
proposed to achieve the maximal performance degradation
while not being detected. Some other extensions under
different scenarios on this work could be found in Guo
et al. (2019); Guo et al. (2017). Guo et al. (2018) also
investigated this attack type in the detection framework
based on KL divergence, which relaxed restrictions on false
data detectors. However, since this type of attack only
considers the latest information, it may not be optimal
from the viewpoint of attacker. Motivated by this point,
we consider a more general attack type which combines
the past attack information and the latest innovation.
Moreover, we focus on the sequence detection instead of
one-slot detection.

This work considers the problem of designing a general
linear attack strategy on remote state estimation under
the condition of different stealthiness from the standpoint
of the attacker. Our work builds on the above works and
focuses on designing a more general linear attack strategy.
The main contributions of this paper are threefold:

(1) We propose a more general linear attack type which
employs the past attack data as well as the latest
innovation and introduce the concept of ε-stealthy
attacks to characterize the stealthiness level of an
attack.

(2) We present the optimal attack strategy to achieve
the maximal performance degradation for two specific
attacks with different stealthiness.

(3) We prove that the proposed strategy performs better
than the existing linear attack strategies in terms of
performance degradation. Some numerical examples
are provided to show this result.

Notations: xk2k1 is the sequence {xk1 , xk1+1, · · · , xk2}. The

spectral radius ρ(A) = max{|λ1|, |λ2|, · · · , |λn|}, where
λ1, · · · , λn are the eigenvalues of the matrix A ∈ Rn×n. In
denotes the identity matrix of order n.

2. PROBLEM FORMULATION

In this section, we introduce the system model as well as
attack model. Besides, the stealthiness metric and perfor-
mance degradation metric are provided to characterize the
properties of attacks. Finally, we formulate the problem.
The system diagram under consideration is illustrated in
Fig. 1.
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Fig. 1. The system diagram.

2.1 System Model

Let us consider a linear time-invariant (LTI) system de-
scribed by the following equations:

xk+1 = Axk + wk, (1)

yk = Cxk + vk, (2)

where xk ∈ Rn and yk ∈ Rm are the state vector and
all sensors’ measurement at time k, respectively. wk ∈ Rn
denotes the process noise and vk ∈ Rm is the measurement
noise. wk ∼ N (0, Q) and vk ∼ N (0, R), where Q ≥ 0
and R > 0, respectively. It is assumed that w0, w1, . . . and
v0, v1, . . . are mutually independent.

Assumption 1. The spectral radius ρ(A) < 1 and the pair
(A,C) is detectable and (A,

√
Q) is stabilizable.

The system is equipped with local smart sensors whose
functions include signal conditioning, signal processing,
and decision-making; see Lewis (2004). Here, we assume
that the smart sensor employs the Kalman filter to process
measurement and transmit the innovation to the remote
estimator as follows:

x̂k+1|k = Ax̂k|k, Pk+1|k = APk|kA
T +Q,

Kk = Pk|k−1C
T (CPk|k−1C

T +R)−1,

x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1),

Pk|k = Pk|k−1 −KkCPk|k−1,

with initialization x̂0|−1 = x̄0.

It is known that the Kalman gain will converge exponen-
tially due to Assumption 1. Hence, we consider a steady-
state Kalman filter with gain K and the priori minimum
mean square error (MMSE) P for the remaining of this
paper where

P = lim
k→∞

Pk|k−1, (3)

K = PCT (CPCT +R)−1. (4)

Hence, the Kalman filter can be rewritten as:

x̂k+1|k = Ax̂k|k, x̂k|k = x̂k|k−1 +Kzk,

where zk , yk − Cx̂k|k−1 is the innovation of the Kalman
filter at time k, which will be transmitted to the remote
estimator and zk ∼ N (0, σ2

z), where σ2
z = CPCT +R.

Remark 2. In our problem formulation, we assume that
the innovation is transmitted to the remote estimator via
a wireless communication network. Note that yk = zk +
Cx̂k|k−1, which means zk contains the same information as
yk. In the existing works such as Ribeiro et al. (2006), Guo
et al. (2016), Li et al. (2017), and Guo et al. (2019), the
sensor also sends innovation zk to the remote estimator.

2.2 Attack Model

Next we introduce the attack model. The adversary is
assumed to have the following capabilities:

(1) The attacker has access to all the real-time innova-
tions from smart sensors.

(2) The attacker can modify the true innovation to arbi-
trary value in a specific form.

(3) The attacker has the knowledge of system matrix A.

Remark 3. The third capability could be relaxed. If the
system parameter A is not known, the attacker can learn
it by system identification.

