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1. INTRODUCTION

The concept of finite-time stability, first introduced in Do-
rato (1961), of great importance mainly when dealing with
physical systems, has been widely investigated. A system
is finite-time stable (FTS) if the trajectories, starting from
a given set of initial conditions, remain within a predefined
domain during a finite time interval (Amato et al., 2014).
It is worth noting that asymptotic stability does not imply
on finite-time stability, and vice-versa (Amato et al., 2013),
thus the development of techniques related to FTS systems
is important mainly in applications where the trajectories
cannot exceed some given limits.

There is a fair amount of papers in the literature related
to FTS systems. The paper of Garcia et al. (2009) pro-
poses the synthesis of a state-feedback controller based
on the resolution of parameterized Lyapunov matrix dif-
ferential equations to ensure the finite-time stability of
linear time-varying (LTV) systems. A method to syn-
thesize switched state-feedback gains for switched linear
systems is proposed in Du et al. (2009) based on linear
matrix inequalities (LMIs). Another LMI-based technique
is presented in Borges et al. (2013), where the system
is supposed to be linear and depending on time-varying
bounded parameters. In Amato et al. (2006), a strat-
egy for the synthesis of time-varying state and output-
feedback gains to guarantee the controlled LTV system
to be FTS is proposed. The methodology is based on the
resolution of a set of differential linear matrix inequalities
(DLMIs), which was later extended, to cite a few examples,
in Amato et al. (2010) to compute time-varying dynamical
controllers, in Amato et al. (2013) to deal with impulsive
time-varying systems and in Amato et al. (2015) to ensure
the finite-time stability of stochastic LTV systems. The
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main issue with the DLMI strategy is that the conditions
are infinite-dimensional problems, and a discretization is
needed. An alternative procedure is presented in Agulhari
(2018), where a discrete-time LTV system is obtained from
the continuous-time system to be controlled and, if a set of
conditions relating the finite-time stability of both systems
is satisfied, then a piecewise constant state-feedback gain
is obtained.

In more realistic situations, systems can be affected by ex-
ternal noises. To deal with this case, the concept of finite-
time boundedness was introduced in Amato et al. (2001).
A system is finite-time bounded (FTB) if it is FTS even
under the effects of bounded exogenous inputs, such as
noises. The paper of Amato et al. (2001) also presents LMI
conditions to compute state-feedback gains that ensure the
controlled system to be FTB. Alternative FTB analysis
conditions are presented in Ichihara and Katayama (2009),
and an extension of the finite-time boundedness to deal
with input-to-output stability is proposed in Amato et al.
(2002). The work of Meng and Shen (2009) considers not
only external noises, but also uncertainties, representing a
wider class of dynamic systems, that is also the focus of the
present paper. Meng and Shen (2009) propose sufficient
conditions for the synthesis of state-feedback controllers
that guarantee the robust finite-time boundedness of the
system, i.e., both the finite-time boundedness and an up-
per bound for the H∞ norm of the closed-loop system. A
similar robust treatment is also presented in Amato et al.
(2011) and Amato et al. (2014), but without explicitly
considering the finite-time boundedness property.

The main contribution of this paper is to propose a method
for the synthesis of state-feedback gains that guarantee
the robust finite-time boundedness of a continuous-time
LTV system. The method is an extension of the tech-
nique presented in Agulhari (2018), where a discretized
system is first obtained and, then, a discrete-time state-
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feedback gain is computed and used to generate the desired
continuous-time gain. The main advantage of the approach
is the utilization of discrete-time conditions, which do not
resort to time-derivatives and, therefore, can be numeri-
cally addressed in a simpler way.

The paper is organized as follows. Section 2 presents the
preliminaries, which are important for the development
of the main results proposed in Section 3. A numerical
example illustrates the validity of the synthesis technique
in Section 4, and Section 5 concludes the paper.

2. PRELIMINARIES

Consider the LTV continuous-time system

ẋ(t) = A(t)x(t) +Bu(t)u(t) +Bw(t)w(t)

z(t) = C(t)x(t) +Du(t)u(t) +Dw(t)w(t),
(1)

with x(t) ∈ R
nx being the states of the system, u(t) ∈ R

nu

the control inputs, w(t) ∈ R
nw the exogenous inputs and

z(t) ∈ R
nz the controlled outputs. The system matrices

are supposed to be integrable functions of t (Zadeh and
Desoer, 1963) with appropriate dimensions. Consider also
the open-loop transition matrix Φ(t, t0) solution of

dΦ(t, t0)

dt
= A(t)Φ(t, t0), Φ(t0, t0) = I, t0 known.

