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Abstract: This article presents a geometric description of the set of stabilizing PID controllers.
The three-dimensional parameter space is partitioned by the stability crossing surface into
regions such that the number of characteristic roots on the right half-plane (RHP) remains
constant within each region. The set of stabilizing PID parameters consists those regions with
no RHP root. The stability crossing surface is a ruled surface, and it is completely determined
by a curve known as the discriminant. The discriminant may be divided into sectors between
its cusps, and each sector corresponds to a positive patch and negative patch. The stability
crossing surface is composed of these patches.
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1. INTRODUCTION

As PID control is widely used in industrial applications,
it is natural that a substantial amount of research has
been conducted on the selection of PID controller gains,
Bazanella et al. (2017), Meza et al. (2012) are some
examples.

It is valuable to identify the set of all PID gains that stabi-
lizes the system. The first description of such stabilizing set
has been achieved using the Hermite-Biehler theorem (Ho
et al. (1996)). A linear programing method may be used to
facilitate identifying the stabilizing set (Ho et al. (1997)).
Singular frequency concept was introduced in Ackermann
and Kaesbauer (2003), and a more explicit description has
been achieved for a second order system in Wang (2007).
To summarize, the methods in most currently available
literature try to visualize the stabilizing set through its
cross-section with a constant proportional gain. While
such cross sections have a very simple geometric structure
of polygons, it is not easy to obtain a global view of the
entire stabilizing set.

In this article, we present a more natural description of the
geometric structure of the stabilizing set. With the propor-
tional gain as the vertical axis in the three-dimensional
parameter space, we visualize the set by projecting it to

the horizontal plane. This bird-eye view allows us to see
directly all the regions in the horizontal plane where there
exist proportional gains to stabilize the system. Roughly
speaking, the stability crossing surface, which consists of
the parameters such that at least one characteristic root is
on the imaginary axis, is described. This stability crossing
surface partitions the three-dimensional parameter space
into regions of constant number of RHP characteristic
roots. Especially, the regions where there is no RHP char-
acteristic root form the set of stabilizing PID parameters.

2. STABILITY CROSSING SURFACE

For a given plant with transfer function Gp(s), we want
to determine the set of coefficients (kd, ki, kp) of PID
controller

Gc(s) = kp +
ki
s

+ kds, (1)

such that the closed-loop system is stable, i.e., all the
solutions of the system characteristic equation

∆(s) = 1 +Gc(s)Gp(s) = 0 (2)

are on the left half-plane (LHP). The study here is based
on the D-decomposition method (El’Sgol’ts and Norkin
(1973); Gu and Naghnaeian (2011)). Specifically, the roots
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of (2) change continuously as the PID parameters change.
Therefore, the number of roots on the RHP may change
only when one or more roots reach the imaginary axis. For
this purpose, it is instrumental to introduce the following
concept of stability crossing surface.

Definition 1. The set of all (kd, ki, kp) ∈ R3 such that the
characteristic equation ∆(s) = 0 has at least one solution
on the imaginary axis is known as the stability crossing
surface, and is denoted as K.

In order to focus on the main idea, we make the following
assumption about the plant transfer function.

Assumption 1. The transfer function can be written as
Gp(s) = Np(s)/Dp(s), where Np(s) and Dp(s) are poly-
nomials with real coefficients. Furthermore, neither Np(s)
nor Dp(s) has any roots on the imaginary axis.

Under Assumption 1, we may set s = jω in (2) and

multiply by jω
Gp(jω) to obtain

δ(jω) =
jω

Gp(jω)
+ jωkp + ki − ω2kd = 0. (3)

Therefore, the stability crossing surface K also corresponds
to the set of real solution of (3) for ω.

Let the kp-axis be the vertical axis in the (kd, ki, kp)
parameter space. Then, For ω = 0, we obtain from (3)

ki = 0, (4)

which is a vertical plane denoted as V. For a fixed ω ̸= 0,
(3) yields the following parametric equations

ki = ω2kd − a(ω), (5)

kp =−b(ω)

ω
, (6)

where

a(ω) = Re

[
jω

Gp(jω)

]
, (7)

b(ω) = Im

[
jω

Gp(jω)

]
. (8)

Equations (5)-(8) define a horizontal straight line L(ω) in
R3,

L(ω) := {(kd, ki, kp) ∈ R3 : ki = ω2kd − a(ω),

kp = −b(ω)/ω}.
The projection of this straight line on the (kd, ki) plane is
described by (5), and is denoted as PL(ω). Obviously, the
slope of PL(ω) is ω2.

