Estimation in uncertain switched systems using a
bank of interval observers: local vs glocal
approach *

Damiano Rotondo1,2, Denis Efimov3, Andrea Cristofaro4,
Tor Arne Johansen5

1 Department of Electrical and Computer Engineering (IDE), University of
Stavanger, 4009 Stavanger, Norway
2 Institut de Robòtica i Informàtica Industrial, CSIC-UPC
Llorens i Artigas 4-6, 08028 Barcelona, Spain
3 Inria, Univ. Lille, CNRS, UMR 9189 - CRISTAL, F-59000 Lille, France
4 Department of Computer, Control and Management Engineering
Sapienza University of Rome, 00185 Rome, Italy
5 Center for Autonomous Marine Operations and Systems (AMOS),
Department of Engineering Cybernetics (ITK), Norwegian University of
Science and Technology (NTNU), 7034 Trondheim, Norway

Abstract: This paper discusses some issues related with the design of a bank of interval observers for
uncertain switched systems, in which several sources of uncertainty are considered: parametric uncer-
tainties, unknown disturbances, measurement noise, and unknown switching signal. More specifically,
this paper focuses on analyzing the interval estimation accuracy when changes of active mode induce
non-positivity of the interval state estimation errors. In particular, it is shown that by combining two
types of interval observers, referred to as local and global, the accuracy and reliability of the estimation
can be improved. The properties of the obtained so-called glocal observer are investigated and illustrated
by means of numerical simulations.

Keywords: Interval observers, switched systems, mode identification, uncertain systems.

1. INTRODUCTION

It is a well known fact that, due to uncertainties coming either
from external disturbances or from the mismatch between the
model and the real system, the classical state observers cannot
converge to the real value of the state in general settings
[Efimov et al., 2016, Wang et al., 2015]. For this reason, interval
observers have been considered as an appealing alternative
approach, since they can take into account the information
that uncertainties and disturbances are bounded in some known
sets, in order to compute the set of admissible values for the
state at each instant of time [Efimov et al., 2012]. Research
on interval observers is still a hot topic in present days, with
several contributions appearing in the literature, concerning
their integration with advanced control techniques [Oubabas
et al., 2018], fault diagnosis [Rotondo et al., 2018b] and fault
tolerant control [Rotondo et al., 2018a] problems.

On the other hand, switched systems [Daafouz et al., 2002]
represent a special class of hybrid dynamics that is applied
in several fields, such as control of chemical processes [Niu
et al., 2015] and flight control systems [Sakthivel et al., 2016].
In the last few years, some results concerning state estimation
in switched systems have appeared, see for instance Zhao et al.
[2015], Ríos et al. [2015], Rios et al. [2014], where an important
difference comes from whether the hypothesis on availability
of the switching signal is made or not. Some works have
considered the problem of interval state estimation in switched
systems. For instance, Ethabet et al. [2018b,a] have proposed an
interval observer design approach for continuous-time switched
systems affected by unknown inputs. He and Xie [2016] have
addressed control system design based on an interval observer
for non-linear switched systems with Lipschitz non-linearities.
Ifqir et al. [2017] have analyzed interval estimation accuracy
and robustness with respect to unknown disturbances using $H\infty$
objective with pole placement constraints.

However, all the above works have been developed under the
assumption that the switching signal that defines the active
mode of the switched system is known. This assumption is
not always true [Wang et al., 2018], and some research has
addressed the issue of determining the active mode at any
moment, using only the system’s input/output data, see e.g. Lee et al. [2013], Hakem et al. [2016], Rotondo et al. [2017b,a]. In particular, Rotondo et al. [2017b,a] showed that this goal could be achieved using a multiple model adaptive architecture (MMAE) that relies on a set of local observers, each designed using one among the possible modes of the switched system.

With the future ultimate goal of extending the MMAE to the case where interval observers are used to estimate the switching signal while taking into account the effects of the different sources of uncertainty, this paper focuses on analyzing the interval estimation accuracy when changes of active mode induce non-positivity of the interval state estimation errors. In particular, the main contribution of this work is to show that the accuracy of the estimation can be improved by using a combination of two types of interval observers, referred to as local and global. The properties of the obtained observer, named global after Hara et al. [2015], are investigated and demonstrated by means of numerical simulations.