The main properties of the transition matrix can be found,
for example, in Zadeh and Desoer (1963); D’Angelo (1970).

The definition of finite-time stability, as enunciated in Am-
ato et al. (2014), is reproduced below.

Definition 1. Given an initial time t0, a positive scalar
T , a positive definite matrix R and a positive definite
matrix-valued function Γ(t), defined over [t0, t0 + T ] such
that Γ(t0) < R, the time-varying linear system (1), with
w(t) = 0 and a given u(t), is said to be FTS with respect
to (t0, T,R,Γ(t)) if, ∀t ∈ [t0, t0 + T ],

x(t0)
TRx(t0) ≤ 1 ⇒ x(t)TΓ(t)x(t) < 1. (2)

Consider also the LTV discrete-time system defined by

x̂(k + 1) = Â(k)x̂(k) + B̂u(k)û(k) + B̂w(k)ŵ(k)

ẑ(k) = Ĉ(k)x̂(k) + D̂u(k)û(k) + D̂w(k)ŵ(k),
(3)

where all the matrices present the same dimensions as
their continuous-time counterparts in (1). The definition
of finite-time stability for system (3), according to Amato
et al. (2014), is given as follows.

Definition 2. Given an initial time k0, a positive integer
N , a positive definite matrix R, and a positive definite
matrix-valued sequence Γ̂(k), defined over {k0, . . . , k0+N}
such that Γ̂(k0) < R, the discrete-time LTV system (3),
with ŵ(k) = 0 and a given û(k), is said to be FTS with

respect to (k0, N,R, Γ̂(k)) if, ∀k ∈ {k0, . . . , k0 +N},
x̂(k0)

TRx̂(k0) ≤ 1 ⇒ x̂(k)T Γ̂(k)x̂(k) < 1. (4)

Lemma 3 briefly reproduces an important result from Ag-
ulhari (2018), which is a method for generating a state-
feedback control law u(t) = K(t)x(t) to ensure the finite-
time stability of system (1) with w(t) = 0. The technique
is based on the synthesis of a discrete-time state-feedback
gain such that û(k) = K̂(k)x̂(k) guarantees that a related
discretized system (3), with ŵ(k) = 0, is FTS.

Lemma 3. Consider the continuous-time and the discrete-
time LTV systems (1) and (3), respectively with w(t) = 0
and ŵ(k) = 0. Let the discrete-time matrices from (3) be
given by

Â(k) = Φ(tk+1, tk), B̂u(k) = Bu(tk+1), (5)

being tk = t0+kδ and δ a predefined scalar. The piecewise
constant state-feedback control law

u(t) = K(t)x(t), K(t̃) =
1

δ
K̂(k)Φ(tk, tk+1), tk ≤ t̃ < tk+1,

(6)
guarantees the finite-time stability of system (1) with
w(t) = 0 and with respect to (c1, c2, T,Γ(t)) if there exists
a δ > 0 and a bounded discrete-time state-feedback gain
K̂(k) that ensures the finite-time stability of system (3)
with ŵ(k) = 0 and with respect to (c1, c2, N, cclδ (k)Γ(tk)),
being δ = T/N and cclδ (k) a scalar sequence satisfying

Φcl(t̃, tk)
TΓ(t̃)Φcl(t̃, tk) ≤ cclδ (k)Γ(tk),

t̃ ∈ [tk, tk+1), k = 0, . . . , N − 1, (7)

where Φcl(·, ·) is the transition matrix of the closed-loop
system (1) with the control law (6).

The results from the paper of Agulhari (2018) ensure that
the controlled states remain within a predefined set during
a given time interval, but considering w(t) = 0, i.e., no
noises or external disturbances are supposed to affect the
system. In a more general setting, it is important to con-
sider such issues. Since several classes of external distur-
bances can be modeled as given by (1) (Boyd et al., 1994;
Green and Limebeer, 1995), it is interesting to develop
a technique to generate controllers guaranteeing FTS-
based properties for systems affected by uncertainties, also
known as finite-time boundedness as defined in Amato
et al. (2001, 2014). An adaptation of such definition is
presented next.