The attacker records the real-time innovations from smart
sensors and modifies them to z̃k, i.e.,

z̃k = T z̃k−1 + Szk, (5)

where T ∈ Rm×m and S ∈ Rm×m.
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The remote estimator receives z̃k and updates the state
estimate as follows:

ˆ̃xk+1|k = Aˆ̃xk|k, ˆ̃xk|k = ˆ̃xk|k−1 +Kz̃k.

Here, we initialize ˆ̃x0|−1 = x̂0|−1 and z̃k = 0 for k ≤ 0.

2.3 Stealthiness Metric

From the perspective of attackers, they should be stealthy
or do not want to be detected by the system detector,
otherwise the system will design countermeasures against
attacks. In this work, we employ a metric based on KL
divergence measure to quantify the stealthiness of attack,
which was first proposed in Bai et al. (2015).

Here, we propose the attack detection problem as a sequen-
tial hypothesis testing. The controller uses the received
innovation sequence to carry out the following binary
hypothesis testing:

H0 : The remote estimator receives zk1 .

H1 : The remote estimator receives z̃k1 .

In testing H0 versus H1, there are two types of errors that
can be made: the first type is called “false alarm”, which
denotes that the estimator decides H1 given H0, and the
second type is called “miss detection”, which represents
that the estimator decidesH0 whenH1 is correct. Here, we
denote the probability of miss detection at time k as pMk ,
and the probability of false alarm is pFk . Furthermore, the
probability of correct detection is pDk , which denotes that
the controller decides H1 given H1. It is easy to know that
pDk + pMk = 1. Two definitions about attack stealthiness
level are provided as follows:

Definition 4. (Strictly stealthy attack (Bai et al., 2017a)).
The attack is strictly stealthy if pFk ≥ pDk at time k ≥ 0
holds for any detector.

Definition 5. (ε-stealthy attack (Bai et al., 2017a)). The
attacker is ε-stealthy if

lim sup
k→∞

− 1

k
log pFk ≤ ε (6)

holds for any detector that satisfies 0 < pMk < δ for all
times k, where 0 < δ < 1.

Remark 6. Definition 5 is motivated by Chernoff-Stein
Lemma (see Cover and Thomas (2012)). This lemma shows
that the best exponent in probability of error is given by
the relative entropy. Please refer to Bai et al. (2017a) for
more details.

2.4 Performance Degradation Metric

In this paper, we employ the ratio of the state estimation
error covariance P̃ and P to quantify the performance

degradation introduced by the attacker, i.e., η =
tr P̃

trP
,

where P is defined in (3) and P̃ is defined as follows:

P̃ , lim sup
k→∞

1

k

k∑
n=1

P̃n, (7)

where P̃n = E[(xn − ˆ̃xn|n−1)(xn − ˆ̃xn|n−1)T ] 1 .

1 Akin performance degradation metric could be found in Bai et al.
(2015).

From the perspective of attackers, they need to design an
appropriate attack strategy to maximize the ratio η, i.e.,

argT,S lim sup
k→∞

1
k

∑k
n=1 tr P̃n

trP
. (8)

Remark 7. It is worth noticing that when there is no
attack, z̃k = zk. As the initialization condition ˆ̃x0|−1 =

x̂0|−1, one can derive that ˆ̃xk|k−1 = x̂k|k−1. Hence, P̃ = P
and η = 1. In other words, the performance will not be
degraded without attacks.

2.5 Problems of Interest

For the system described by (1) and (2) under attack
type (5), we aim to tackle the following two optimization
problems:

(1)

max
T,S

lim sup
k→∞

1
k

∑k
n=1 trP̃n

trP
,

s. t. The attack is strictly stealthy.

(9)

(2)

max
T,S

lim sup
k→∞

1
k

∑k
n=1 trP̃n

trP
,

s. t. The attack is ε-stealthy.

(10)

We need to find the optimal attack pair (T ∗, S∗) to induce
the largest performance degradation while guaranteeing
that the stealthiness level satisfies the corresponding re-
quirement.

3. PRELIMINARY RESULTS

In order to quantify the stealthiness level of attacks, we
need to employ the KL divergence (Kullback and Leibler
(1951), Cover and Thomas (2012)), which is defined as:

Definition 8. (KL divergence). Let xk1 and yk1 be two ran-
dom sequences with joint probability density functions fxk

1

and fyk1 , respectively. The KL divergence between xk1 and

yk1 equals

D(xk1‖yk1 ) =

∫ +∞

−∞
log

fxk
1
(ξk1 )

fyk1 (ξk1 )
fxk

1
(ξk1 )dξk1 . (11)

One can see that D(xk1‖yk1 ) ≥ 0, and D(xk1‖yk1 ) = 0 if and
only if fxk

1
= fyk1 . Generally speaking, KL divergence is

asymmetric, i.e., D(xk1‖yk1 ) 6= D(yk1‖xk1).