The paper is structured as follows. Section 2 presents some notation used in the paper, along with a useful lemma and the definition of cooperative system. Section 3 contains the theoretical results concerning the definition of the considered class of systems, and the structure of the local, global and global interval observers. Simulation results are shown and discussed in Section 4, whereas Section 5 presents the conclusions.

2. PRELIMINARIES

Denote by \mathbb{R} and \mathbb{N} (\mathbb{N}_0) the sets of real and natural numbers (with zero included), respectively, and $\mathbb{R}_+ = \{ s \in \mathbb{R} : s \geq 0 \}$. For two vectors $x_1, x_2 \in \mathbb{R}^n$ or matrices $A_1, A_2 \in \mathbb{R}^{n \times n}$, the relations $x_1 \leq x_2$ and $A_1 \leq A_2$ are understood elementwise. Given a matrix $A \in \mathbb{R}^{n \times n}$, let us define $A^+ = \max\{0, A\}$, with max understood elementwise, $A^- = A^+ - A$ and $|A| = A^+ + A^-$ (similarly for vectors).

Lemma 1. [Efimov et al., 2016] Let $A \leq A \leq A$ for some $A, A, A \in \mathbb{R}^{n \times n}$ and $x \leq x \leq x$ for $x, x, x \in \mathbb{R}^n$, then:

$$A x^+ - A^+ x^+ - A x^+ x^- \leq A x$$

(1)

Let us define as $\mathbb{R}_+^{n \times n}$ the set of matrices $A \in \mathbb{R}^{n \times n}$ with nonnegative elements ($A \geq 0$). Then, any solution of the system:

$$x(t + 1) = Ax(t) + \omega(t), \omega : \mathbb{N} \to \mathbb{R}_+^n, t \in \mathbb{N}$$

(2)

with $x(t) \in \mathbb{R}^n$ and $A \in \mathbb{R}_+^{n \times n}$, is elementwise nonnegative for all $t \geq 0$ if $x(0) \geq 0$. Such a system is referred to as cooperative (or monotone) [Hirsch and Smith, 2005].

3. THEORETICAL RESULTS

3.1 System definition

Let us consider a discrete-time uncertain switched system described by:

$$x(t + 1) = [A\kappa(t) + \Delta A\kappa(t)] x(t) + [B\kappa(t) + \Delta B\kappa(t)] u(t) + d(t)$$

$$y(t) = Cx(t) + v(t)$$

(3)

(4)

where $t \in \mathbb{N}_0$ stands for the sample, $x \in \mathbb{R}^n$ is the state, $y \in \mathbb{R}^m$ is the output, $u \in \mathbb{R}^p$ is the input, $\kappa(t) \in \{\kappa_1, \kappa_2, \ldots, \kappa_J\}$ denotes the switching signal, while the signals $d \in \mathbb{R}^n$ and $v \in \mathbb{R}^p$ denote the exogenous disturbance and measurement noise, respectively, which are unknown. The matrix $C \in \mathbb{R}^{n \times n}$ and the matrix functions $A\kappa(t) \in \mathbb{R}^{n \times n}$ and the matrices $B\kappa(t) \in \mathbb{R}^{n \times n}$ are assumed to be known (although the instantaneous value of $\kappa(t)$ is not), whereas the matrices $\Delta A\kappa(t) \in \mathbb{R}^{n \times n}$, $\Delta B\kappa(t) \in \mathbb{R}^{n \times n}$ are unknown. The following assumption will be used in further developments.