Definition 4. Given an initial time t0, a positive scalar T , a
positive definite matrix R and a positive definite matrix-
valued function Γ(t), defined over [t0, t0 + T ] such that
Γ(t0) < R. The continuous-time LTV system (1) is said
to be robust finite-time bounded (RFTB) with respect to
(t0, T,R,Γ(t), γ, d) if, for all w(t) ∈ L2 such that

||w(t)||22 ≤ d, (8)

one has
||z(t)||22 ≤ γ2||w(t)||22 (9)

and, ∀t ∈ [t0, t0 + T ],

x(t0)
TRx(t0) ≤ 1 ⇒ x(t)TΓ(t)x(t) < 1. (10)

The corresponding definition of RFTB for discrete-time
systems is stated in the sequence.

Definition 5. Given an initial time k0, a positive inte-
ger scalar N , a positive definite matrix R and a pos-
itive definite matrix-valued function Γ̂(k), defined over

{k0, . . . , k0 + N}, such that Γ̂(k0) < R. The discrete-
time LTV system (3) is said to be RFTB with respect

to (k0, N,R, Γ̂(k), γ̂, d̂) if, for all ŵ(k) ∈ ℓ2 such that

||ŵ(k)||22 ≤ d̂, (11)

one has
||ẑ(k)||22 ≤ γ̂2||ŵ(k)||22 (12)

and, ∀k ∈ {k0, . . . , k0 +N},
x̂(k0)

TRx̂(k0) ≤ 1 ⇒ x̂(t)T Γ̂(t)x̂(t) < 1. (13)
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The main contribution of this paper is to propose a tech-
nique for the synthesis of a continuous-time state-feedback
controller u(t) = K(t)x(t) such that the closed-loop sys-
tem (1) is RFTB with respect to (t0, T,R,Γ(t), γ, d), being
K(t) computed from an appropriate state-feedback gain

K̂(k) that ensures the robust finite-time boundedness of a
related discrete-time system (3), as presented in the next
section.

3. MAIN RESULTS

The following theorem is an adaptation of Lemma 3.

Theorem 6. Given the positive scalars T ∈ R and N ∈ Z,
define δ = T/N , tk = t0+kδ and consider the discrete-time
LTV system given by

Â(k) = Φ(tk+1, tk), B̂u(k) = Bu(tk+1),

B̂w(k) =
√
δBw(tk+1), Ĉ =

√
δC(tk+1), (14)

D̂u(k) = Du(tk+1), D̂w(k) = Dw(tk+1).

The piecewise constant state-feedback gain control law
u(t) = K(t)x(t), with K(t) given by

K(t̃) =
1

δ
K̂(k)Φ(tk, tk+1), tk ≤ t̃ < tk+1 (15)

guarantees system (1) to be RFTB with respect to
(t0, T,R,Γ(t), γ̂+ǫ(δ), d) if the pair {A(t), Bu(t)} from (1)
is uniformly completely controllable, and if there exists a
bounded discrete-time state-feedback gain K̂(k) such that
system (14) is RFTB with respect to (0, N,R, cclδ (k)Γ(tk),
γ̂, d) for a certain function ǫ(·), being cclδ (k) a scalar se-
quence satisfying (7).

Proof. Suppose that K̂(k) is a state-feedback gain guar-
anteeing

||ẑ(k)||22 − γ̂2||ŵ(k)||22 ≤ 0, ŵ(k) ∈ ℓ2, ∀k ≥ k0. (16)

Using some properties for discrete-time LTV systems (Rugh,
1996), (16) can be rewritten as

∣∣∣
∣∣∣
k−1∑

j=0

Ĉ(k)Φ̂cl(k, j + 1)B̂w(j)ŵ(j) + D̂w(k)ŵ(k)
∣∣∣
∣∣∣
2

2

− γ̂2
∣∣∣
∣∣∣ŵ(k)

∣∣∣
∣∣∣
2

2
≤ 0, (17)

begin Φ̂cl(·, ·) the transition matrix of the closed-loop
discrete-time system. The last inequality is valid for all
γ̃ ≥ γ̂ and is equivalent to

∣∣∣
∣∣∣
k−1∑

j=0

C(tk+1)Φ(tk, tj+1)Bw(tj+1)ŵ(j)δ

+Dw(tk+1)ŵ(k)
∣∣∣
∣∣∣
2

2
− γ̃2

∣∣∣
∣∣∣ŵ(k)