The necessary and sufficient conditions for strictly stealthy
attacks and ε-stealthy attacks are provided as follows 2 :

Lemma 9. (Condition for Strictly Stealthy attacks). (Bai
et al. (2017a)) An attack sequence z̃∞1 is strictly stealthy
if and only if z̃∞1 is a sequence of i.i.d. Gaussian random
variables with zero mean and variance Cov(zk) = CPCT+
R.

Lemma 10. (Conditions for ε-stealthy attacks). (Bai et al.
(2017a)) If an attack z̃∞1 is ε-stealthy, then

lim sup
k→∞

1

k
D(z̃k1‖zk1 ) ≤ ε.

2 For more details about the proofs, please refer to Bai et al. (2017a).
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Conversely, if an attack sequence z̃∞1 is ergodic and satis-
fies limk→∞

1
kD(z̃k1‖zk1 ) ≤ ε, then the attack is ε-stealthy.

4. MAIN RESULTS

In this section, we will design an optimal attack strategy
under strictly stealthy attacks and ε-stealthy attacks. For
the sake of analysis, we focus on the scalar case, i.e.,
m = n = 1. The vector case will be a potential future
extension. The detailed solutions are provided in the
following sections.

4.1 Strictly Stealthy Attack

The goal of this subsection is to design an optimal attack
pair (T ∗, S∗) of the optimization problem (9).

Theorem 11. For a strictly stealthy attack, the optimal
attack pair of the optimization problem (9) is (T ∗, S∗) =
(0,−1) and the corresponding performance degradation

ratio is η = 1 + 4A2K2(C2P+R)
(1−A2)P .

Proof. Firstly, according to the attack type (5) and the
condition of strictly stealthy attacks in Lemma 9, it is easy
to derive that the feasible solutions of the problem (9) are
(T, S) = (0,±1).

If (T, S) = (0, 1), z̃k = zk, which denotes that there is no
attack in process, and the corresponding ratio η = 1.

If (T, S) = (0,−1), z̃k = −zk, which is aligned with the
independence that strictly stealthy attack satisfies. Then
we start to derive the corresponding ratio η. Rewrite P̃k:

P̃k =E[(xk − ˆ̃xk|k−1)2]

=P + E[(x̂k|k−1 − ˆ̃xk|k−1)2]

+ 2E[(xk − x̂k|k−1)(x̂k|k−1 − ˆ̃xk|k−1)]

(a)
=P + E[(x̂k|k−1 − ˆ̃xk|k−1)2].

(12)

The reason why equation (a) holds can be found in Bai
et al. (2017a). We do not elaborate it here.

Define ẽk , x̂k|k−1 − ˆ̃xk|k−1. One can derive that

E[ẽ2k] = E[(x̂k|k−1 − ˆ̃xk|k−1)2],

(b)
=

k∑
n=1

A2nK2E
[
[zk−n − (−zk−n)]

2
]

= 4A2K2(C2P +R)
1−A2k

1−A2
,

(13)

where (b) holds because ẽ0 = x̂0|−1 − ˆ̃x0|−1 = 0.

Then, the covariance of the priori state estimate can be
calculated as

P̃ = lim
k→∞

1

k

k∑
n=1

P̃n = P +
4A2K2(C2P +R)

1−A2
,

and we obtain the performance degradation ratio:

η =
P + 4A2K2(C2P+R)

1−A2

P
= 1 +

4A2K2(C2P +R)

(1−A2)P
> 1.

Hence, the optimal attack pair of the optimization prob-
lem (9) is (T, S) = (0,−1) and the corresponding perfor-

mance degradation ratio is η = 1 + 4A2K2(C2P+R)
(1−A2)P . �

Remark 12. The above attack strategy is aligned with the
results about the worst-case linear attack under the χ2

false alarm detector obtained in Guo et al. (2016) and Bai
et al. (2017a), which alter the sign of the innovation.

Remark 13. It is worth noticing that from (13), one can
derive that E[ẽ2k] = 0 for any attack if A = 0, and then
η = 1. Hence, we do not consider this case for the later
discussion.

4.2 ε-stealthy Attack

The goal of this subsection is to design an optimal attack
pair (T ∗, S∗) to maximize the ratio η, i.e., to maximize P̃ ,
under ε-stealthy attacks.