Assumption 1. $d(t) \leq d(t) \leq d(t)$ and $|v(t)| \leq V$ for all $t \in \mathbb{N}_0$ and for known $d(t), \bar{d}(t) \in \mathbb{R}^n$ and $V \in \mathbb{R}_+$. Moreover:

$$\Delta A\kappa(t) \leq \Delta A\kappa(t) \leq \Delta A\kappa(t)$$

(5)

$$\Delta B\kappa(t) \leq \Delta B\kappa(t) \leq \Delta B\kappa(t)$$

(6)

$$A_0 + \Delta A \leq A\kappa(t) + \Delta A\kappa(t) \leq A_0 + \Delta A$$

(7)

$$B_0 + \Delta B \leq B\kappa(t) + \Delta B\kappa(t) \leq B_0 + \Delta B$$

(8)

for some known matrix functions:

$$\Delta A\kappa(t), \Delta A\kappa(t) \in \mathbb{R}^{n \times n} : \Delta A\kappa(t) \leq 0, \Delta A\kappa(t) \leq 0$$

$$\Delta B\kappa(t), \Delta B\kappa(t) \in \mathbb{R}^{n \times n} : \Delta B\kappa(t) \leq 0, \Delta B\kappa(t) \leq 0$$

and some known matrices $A_0 \in \mathbb{R}^{n \times n}$, $B_0 \in \mathbb{R}^{n \times n}$ and:

$$\Delta A, \Delta A \in \mathbb{R}^{n \times n} : \Delta A \leq 0, \Delta A \leq 0$$

(9)

$$\Delta B, \Delta B \in \mathbb{R}^{n \times n} : \Delta B \leq 0, \Delta B \leq 0$$

(10)

It is straightforward to show that if $\kappa(t) = \kappa_j$, the system (3)-(4) reduces to:

$$x(t + 1) = (A_j + \Delta A_j) x(t) + (B_j + \Delta B_j) u(t) + d(t)$$

$$y(t) = C x(t) + v(t)$$

(11)

(12)

with known matrices $A_j \triangleq A(\kappa_j), B_j \triangleq B(\kappa_j)$ and, according to Assumption 1, matrices $\Delta A_j \triangleq \Delta A(\kappa_j)$ and $\Delta B_j \triangleq \Delta B(\kappa_j)$ unknown but such that:

$$\Delta A_j \leq \Delta A_j \leq \Delta A_j$$

(13)

$$\Delta B_j \leq \Delta B_j \leq \Delta B_j$$

(14)

for some known matrices:

$$\Delta A_j \triangleq \Delta A(\kappa_j) \in \mathbb{R}^{n \times n} : \Delta A_j \leq 0$$

$$\Delta A_j \triangleq \Delta A(\kappa_j) \in \mathbb{R}^{n \times n} : \Delta A_j \leq 0$$

$$\Delta B_j \triangleq \Delta B(\kappa_j) \in \mathbb{R}^{n \times n} : \Delta B_j \leq 0$$

$$\Delta B_j \triangleq \Delta B(\kappa_j) \in \mathbb{R}^{n \times n} : \Delta B_j \leq 0$$

(15)

3.2 Local interval observers

For each subsystem (9)-(10), it is possible to pose a local interval observer based on cooperativity of the interval estimation error dynamics [Efimov et al., 2016], as follows:

$$x_j(t + 1) = [A_j - L_j C] x_j(t) + L_j u(t) + L_j\bar{y}(t)$$

$$- |L_j^2| V x_j^+(t) + \Delta A_j^+ x_j^+(t) - \Delta A_j^- x_j^-(t)$$

$$- \Delta A_j^- x_j^+(t) + \Delta A_j^+ x_j^-(t) + \Delta B_j^+ u^+(t)$$

$$- \Delta B_j^- u^-(t) - \Delta B_j^+ u^+(t) + \Delta B_j^- u^-(t)$$

4776
The dynamics of the interval estimation errors for the j-th subsystem, $x_j(t)$, are the lower and upper interval estimates of $x(t)$, and using the estimated global bounds to feed the local observers, it is possible to ensure that the interval estimation errors are fed by non-negative inputs even in cases where a change of active mode causes (16) not to hold anymore.

Remark 1. Note that Proposition 1, along with similar propositions presented in the remaining of the paper, focuses only on the interval estimation property, without considering boundedness of the observers’ states. Linear matrix inequality (LMI)-based conditions for designing appropriate observer gains such that boundedness is achieved can be found in the available literature, see e.g. Efimov et al. [2016].