∣∣∣
∣∣∣
2

2
≤ 0. (18)

For δ → 0 and setting ŵ(k) = w(tk+1), the Riemann
sum (18) tends to (Stewart, 2008)

∣∣∣
∣∣∣
∫ t

t0

C(t)Φ(t, τ)Bw(τ)w(τ)dτ +Dw(t)w(t)

︸ ︷︷ ︸
p(t,t0)

∣∣∣
∣∣∣
2

2

− γ̃2
∣∣∣
∣∣∣w(t)

∣∣∣
∣∣∣
2

2
≤ 0, ∀t ∈ [t0, t0 + T ],

with the equality attained for γ̃ = γ̂. However, for δ > 0,
(18) is approximated by

||p(t, t0) + f(t, δ)||22 − γ̃2||w(t) + g(t, δ)||22 ≤ 0, (19)

being f(t, δ) and g(t, δ) the approximation errors. Note
that, since w(t) ∈ L2 and ŵ(k) ∈ ℓ2, then g(t, δ) can
be disregarded for the worst-case analysis. The left side
of (19) is therefore upper-bounded by

||p(t, t0)||22 + ||f(t, δ)||22 − γ̃||w(t)||22. (20)

The function f(t, δ) is bounded for fixed values of δ, since
the system matrices are considered to be integrable. Thus,
there exists a function ǫ(δ) such that (20) with γ̃ = γ̂+ǫ(δ)
is still a valid upper bound for (19) and, consequently,

||z(t)||22 ≤ (γ̂ + ǫ(δ))2||w(t)||22, (21)

which is equivalent to (9) for γ = γ̂ + ǫ(δ).

Additionally, comparing hypothesis (8) with (11) yields

||ŵ(k)||22 ≤ d̂ ≤ d.

Therefore, it is sufficient to consider d as a bound for
both the continuous and the discretized exogenous inputs.
Finally, if (7) is satisfied then, according to Lemma 3, the
state-feedback gain (15) ensures (10).

Remark 7. Note that, from (19) and (20),

δ1 < δ2 ⇒ ǫ(δ1) ≤ ǫ(δ2). (22)

The following theorem presents LMI conditions to gen-
erate the discrete-time state-feedback gain K̂(k) used, in
Theorem 6, for the computation of the desired control law.

Theorem 8. If there exist matrices W (k) = W (k)T > 0,
Z(k), a scalar γ̂ and a scalar sequence cclδ (k) satisfying, for
k = 0, . . . , N − 1,



W (k) W (k)Â(k)T + Z(k)T B̂u(k)

T

⋆ W (k + 1)
⋆ ⋆
⋆ ⋆

W (k)Ĉ(k)T + Z(k)T D̂u(k)
T 0

0 B̂w(k)

I D̂w(k)
⋆ γ̂2I


 > 0, (23)

[
W (k) W (k)Γ(tk)c

cl
δ (k)

⋆ Γ(tk)c
cl
δ (k)

]
≥ 0, (24)

[
(1− γ̂2Nd̂)R I

⋆ W (0)

]
> 0, (25)

then the state-feedback gain K̂(k) = Z(k)W (k)−1 en-
sures that system (3) is RFTB with respect to (k0, N,R,

Γ(tk)c
cl
δ (k), γ̂, d̂).

Proof. Setting Z(k) = K̂(k)W (k), Âcl(k) = Â(k) +

B̂u(k)K̂(k) and Ĉcl(k) = Ĉ(k) + D̂u(k)K̂(k), (23) is
equivalent to



W (k) W (k)Âcl(k)
T W (k)Ĉcl(k)

T 0

⋆ W (k + 1) 0 B̂w(k)

⋆ ⋆ I D̂w(k)
⋆ ⋆ ⋆ γ̂2I


 > 0. (26)

Consider now the Lyapunov function

V (x̂(k)) = x̂(k)TP (k)x̂(k)

and define W (k) = P (k)−1. If (26) is satisfied, then

Ψ(k)
△
= V (x̂(k + 1))− V (x̂(k))

+ ẑ(k)T ẑ(k)− γ̂2ŵ(k)T ŵ(k) < 0 (27)
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and, from Boyd et al. (1994),

||ẑ(k)||22 ≤ γ̂2||ŵ(k)||22. (28)