As the plant transfer function satisfies

Gp(jω) = G∗
p(−jω),

it is obvious that a(ω) is an even function of ω, and b(ω)
is an odd function of ω. Therefore, L(ω) = L(−ω). It is
thus sufficient to restrict ω to (0,∞).

As ω varies from 0+ to +∞, the straight lines L(ω)
described by (5) and (6) form a surface, which we denote
as S,

S =
∪
ω>0

L(ω). (9)

Such a surface is known as a ruled surface (Guggenheimer
(1997)). The surface S may be parameterized by kd and
ω. The stability crossing surface K consists of S and the
vertical plane V. As the parameter (kd, ki, kp) crosses S at
a point on L(ω) for some ω ̸= 0, a pair of characteristic
roots touch the imaginary axis at ±ω, and either cross it
or return to the same side. If the parameter crosses the
vertical surface V, then one characteristic root crosses the
imaginary axis at the origin.

As the vertical plane V is rather simple, we will spend
most effort in understanding S. Using the vector notation,
a point in the parameter space may be expressed as

r = kdi+ kij+ kpk.

Then

(kd, ω) → rS(kd, ω)

is a parametrization of the surface S ⊂ R3. Therefore, S
can be written as

r = rS(kd, ω), (10)

with the components as functions of kd and ω given by
(5)-(6). We will use the following plant transfer function,
which was analyzed in Ackermann and Kaesbauer (2003),
to illustrate our description of S and stability analysis in
the remaining part of this article

Gp(s) =
−s4 − 7s3 − 2s+ 1

(s+ 1)(s+ 2)(s+ 3)(s+ 4)(s2 + s+ 1)
. (11)

3. DISCRIMINANT

Definition 2. The discriminant of the ruled surface S
described by (5) and (6) is a curve formed by the points
on S with vertical tangent planes.

We will use D to denote the discriminant. With S de-
scribed by (10), ∂rS

∂kd
and ∂rS

∂ω are the two tangents of the
curves formed by fixing either ω or kd, respectively. The
cross product of ∂rS

∂kd
and ∂rS

∂ω is the normal vector to S.
Therefore, a point on S has vertical tangent plane if and
only if it satisfies(

∂rS
∂kd

× ∂rS
∂ω

)
· k = 0, (12)

where × is the cross product. Using the component ex-
pression, the above reduces to(

∂ki
∂ω

k− ∂kp
∂ω

j

)
· k = 0. (13)

Using (5) in the above equation yields

2ωkd − a′(ω) = 0, (14)

which can be solved for kd to obtain

kd =
a′(ω)

2ω
. (15)

A substitution of (5) by (15) yields
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ki =
1

2
ωa′(ω)− a(ω). (16)

Therefore, the discriminant D is a curve that can be
expressed as

kd = kdd(ω) =
a′(ω)

2ω
, (17)

ki = kdi (ω) =
1

2
ωa′(ω)− a(ω), (18)

kp = kdp(ω) = −b(ω)

ω
. (19)

The discriminant of the system with plant transfer func-
tion (11) is shown in Fig. 1.
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Fig. 1. Discriminant of the ruled surface of system (11).

It is instrumental to represent discriminant D by its pro-
jection to the horizontal plane and its vertical component
as a function of ω. The horizontal projection is denoted
as PD, and is described by (17) and (18). For the system
with plant transfer function (11), PD is plotted in Fig. 2.
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Fig. 2. The projection of discriminant PD with cusps ωi.

A critical observation is that PD is the envelope of the
family of straight lines PL(ω). This can be shown as
follows. Define ϕ(ω) = ωa′′ − a′(ω). Taking the derivative
of (17) and (18), we obtain

(kdd)
′(ω) =

ωa′′ − a′(ω)

2ω2
=

ϕ(ω)

2ω2
, (20)

(kdi )
′(ω) =

ωa′′ − a′(ω)

2
=

ϕ(ω)

2
. (21)

When

ϕ(ω) ̸= 0, (22)

the slope of the tangent of PD at ω is ω2, which is identical
to PL(ω). It is also obvious that kdd(ω) and kdi (ω) satisfies
(5), which indicates that this point in PD belongs to the
straight line PL(ω). This allows us to conclude that the
tangent of PD at ω indeed coincides with PL(ω), which
is formally stated in the following theorem.

Theorem 1. The surface S is completely determined by the
discriminant D.