Lemma 14. For any T , the differential entropy of the
sequence z̃k1 can be expressed as k

2 log(2πeS2σ2
z).

Lemma 15. If the attack is ε-stealthy, then |T | < 1.

From Lemma 15, for an ε-stealthy attack, we have

lim
k→∞

1

k
D(z̃k1‖zk1 ) = −1

2
− 1

2
log(S2) +

S2

2(1− T 2)
≤ ε,

(14)

where the third term of the above equation can be derived
from the summation of geometric series.

Then, we consider the performance degradation for an
ε-stealthy attack. An equivalent optimization problem is
given in the following theorem, the proof of which can be
found in the appendix for the sake of legibility.

Theorem 16. The optimization problem (10) is equivalent
to the following problem:

max
T,S

J(T, S) = (1− S)2 +
T 2S2

1− T 2
− 2ATS(1− S − T 2)

(1− T 2)(1−AT )
,

(15a)

s. t. − 1

2
− 1

2
log(S2) +

S2

2(1− T 2)
≤ ε, (15b)

|T | < 1. (15c)

Next we seek to obtain a solution, i.e., an optimal attack
pair (T ∗, S∗), of the above optimization problem. For the
simplicity of notations, we use J to denote J(T, S).

First, let us consider the constraint condition (15b). Fix
T = To and ε = εo (εo ≥ 0), S must satisfy:

−1

2
− 1

2
log(S2) +

S2

2(1− T 2
o )
≤ εo. (16)

Define

C (S, T0, ε0) , −1

2
− 1

2
log(S2) +

S2

2(1− T 2
0 )
− ε0. (17)

It can be derived that only when T 2
o ≤ 1 − e−2εo , the

inequality (16) has feasible solutions. And the solution lies
in the interval [−Smax,−Smin]

⋃
[Smin, Smax], where Smax

and Smin are the largest and smallest positive solution to

the equation − 1
2 −

1
2 log(S2) + S2

2(1−T 2
o )

= εo, respectively.

Lemma 17. The optimal attack pair (T ∗, S∗) must satisfy

− 1
2 −

1
2 log(S2) + S2

2(1−T 2) = ε, where S∗ is the correspond-

ing smallest solution for T = T ∗.

Remark 18. Consider the property of the objective func-
tion, the optimal solution for S is obtained when S ≤ 0.
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Therefore, we only consider that S ≤ 0 for the remaining
of this work.

Lemma 19. When S is negative and the absolute value of
T is fixed, J(T, S) ≥ J(−T, S), where the sign of T is the
same as the sign of A.

Remark 20. For the simplicity of analysis, we only con-
sider T ≥ 0 and A > 0. Hence, T is non-negative in
the above equation. The case when T < 0 and A < 0
is essentially the same.

Lemma 21. The optimization problem (15a) is equivalent
to the following problem:

max
S,T

J(T, S) = (1− S)2 +
T 2S2

1− T 2
− 2ATS(1− S − T 2)

(1− T 2)(1−AT )

s. t. − 1

2
− 1

2
log(S2) +

S2

2(1− T 2)
= ε (18a)

|T | ≤
√

1− e−2ε, (18b)

Proof. It can be proved from (17) and Lemma 17. �

Rewrite (18a) as follows:

T = f(S) ,

√
1− S2

2ε+ 1 + log(S2)
. (19)

Insert (19) into (15a), one has:

J1(S) =− (2ε+ log(S2))−
2S

1−Af(S)
+

2(2ε+ 1 + log(S2))

1−Af(S)
(−Somax ≤ S ≤ −e−ε),

where the range of S is derived from 0 ≤ T 2 ≤ 1− e−2ε.
Theorem 22. The solution to the above optimization prob-
lem is an optimal attack pair (Topt, Sopt), where Sopt

satisfies ∂J1
∂S

∣∣
S=Sopt

= 0 and Topt =

√
1− Sopt

2

2ε+1+log(S2
opt)

.

And the corresponding performance degradation ratio is

η =
JoptA

2K2σ2
z

(1−A2)P
, where Jopt = J(Topt, Sopt).

Proof. The main idea of the proof is to verify that the
signs of the derivative of J with respect to S along the two
boundaries are different, thus the optimal solution must
exist in the feasible domain.

∂J1
∂S

=−2
A2f2(S) + S −ASf(S)− 1

S(1−Af(S))2

− 2

[
S2 − S(2ε+ 1 + logS2)

]
Af ′(S)

S(1−Af(S))2
,

(20)

where f ′(S) = −
S(2ε+1+log(S2))−S
(2ε+1+log(S2))2√
1− S2

2ε+1+log(S2)

. One can prove that

when S → −Somax, the derivative of J1 is positive. And
the derivative at S = −e−ε is negative.