3.3 Global interval observer

It is possible to take into account the uncertainty about $\kappa(t)$ by means of a global interval observer that guarantees the state to be always within some estimated lower and upper bounds, in spite of the varyingness of $\kappa(t)$, as follows:

$$
\begin{align*}
\delta(t+1) &= \begin{bmatrix} A_0 - \overline{L}_0C \end{bmatrix} \delta(t) + \overline{L}_0u(t) + \overline{L}_0y(t) \\
&- \begin{bmatrix} \overline{L}_0V_1n_y + \overline{\delta}(t) + \overline{\Delta A}^+ \overline{\xi}^+(t) - \overline{\Delta A}^- \overline{\xi}^-(t) \\
- \overline{\Delta B}^+ u^+(t) - \overline{\Delta B}^- u^-(t) \end{bmatrix} \xi(t) \\
&- \overline{\Delta A}^{-} \overline{\xi}^-(t) \overline{\Delta A}^{+} \overline{\xi}^+(t) + \overline{\Delta B}^+ u^+(t) \overline{\Delta B}^- u^-(t) \\
&- \overline{\Delta B}^+ u^- \overline{\Delta B}^- u^+ \overline{\Delta B}^+ u^-(t) + \overline{\Delta B}^- u^+ \overline{\Delta B}^+ u^-(t) + \overline{\Delta B}^- u^- \overline{\Delta B}^+ u^-(t)
\end{align*}
$$

\(\overline{\xi}(t) = \begin{bmatrix} A_0 - \overline{L}_0C \end{bmatrix} \overline{\xi}(t) + \overline{L}_0u(t) + \overline{L}_0y(t)
\)

Then, for $t_0, t_f \in \mathbb{N}_0$, the relation:

$$
\delta(t) \leq x(t) \leq \overline{\xi}(t) \quad \forall t \in \{t_0, t_0+1, \ldots, t_0+t_f\}
$$

holds provided that:

$$
\kappa(t) = \kappa \quad \forall t \in \{t_0, t_0+1, \ldots, t_0+t_f\}
$$

where:

$$
\begin{align*}
\delta_1(t) &= \Delta A \xi(t) - \Delta A^+ \xi^+(t) + \Delta A^- \xi^-(t) \\
&+ \Delta A \overline{\xi}^- (t) - \Delta A^+ \overline{\xi}^+ (t) + \Delta A^- \overline{\xi}^- (t) + \Delta A^- \overline{\xi}^+ (t)
\end{align*}
$$

$$
\begin{align*}
\delta_2(t) &= \Delta B u(t) - \Delta B^+ u^+(t) + \Delta B^- u^-(t) \\
&+ \Delta B \overline{u}^- (t) - \Delta B^+ \overline{u}^+ (t) + \Delta B^- \overline{u}^- (t) + \Delta B^- \overline{u}^+ (t)
\end{align*}
$$

$$
\begin{align*}
\delta_3(t) &= \overline{\delta}(t) - \overline{\delta}(t) \\
\overline{\delta}(t) &= \begin{bmatrix} \overline{L}_0V_1n_y + \overline{\delta}(t) + \overline{\Delta A}^+ \overline{\xi}^+(t) - \overline{\Delta A}^- \overline{\xi}^-(t) \\
- \overline{\Delta B}^+ u^+(t) - \overline{\Delta B}^- u^-(t) \end{bmatrix} \xi(t)
\end{align*}
$$

Proposition 2. Let Assumption 1 be satisfied, and:

$$
\begin{align*}
A_0 - \overline{L}_0C, A_0 = \overline{L}_0C \in \mathbb{R}_{+}^{n_y \times n_x}
\end{align*}
$$

Then, for $t_0, t_f \in \mathbb{N}_0$, the relation:

$$
\delta(t) \leq x(t) \leq \overline{\xi}(t) \quad \forall t \in \{t_0, t_0+1, \ldots, t_0+t_f\}
$$

holds provided that:

$$
\delta(t_0) \leq x(t) \leq \overline{\xi}(t_0)
$$

But, the dynamics for $\delta_1(t)$ and $\overline{\delta}(t)$ is cooperative and (14) holds as long as $\delta_1(t), \overline{\delta}(t) \geq 0 \forall t \geq t_0$, which is true due to Assumption 1.