The application of the Schur complement (Boyd et al.,
1994) in (24) yields

W (k)−W (k)
(
Γ(tk)c

cl
δ (k)

)
W (k) ≥ 0

that, multiplying both sides by P (k) = W (k)−1 on the left
and on the right, implies

x̂(k)TΓ(tk)c
cl
δ (k)x̂(k) ≤ x̂(k)TP (k)x̂(k). (29)

Note that, since

k−1∑

i=0

Ψ(i) = V (x̂(k))− V (x̂(0))

+

k−1∑

i=0

(
ẑ(i)T ẑ(i)− γ2ŵ(i)T ŵ(i)

)

= x̂(k)TP (k)x̂(k)− x̂(0)TP (0)x̂(0)

+
k−1∑

i=0

(
ẑ(i)T ẑ(i)− γ̂2ŵ(i)T ŵ(i)

)
(30)

then, for all k ∈ [0, . . . , N ], due to hypothesis (11),

x̂(k)TP (k)x̂(k)

< x̂(0)TP (0)x̂(0)−
k−1∑

i=0

(
ẑ(i)T ẑ(i)− γ̂2ŵ(i)T ŵ(i)

)

< x̂(0)TP (0)x̂(0) +

k−1∑

i=0

(
γ̂2ŵ(i)T ŵ(i)

)

< x̂(0)TP (0)x̂(0) + γ̂2Nd̂. (31)

On the other hand, applying the Schur complement over
condition (25) yields

P (0) < (1− γ̂2Nd̂)R. (32)

Consequently, considering the hypothesis x̂(0)TRx̂(0) < 1
and using inequalities (29), (31) and (32), one has

x̂(k)TΓ(tk)c
cl
δ (k)x̂(k) < x̂(k)TP (k)x̂(k)

< x̂(0)TP (0)x̂(0) + γ̂2Nd̂

<
(
1− γ̂2d̂

)
x̂(0)TRx̂(0) + γ̂2Nd̂ < 1. (33)

Therefore, for k = 0, . . . , N − 1,

x̂(0)TRx̂(0) < 1 ⇒ x̂(k)TΓ(tk)c
cl
δ (k)x̂(k) < 1,

thus system (3) is RFTB with respect to (0, N,R,

Γ(tk)c
cl
δ (k), γ̂, d̂).

Theorem 8 proposes a strategy to compute a discrete-
time state-feedback gain K̂(k) that ensures the RFTB
of a discretized version of system (1), while Theorem 6
enunciates a way to adapt such gain to generate the desired
continuous-time control law u(t) = K(t)x(t). However, the
theorems do not guarantee condition (7) to be satisfied,
since it depends on the closed-loop transition matrix;
thus, an a posteriori verification would be necessary. On
the other hand, it is possible to resort to properties of
transition matrices to generate sufficient conditions to
certify (7) during the synthesis procedure, as proposed in
the following theorem.

Theorem 9. For given scalars γ̂ and d, if system (1) is
uniformly completely controllable (Kalman, 1960), and
if there exist matrices W (k) = W (k)T > 0, Z(k), a
sufficiently small scalar δ and a scalar sequence cclδ (k)
satisfying conditions (23), (24), (25) and

[
W (k)cδ(k)Γ(tk)W (k)

⋆

(W (k) + δZ(k)T B̂u(k)
T )α(δ, k)Γ̄(k)

Γ̄(k)α(δ, k)

]
≥ 0,

k = 0, . . . , N − 1, (34)

with Â(k), B̂u(k), B̂w(k), Ĉ(k), D̂u(k), and B̂w(k) given
by (14), Γ̄(k) = σ̄(k)I,

σ̄(k) = max
t∈[tk,tk+1)

||Γ(t)||2 (35)

and α(δ, k) a time-varying scalar satisfying

||Φ(t, tk)||2 ≤ α(δ, k), ∀t ∈ [tk, tk+1), (36)

then the piecewise constant state-feedback control law
u(t) = K(t)x(t), with K(t) given by

K(t̃) =
1

δ
Z(k)W (k)−1Φ(tk, tk+1), tk ≤ t̃ < tk+1 (37)

ensures that system (1) is RFTB with respect to (t0, T,R,
Γ(t), γ̂ + ǫ(δ), d) for a certain function ǫ(·).