Indeed, as D is given by (17), (18) and (19), it is necessary
that

(kdi )
′(ω) = ω2(kdd)

′(ω), (23)

and S can be expressed as

kd = kdd(ω) + γ, (24)

ki = kdi (ω) + ω2γ, (25)

kp = kdp(ω), (26)

with ω ∈ (0,∞) and γ ∈ (−∞,∞).

For a fixed ω, (24), (25) and (26) represent L(ω) since
(24)-(25) satisfy (5). It is useful to divide L(ω) at the point
rd(ω) = (kdd(ω), k

d
i (ω), k

d
p(ω)) into two parts

L+(ω) = {(kdd(ω) + γ, kdi (ω) + ω2γ, kdp(ω)) | γ > 0},
L−(ω) = {(kdd(ω) + γ, kdi (ω) + ω2γ, kdp(ω)) | γ < 0}.

Naturally, their projections on the (kd, ki) plane are de-
noted as PL+(ω) and PL−(ω), respectively.

4. CUSPS AND PATCHES

Assumption 2. No ω ∈ (0,∞) may simultaneously satisfy

ϕ(ω) = ωa′′(ω)− a′(ω) = 0, (27)

ϕ′(ω) = ωa′′′(ω) = 0. (28)

If ω = ω∗ violates (22), i.e., ϕ(ω∗) = 0, then the above
assumption means that ϕ(ω) must have opposite signs for
ω = ω∗+ε and ω = ω∗−ε when ε > 0 is sufficiently small,
and (kdd(ω

∗), kdi (ω
∗)) is a cusp of PD. This is obvious if

we notice that kd
′

d (ω) and kd
′

i (ω) change sign at such a
point. At a cusp, the tangent to PD may still be defined
by its limit, and still has the slope ω2. The tangent of the
discriminant D at such a point is vertical if

dkdp
dω

=

[
−b(ω)

ω

]′
̸= 0. (29)

It is not too difficult to handle degenerate points that
violate Assumption 2. For instance, let ϕ(k)(ω) = 0 for
k = 0, 1, . . . ,m− 1, and ϕ(m)(ω) ̸= 0, then ω corresponds
to a cusp if m is odd, but it is not a cusp if m is even,
and the readers should not have difficulty generalizing the
analysis in this article to such cases.

For the system with plant transfer function (11), PD has
five cusps, and the corresponding ω are denoted as ωi,
i = 1, 2, . . . 5. These cusps are also labeled in Fig. 2.
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Let ωi, i = 1, 2, . . . , n− 1 correspond to the cusps of PD,
and be arranged in ascending order

ω1 < ω2 < · · · < ωn−1.

They partition (0,∞) into n intervals Ωi, i = 1, 2, . . . , n,

Ω1 = (0, ω1],

Ωi = [ωi−1, ωi], i = 2, 3, . . . , n− 1,

Ωn = [ωn−1,∞).

Correspondingly, we may partition the discriminant D into
n sectors

Di = {(kdd(ω), kdi (ω), kdp(ω))|ω ∈ Ωi}.
The projection of Di on the (kd, ki) plane is denoted as
PDi. Obviously, PDi, i = 1, 2, . . . , n, partition PD.

It is observed that the slope of PDi is ω
2, which increases

as one moves along PDi along the directions of increasing
ω, from which we may use the Theorem on Turning
Tangent (Chern (1967)) to arrive at the following theorem.

Theorem 2. The center of curvature is always on the left
hand side as one traverses PDi along the direction of
increasing ω. The region bounded by PDi and the line
segment connecting the two end points of PDi is convex.

We may also partition S into 2n patches

S+
i =

∪
ω∈Ωi

L+(ω),S−
i =

∪
ω∈Ωi

L−(ω).

S+
i is referred to as the ith positive patch, and S−

i the
ith negative patch. Their projections on the (kd, ki) plane
are denoted as PS+

i and PS−
i , respectively. Obviously,

i

i-1

PS+i PSi
- c

PSi
+ c PSi

- c

PS+i PSi
-

PS-i PSi
+ c PSi

+ c PSi
- c

PDi

PL i

PL i-1

Fig. 3. Division with PDi, PL(ωi−1), and PL(ωi).

Di, L+(ωi−1) and L+(ωi) form the boundary of S+
i , and

Di, L−(ωi−1) and L−(ωi) form the boundary of S−
i . PDi,

PL(ωi−1) and PL(ωi) divide R2 into five regions as shown
in Fig. 3, PS+

i ∩(PS−
i )

c, PS+
i ∩PS−

i , (PS+
i )

c∩PS−
i , and

two components of (PS+
i )

c ∩ (PS−
i )

c.