Since the function J1 and the derivative of J1 with re-
spect to S are continuous, there must be at least one
maximum point where its first derivative is zero. Hence,

η =
JoptA

2K2σ2
z

(1−A2)P
, where Jopt = J(Topt, Sopt). �

Corollary 23. The proposed attack strategy induces a
larger performance degradation than the existing linear
attack strategy in Guo et al. (2018) under the same ε-
stealthy attacks.

5. SIMULATION

In this section, we provide some numerical examples to
evaluate the performance of the proposed attack strategy.
We consider an LTI system and set A = 0.4, C = 1, Q =
0.2, and R = 0.5. It is easy to derive that K = 0.3102,
and P = 0.2248. Here, we run 100 thousand simulations
to average them. The ratio of the state estimation error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

The stealthiness level ε

η
=
P̃
/
P

Guo et al.(2018)
Our work

Fig. 2. The ratio η v.s. ε with fixed system parameters.

covariance P̃ to P v.s. stealthiness level ε is shown in Fig. 2.
From this figure, one could see that the error covariance
obtained in our work is equal to the one obtained in the
exiting work Guo et al. (2018) when ε = 0. And the error
covariance obtained in our work is larger than the one
derived in Guo et al. (2016). Furthermore, the difference
of the error covariance between our work and Guo et al.
(2018) gets larger as ε grows.

6. CONCLUSION

In this paper, an optimal linear attack strategy based on
both the past attack signals and the latest innovation was
proposed to achieve maximal performance degradation
while guaranteeing a prescribed stealthiness level. For
strictly stealthy attacks, the result derived in this paper
is aligned with the existing work. For ε-stealthy attacks,
we derived an optimal linear attack strategy and proved
that the performance degradation of the optimal attack
pair computed by using our proposed approach is better
than the existing one. Simulation results were presented to
support the theoretical results. For future works, we would
like to generalize the results to a vector system, as well as
analyze the performance of the optimal attack strategy
under other performance metrics.

APPENDIX

Proof of Theorem 16: Rewrite ẽk+1:

ẽk+1 = Aẽk +AK(1− S)zk −AKTz̃k−1. (21)

From (21), we have E[ẽk] = 0 and ẽk is independent of zk.
Hence, the covariance of ẽk is:

E[(ẽk+1)2]

=A2E[(ẽk)2] + [AK(1− S)]
2
σ2
z + (AKT )2E[(z̃k−1)2]

+ 2A2K(1− S)E[ẽkzk]− 2A2KTE[ẽkz̃k−1]

(a)
=A2E[(ẽk)2] + [AK(1− S)]

2
σ2
z + (AKT )2E[(z̃k−1)2]

− 2A2KTE[ẽkz̃k−1], (22)
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where
ẽk = Aẽk−1 +AK(1− S)zk−1 −AKTz̃k−2

= Akẽ0 +AK

[
k−1∑
i=0

Ai(1− S)zk−1−i −
k−1∑
i=0

AiT z̃k−2−i

]
,

and Equation (a) holds due to the independence between
ẽk and zk. From (22), one can obtain that:

lim
k→∞

1

k
E[(ẽ1)2] = lim

k→∞

1

k
[AK(1− S)]

2
σ2
z

(b)
= 0,

and

lim
k→∞

1

k
E[(ẽk+1)2]

(c)
= lim
k→∞

1

k

(
A2E[(ẽk)2]− 2A2KTE[ẽkz̃k−1]

)
(d)
= 0,

where (b), (c) and (d) hold since |A| < 1, |T | < 1, K and
σ2
z are constants, and S is bounded due to the property

of (15a) and (15b).

Consider the asymptotic behavior for (22) and take the
limit, we have:

lim
k→∞

1−A2

k

k∑
n=1

E[(ẽn+1)2]

= [AK(1− S)]
2
σ2
z +

(AKT )2S2

1− T 2
σ2
z

− 2A3K2TS

[
1− S

1−AT
− T 2S

(1− T 2)(1−AT )

]
σ2
z ,

Since σ2
z > 0, A2K2 > 0 and P > 0, one can simplify the

above optimization as

max
S,T

(1− S)2 +
T 2S2

1− T 2
−

2ATS(1− S − T 2)

(1− T 2)(1−AT )
,

s. t. −
1

2
−

1

2
log(S2) +

S2

2(1− T 2)
≤ ε,

|T | < 1,

where constraint conditions are from (14) and Lemma
15.
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