Under a change of active mode, condition (16) might not hold, in such a case Lemma 1 could not be applied anymore in order to ensure that the signals $\delta_1(t)$ and $\overline{\delta}(t)$ described by (19) and (23), respectively, remain non-negative. The remaining of this section will show how, by defining a global interval observer, and using the estimated global bounds to feed the local observers, it is possible to ensure that the interval estimation errors are fed by non-negative inputs even in cases where a change of active mode causes (16) not to hold anymore.
The global interval observers

The information provided by the global interval observer can be fed locally to interval observers for different subsystems (9)-(10), as follows:

\[
x_j(t+1) = \left[A_j - L_j C \right] x_j(t) + B_j u(t) + L_j y(t) + \Delta A_j x^+(t) - \Delta A_j x^-(t) - \Delta B_j u^+(t) + \Delta B_j u^-(t)
\]

We will refer to an observer in the form (36)-(37) as global. The advantage of considering a global observer lies in the fact that thanks to the introduced feed, it can be guaranteed that the dynamics of the estimation errors \(e_j(t) = x(t) - x_j(t) \) and \(\overline{e_j}(t) = \overline{\varphi}(t) - x \) will be excited by non-negative inputs even when changes of active mode induce their non-positivity at some sample.

Proposition 3. Let Assumption 1 be satisfied, and for \(t_0, t_f \in \mathbb{N}_0 \):

\[
\kappa(t) = \kappa_j \quad \forall t \in \{t_0, t_0+1, \ldots, t_f\}
\]

Then, the relation:

\[
x_j(t) \leq x(t) \leq \varphi_j(t) \quad \forall t \in \{t_0, t_0+1, \ldots, t_f\}
\]

holds provided that:

\[
x_j(t_0) \leq x(t_0) \leq \varphi_j(t_0)
\]

Moreover, let us define:

\[
e_j^w(t_0 + N) = \sum_{k=0}^{N-1} \sum_{i=1}^{4} \left[A_j - L_j C \right]^{N-k-1} w_j^i(t_0 + k)
\]

\[
e_j^w(t_0 + N) = \sum_{k=0}^{N-1} \sum_{i=1}^{4} \left[A_j - L_j C \right]^{N-k-1} w_j^i(t_0 + k)
\]

If \(x(t_0) \leq x_j(t_0) \) or \(x(t_0) \geq \varphi_j(t_0) \) and there exists \(N \in \mathbb{N} \) such that:

\[
e_j^w(t_0 + N) \geq - \left[A_j - L_j C \right]^N e_j(t_0)
\]

or:

\[
e_j^w(t_0 + N) \geq - \left[A_j - L_j C \right]^N \overline{e_j}(t_0)
\]

respectively, then:

\[
x_j(t_0 + N) \leq x(t_0 + N) \leq \overline{\varphi}_j(t_0 + N)
\]

Proof: The dynamics of the interval estimation errors \(e_j(t) \) and \(\overline{e_j}(t) \) are given by:

\[
e_j(t+1) = \left[A_j - L_j C \right] e_j(t) + \sum_{i=1}^{4} w_j^i(t)
\]

\[
\overline{e}_j(t+1) = \left[A_j - L_j C \right] \overline{e}_j(t) + \sum_{i=1}^{4} w_j^i(t)
\]

where \(w_j^i(t), w_j^i(t) \) can be obtained from \(w_j^i(t), w_j^i(t) \) in (19)-(26) by replacing \(x_j \rightarrow x, x_j \rightarrow \varphi, L_j \rightarrow L_j, \overline{\varphi}_j \rightarrow \overline{\varphi}_j \). The proof that (41) implies (40) follows a similar reasoning as in the proof of Proposition 1. Let us notice that the response of (47)-(48) is given by:

\[
e_j(t_0 + N) = \left[A_j - L_j C \right]^N e_j(t_0) + e_j^w(t_0 + N)
\]

\[
\overline{e}_j(t_0 + N) = \left[A_j - L_j C \right]^N \overline{e}_j(t_0) + \overline{e}_j^w(t_0 + N)
\]

Then, it is straightforward that (46) follows from (44)-(45). □

Remark 2. The last result of Proposition 3 implies that in the cases when the instants of commutation are unknown, and we cannot reinitializate the interval observer (36)-(37) properly for the correct value of \(\kappa \), if the inputs are sufficiently rich, then the global interval observer will start to produce correct state bounds after some transient. In fact, if the gains \(L_j \) and \(\overline{\varphi}_j \) are designed such that the matrices \(A_j - L_j C \) and \(A_j - \overline{\varphi}_j C \) are Schur stable, then the terms corresponding to the free responses from initial conditions \(e_j(t_0), \overline{e}_j(t_0) \) will converge to zero.