PDi, i = 1, 2, . . . , n; PL±(0), PL±(ωi), i = 1, 2, . . . , n −
1, and possibly PL±(∞) when applicable, partition the
(kd, ki) plane into open regions. Denote these regions as
Rk, k = 1, 2, . . . , N ,

cl

(
N
∪

k=1
Rk

)
= R2, Rk ∩Rl = ∅,

where cl is the closure operator on a set. Consider a given
region Rk. As it does not contain the boundary of PS+

i

or PS−
j , we may associate Rk with a pair of index sets

I+
k ⊂ Nn, I−

k ⊂ Nn, where Nn = {1, 2, . . . , N}. For each

point r = (kd, ki) ∈ Rk, r ∈ PS+
i or r ∈ PS−

j if and only

if i ∈ I+
k or j ∈ I−

k , respectively.

Let I+
k = {i1, i2, . . . , il}, I−

k = {j1, j2, . . . , jm}, and
represent these two index sets by a single set

Ik =
{
i+1 , i

+
2 , . . . , i

+
l , j

−
1 , j−2 , . . . , j−m

}
⊂ N±

n , (30)

where N±
n = {1+, 2+, . . . , n+, 1−, 2−, . . . , n−}. Such a no-

tation also allows us to use the same notation Sα to
represent positive and negative patches,

Sα =

{
S+
i if α = i+,

S−
j if α = j−.

The same can be done for PS+
i and PS−

i . Then the above
can be summarized in the following theorem.

Theorem 3. For Ik defined above, one has

Rk ⊂PSα, α ∈ Ik,
Rk ∩ PSα = ∅, α /∈ Ik,

Rk ⊂
(

∩
α∈Ik

PSα

)
∩

(
∪

β∈N±
n \Ik

(PSβ)
c

)
.
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Fig. 4. The regions (based on Fig. 2).
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Fig. 5. Region I, which is identified with a box in Fig. 4.

For the system with plant transfer function (11), the
partition of the (kd, ki) plane with the corresponding index
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sets is given in Fig. 4 with amplified view of region I given
in Figs. 5. In the figures, a region Rk with index set Ik
given in (30) is labeled as i+1 ∩i

+
2 ∩. . .∩i

+
l ∩j

−
1 ∩j−2 ∩. . .∩j−m.

Given any point (k∗d, k
∗
i ) ∈ Rk, the vertical

VL(k∗d, k∗i ) = {(k∗d, k∗i , kp)| −∞ < kp < ∞}
intersects with all patches Sα, α ∈ Ik, but does not
intersect with any patch Sβ , β /∈ Ik.

5. RELATIVE VERTICAL POSITIONS OF PATCHES

For a given point (kd, ki) ∈ Rk, let the intersection of
VL(kd, ki) and Sα be (kd, ki, kpα). Assume

kpα ̸= kpβ , whenever α ̸= β. (31)

Then, we can order the elements of the index set Ik as
α1, α2, . . . , αl+m, such that

kpα1 > kpα2 > · · · > kpαl+m
.

In this case, we write, at (kd, ki),

Sα1 > Sα2 > · · · > Sαl+m
. (32)

In general, the order is different for different (kd, ki) ∈ Rk.
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Fig. 6. The change of kp with ω.

For a complete stability analysis, we want to further
partition Rk into subregions Rki, i = 1, 2, . . . ,mk, such
that the order (32) is independent of (kd, ki) as long as
it is within the subregion Rki. The internal boundaries
that divide Rk into these subregions are the intersections
between the patches projected on the (kd, ki) plane. Such
boundaries consist of points in the (kd, ki) plane that
violate (31), and can be obtained by considering the kp vs
ω relation. For the plant transfer function given by (11),
the relation is given in Fig. 6. Let ωa ̸= ωb, satisfy

kp(ωa) = kp(ωb), (33)

Then L(ωa) intersects L(ωb). The collection of all (ωa, ωb)
that satisfy (33) corresponds to all the intersections be-
tween different patches. Within each Rki, we may order
the index set Ik such that (32) is true for all (kd, ki) ∈
Rki. (32) may be interpreted as Sα1 above Sα2 , which
in turn is above Sα3 , and so on. Within the column∪
{VL(kd, ki)|(kd, ki) ∈ Rki}, for any (kd, ki, kp) in the

region between Sαj
and Sαj+1

, the characteristic equation
has a fixed number of roots on the RHP. This is also true
for the region above Sα1 and below Sαl+m

.
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Fig. 7. In Region I, the intersection curve divides R8 into
R81 and R82.