Proof. The bound α(δ, k) satisfying (36) exists if sys-
tem (1) is uniformly completely controllable (Kalman,
1960). Using the results of theorems 6 and 8, if the

discrete-time state-feedback gain K̂(k) = Z(k)W (k)−1

guarantees system (3) to be RFTB with respect to

(0, N,R,Γ(tk)c
cl
δ (k), γ̂, d̂), then system (1) is RFTB with

respect to (t0, T,R,Γ(t), γ̂+ ǫ(δ), d), for a certain function
ǫ(·), if condition (7) is satisfied.

It remains to show that the feasibility of (34) implies on
condition (7). To do so, first note (Agulhari, 2018) that
the transition matrix Φcl(t, t0) of the closed-loop system,
solution of

dΦcl(t, t0)

dt
=

(
A(t) +Bu(t)K(t)

)
Φcl(t, t0),

can be rewritten as

Φcl(t, tk) = Φ(t, tk)M(t, tk)

with Φ(t, t0) being the open-loop transition matrix and
M(·, ·) solution of

dM(t+ δ, t)

dδ
= Φ(t, t+δ)B(t+δ)K(t+δ)Φ(t+δ, t). (38)

By applying the first order Euler approximation (Lu, 2000)
of matrix M(t+ δ, t) and considering (38), one has

Φcl(t, tk) ≈
(
I + δBu(t)K(t)

)
Φ(t, tk).

Therefore, for a small value of δ, condition (7) can be
approximated by

(
(I+δBu(t)K(t))Φ(t, tk)

)T
Γ(t)

(
(I+δBu(t)K(t))Φ(t, tk)

)

≤ ||(I + δBu(t)K(t))Φ(t, tk)||22Γ(t) ≤ cclδ (k)Γ(tk).

Note also, following the lines from Agulhari (2018), that
(
(I+δBu(t)K(t))Φ(t, tk)

)T
Γ(t)

(
(I+δBu(t)K(t))Φ(t, tk)

)

≤ Ω(k)T Γ̄(k)Ω(k)α(δ, k),

with

Ω(k) =
(
(I + δB̂u(k)Z(k)W (k)−1)Φ(t, tk)

)
.
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If
Ω(k)T Γ̄(k)Ω(k)α(δ, k) ≤ cclδ (k)Γ(tk), (39)

then condition (7) is satisfied. Rewriting inequality (39),
one has

(
W (k)+δB̂u(k)Z(k)

)T
Γ̄(k)

(
W (k)+δB̂u(k)Z(k)

)
α(δ, k)

≤ W (k)cclδ (k)Γ(tk)W (k),

and a Schur complement yields (34), concluding the proof.

The conditions stated in Theorem 9 present bilinearities,
mainly due the product between cclδ (k) and other matrix
variables. In fact, high values for cclδ (k) could be fixed to
deal with inter-sample issues that could occur by using the
discrete-time approach proposed in the paper, potentially
causing problems to compute a feasible discrete-time state-
feedback gain K̂(k). The following algorithm is proposed
to deal with such problems.

Algorithm 1.

(1) Set cclδ (k) = 1, for all k ∈ {0, . . . , N − 1};
(2) With the current cclδ (k), compute W (k) and Z(k)

satisfying conditions (23)–(25);
(3) If no feasible solution is found, then the proposed

strategy fails to find a suitable solution; stop. Oth-
erwise, proceed to the next step;

(4) Verify the validity of condition (7) with the current
value of cclδ (k). An alternative for such verification is
to use the results from Lemma 1 of Agulhari (2018).
If (7) holds, then the computed gain satisfies the
conditions of Theorem 9, ending the algorithm with
a proper result. Otherwise, using the obtained W (k)
and Z(k), compute cclδ (k) as the solution of

min
ccl
δ
(k)

N−1∑

i=0

cclδ (i) s.t. (34);

(5) With the new cclδ (k), return to Step 2.