Hence, since the terms \(e_j^w(\cdot), \overline{e}_j^w(\cdot) \) are always positive, if they are also sufficiently exciting (e.g., but not necessarily, \(v(t) \) is a white noise), then \(e_j(\cdot) \) and \(\overline{e}_j(\cdot) \) will eventually become positive and (46) will hold.

4. SIMULATION RESULTS

The aim of this section is to illustrate the comparison between local and global observers by means of a simulation study. Let us begin introducing the following system matrices:

\[
A(\kappa) = A_0 + \kappa A_1
\]

\[
B(\kappa) = B_0 + \kappa B_1
\]

with

\[
A_0 = \begin{bmatrix} 0.4 & 0.2 \\ 0.2 & 0.3 \end{bmatrix}, \quad B_0 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}
\]

\[
A_1 = \begin{bmatrix} 0.2 & 0.1 \\ -0.1 & -0.3 \end{bmatrix}, \quad B_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}
\]

The unknown parameter \(\kappa \) is assumed to vary in the discrete set \(\{-0.5, 0, 0.5\} \) according to the following switching scheme:

\[
\kappa(t) := \begin{cases} -0.5 & t < 0 \\ 0 & 0 \leq t < 200 \\ 0.5 & t \geq 200 \end{cases}
\]

Assuming that \(C = I \), the local, global and global observer gains have been computed such that the corresponding closed-loop matrices equal the zero matrix. The bounds for local, global and glabal observers are computed based on (17)-(18), (34)-(35) and (47)-(48), respectively, assuming that each element of the state and input matrices is affected by bounded
uncertainty between -0.05 and 0.05. The results obtained for
an input $u(t) = -3 + \cos(0.06t)$ from an initial condition $[0, 0]^T \leq x(0) \leq [0.5, 0.5]^T$, are depicted in Figs. 1-4. It is
worth to note that, as expected, the glocal bounds are more
conservative than the local ones, but the latter are more likely
to be violated due to changes in the system’s active mode.

In a second simulation study, a statistical analysis has been
performed to compare the estimation effectiveness of local and
glocal observers. A family of 1000 switched systems with a
fixed structure has been generated by random coefficient selec-
tion. The system matrices have been designed to depend
linearly on the switching parameter $\kappa(t)$, whose range is
constrained to a discrete set containing three admissible values.
In the simulations the parameter $\kappa(t)$ is forced to undergo a
switch at $t = 200$ and at $t = 600$. When a switch occurs, a
transient is triggered both in the local and the glocal observers,
with a consequent possible temporary violation of bounds (17)-
(18) and (47)-(48). Focusing on the time samples following the
switches, we are interested in comparing the number of systems
that are violating the bounds. The two scenarios are represented
in the histograms in Figs. 5-6. In both cases, it is clear that a
smaller proportion of glocal observers fails to remain within the
bounds compared to local observers and, furthermore, that the
rate of recovery for glocal observers is remarkably higher.
In conclusion, as already mentioned, on the one hand glocal ob-
servers introduce a larger conservativeness for the computation
of bounds but, on the other hand, they also guarantee a better
accuracy for the identification of correct switching modes.

5. CONCLUSIONS

This paper has analyzed how different types of interval ob-
servers behave after a commutation of active mode in uncertain
discrete-time switched systems, and how the effects of non-
positivity of interval state estimation errors can be reduced. In
particular, the performance of local interval observers has been
compared to the one obtained using glocal interval observers,
i.e. local observers fed by the information provided by a global
interval observer. The simulation results show that, although
glocal observers introduce conservativeness in the computation
of the interval bounds, they also guarantee a better accuracy for
the identification of correct switching modes.
REFERENCES