We now discuss how to determine the relative vertical
positions of Sα, α ∈ Ik within each Rki. We need to only
choose an arbitrary (k∗d, k

∗
i ) ∈ Rki to determine this order

as it does not change within Rki. This can be carried out
as follows: For each α ∈ Ik, if Sα is a positive patch, say
S+
j , then we may determine the unique ωα ∈ (ωj−1, ωj)

such that (k∗d, k
∗
i ) ∈ PL+(ωα). If Sα is a negative patch,

then we need (k∗d, k
∗
i ) ∈ PL−(ωα) instead. Geometrically,

this means drawing a tangent of PDi that passes through
the point (k∗d, k

∗
i ), and the point (k∗d, k

∗
i ) is on the right of

the tangent point if it is a positive patch, and it is on the
left if it is a negative patch. ωα can be easily determined
numerically. Indeed, PL(ωα) must satisfy (5) for kd = k∗d,
ki = k∗i , and ω = ωα. As k∗d and k∗i are given, (5) may
be written as a polynomial equation of ω. The applicable
solution ωα needs to be real and satisfy ωα ∈ (ωj−1, ωj)
and kdd(ωα) < k∗d (if Sα is a positive patch) or kdd(ωα) > k∗d
(if Sα is a negative patch). Corresponding to the l + m
elements of the index set Ik, α1, α2, . . . , αl+m, we may find
ωα1 , ωα2 , . . . , ωαl+m

. They should be arranged in a order
so that

kp(ωα1) > kp(ωα1) > · · · > kp(ωαl+m
).

As a result, the patches satisfy

Sα1 > Sα2 > · · · > Sαl+m
,

in Rki.

Fore R8 shown in Fig. 5, we conclude that

S+
2 > S−

3 > S−
2 > S+

1 in R81, (34)

S+
2 > S−

2 > S−
3 > S+

1 in R82. (35)

And the ordering of patches of Region I is given in Fig. 8.

6. CROSSING DIRECTIONS

Theorem 4. As the parameter (kd, ki, kp) moves across a
positive patch along the VL(kd, ki) in the increasing kp
direction, two roots of the characteristic equation (2) cross
the imaginary axis from RHP to the LHP. The crossing of
the characteristic roots is in the opposite direction if it is
a negative patch.

Proof. Due to the space limitation, we omit it here.
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Fig. 8. The orders of the layers in Region I.

With the knowledge of the crossing direction and the
vertical relative position of each region Rki, we only need
the number of RHP roots at one point in the parameter
space to determine the number of RHP roots in each
region. For one point with the known RHP roots, we can
judge the crossing direction when this point crosses the
surface S vertically. Then, the change of the number of
the RHP roots is obtained. Finally, we can identify the set
of stabilizing parameters.
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Fig. 9. The change of the roots on RHP of Region I.

For the system with plant transfer function (11), we can
easily calculate that the system has two characteristic
roots on the RHP when ki > 0 and kp is sufficiently large
(above all the patches, kp > 7 would be sufficient in view
of Fig. 6). It has three RHP roots when ki < 0 and kp is
large enough. The difference is due to the crossing of V.
Now consider (kd, ki) in the region R81. The relative
vertical position of the patches is shown in (34). We
already know that equation (2) has two RHP roots when
(kd, ki, kp) is in the region above S+

2 . As S+
2 is a positive

patch, we can conclude from Theorem 4 that (2) has four
RHP roots when the parameters are in the region between
S−
3 and S+

2 (two more than above S+
2 because we need to

cross S+
2 in the negative kp direction in order to reach from

the region above S+
2 to this region). As S−

3 is a negative
patch, we can similarly use Theorem 4 to determine that
(2) has two RHP roots when (kd, ki, kp) is in the region
between S−

3 and S−
2 (two less than the region above) and

(2) has no RHP root when (kd, ki, kp) is between S−
2 and

S+
1 , and it has two RHP roots when (kd, ki, kp) is below

S+
1 . This is denoted in Fig. 9 as 2 → 4 → 2 → 0 → 2. The

same process can be applied to all the regions Rki. The
stabilizing set is shown in the three-dimensional view in
Fig. 10.
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Fig. 10. The stable regions.

7. CONCLUSION

From the above discussion, it can be concluded that
the set of stabilizing PID controller can be completely
characterized, and a global view of the entire stabilizing
set is obtained.
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