4. ILLUSTRATIVE EXAMPLE

Consider the problem of regulating a physical system
whose mass varies over time, adapted from Forbes and
Damaren (2010) and given by
[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
−k
m(t)

ṁ(t)+c

m(t)

] [
x1(t)
x2(t)

]
+

[
0
1

m(t)

]
u(t) +

[
0
1

]
w(t),

z(t) = [1 1]x(t) + 0.2w(t),
(40)

with m(t) = mfe
−at + mi, mf = 1 kg, mi = 1.5 kg,

a = 0.5t−1, c = 10−5 Ns/m and k = 5 N/m. The
exogenous input w(t) is supposed to be a Gaussian random
variable with zero mean, unitary variance and such that
||w(t)||22 ≤ 1.

The objective of this example is to determine, for each
value of δ ∈ Λ, with

Λ = {0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14,

0.16, 0.18, 0.20, 0.3, 0.4, 0.5},
the minimum value of σ (computed through a bisec-
tion method) for which Algorithm 1 yields controllers
guaranteeing system (40) to be RFTB with respect to

(0, 10, σI, I, γ, 1) for some value of γ. Table 1 presents such
results, along with the minimum value γ∗ for each opti-
mal σ∗ obtained. The numbers of LMI rows and decision
variables of conditions (23)–(25), important for assessing
the computational complexity of the technique, are also
presented in Table 1. The maximum values of x(t)Tx(t) for
the trajectories from 100 random initial values satisfying
σ∗x(0)Tx(0) ≤ 1 are depicted in Figure 1, using the
system controlled by the state-feedback gains computed
considering δ = 0.02 and δ = 0.5.

Table 1. Minimum values of σ and γ such
that Algorithm 1 yields feasible results for each
value of δ, along with the numbers of LMI rows
and decision variables of conditions (23)–(25).

δ σ∗ γ∗ Rows Variables

0.02 1.8218 0.2408 5000 2504

0.04 1.1918 0.3402 2500 1254

0.06 1.3384 0.3406 1660 834

0.08 1.4351 0.3769 1250 629

0.10 1.5317 0.4126 1000 504

0.12 1.6284 0.4562 830 419

0.14 1.7493 0.4741 710 359

0.16 1.8686 0.5049 620 314

0.18 2.0151 0.5101 550 279

0.20 2.1481 0.5363 500 254

0.30 3.0182 0.6302 330 169

0.40 4.3354 0.7141 250 129

0.50 6.6558 0.7882 200 104
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Fig. 1. Bounds for the maximum values of x(t)Tx(t) from
100 random initial conditions applied to system (40),
using the state-feedback controller computed from
Algorithm 1 with δ = 0.5 (solid line) and δ = 0.02
(dashed line).

Note that higher values of δ resulted in larger values for
σ∗, meaning that the set of valid initial conditions for
which x(t)Tx(t) < 1 is more constrained as δ increases.
Such effect is expected since a larger δ implies on higher
approximation errors in converting the discrete-time to
the continuous-time state-feedback gain K(t). Also, since
K(t) is piecewise constant for a δ interval, the controlled
trajectories may present a unstable behavior for some
tk < t ≤ tk+1, as can be seen in Figure 1 for 0 < t < 0.5.
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The trajectories for δ = 0.02 are smoother due to the
smaller δ.

The minimum bound γ∗ also increases proportionally with
δ, mainly due to the effect of ǫ(δ), which is a consequence
of approximation errors in the discretization procedure
and, according to Remark 7, grows with δ. Figure 1
also depicts such effect, since lower values for γ imply
on a greater robustness against w(t), which hinder the
trajectories for δ = 0.5 to reach the origin, although still
guaranteeing the desired boundedness. On the other hand,
smaller values of δ imply on a higher number of LMI
rows and decision variables, as shown in Table 1, thus
increasing the numerical complexity of the technique. The
analysis of the obtained results evidences that δ represents
a tradeoff factor between computational complexity and
the quality of the solution, inspiring further researches for
future works.

5. CONCLUSION

A method for the synthesis of time-varying state-feedback
gains, capable of guaranteeing the RFTB of continuous-
time LTV systems, is presented in this paper. The strategy
resorts to the discretization of the system, followed by
a procedure to compute a discrete-time state-feedback
gain satisfying a set of conditions. The discretized gain
is then used to generate the desired continuous-time gain.
Since the technique is based on a discrete-time system, the
conditions can be implemented in a straightforward way
through an algorithm. Due to the discretization procedure,
there is a tradeoff between numerical complexity and the
quality of the resulting controller, which can be regulated
by the user through a scalar parameter. A numerical
experiment is also presented to illustrate the main features
of the proposed method.
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