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Dávid Csercsik ∗,∗∗ Levente Kovács ∗
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Center of Óbuda University, Óbuda University, Budapest, Hungary

(e-mail: csercsik@itk.ppke.hu)
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Abstract: Anti-angiogenic drugs are relatively new tools in cancer therapy with very low side-
effects compared to earlier approaches. These drugs inhibit the formation of new blood vessels
in the tumor, thus cutting its cells from nutrient supply. As proliferating tumor cells have very
intensive metabolism, the lack of nutrients provides a significant barrier for the growth rate of
the tumor. In the recent years it has been shown that the dosage protocol of these drugs may
be critical in terms of their efficiency. In addition, several papers are considering model-based
methods for therapy optimization and potential feedback control of tumor growth, based on
the application of anti-angiogenic drugs. In this paper we use the framework of reaction kinetic
systems to formulate simple models for important mechanisms present in vascular tumor growth,
and analyze their identifiability properties assuming various plausible measurable variables. The
conclusions of the article may contribute to experiment design regarding identification of such
and similar models.
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1. INTRODUCTION

Several computational models of tumor growth have been
described in the literature, from simple ones (Sápi et al.,
2015a) to complex and spatially detailed approaches as
(Bauer et al., 2007; Gevertz and Torquato, 2006). One
of the main motivations behind developing tumor growth
models is to use their predictive power to estimate
the effects of possible therapeutic approaches in cancer
treatment (Levine et al., 2000; Arakelyan et al., 2002;
Poleszczuk et al., 2015).

Angiogenesis, an important form of neuvascularization,
plays an important role in tumor development (Folkman,
1992, 2002). During the process of angiogenesis, new blood
vessels are formed, which contribute to the nutrient sup-
port of the intensively metabolizing tumor cells. Anti-
angiogenic drugs as Avastin (active substance of the phar-
macological agent bevacizumab) inhibit the process of an-
giogenesis, thus cutting the proliferating tumor cells from
nutrient supply (Ferrara et al., 2005). These drugs have
significantly less side effects compared to conventional
chemotherapeutic drugs used in cancer therapy. Recently
it has been described that the dosage of these drugs is very
critical regarding their efficiency. Sápi et al. (2015b) detail
the benefits of quasi-continuous therapy over traditional
one-shot protocols, and shows that even applying a sig-
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nificantly lower total drug amount, the treatment can be
made more effective.

Some of the recently developed simple models have also
been used for feedback approaches, namely optimal dis-
crete time control (Drexler et al., 2017c; Sápi et al., 2017)
and positive nonlinear control (Drexler et al., 2017d).

Recent models (Drexler et al., 2017b; Csercsik and Kovács,
2019) aim to describe the tumor growth under the anti-
angiogenic effect of bevacizumab, in a control oriented-
manner with few parameters and state-variables. These
approaches already use concepts from the theory of reac-
tion kinetic networks or chemical reaction networks (CRN)
to describe various processes taking place during tumor
progression (e.g. cell proliferation and drug effect).

CRNs are nonnegative systems, capable of producing
important qualitative dynamical phenomena as stable /
unstable equilibria, limit cycles, multistability and even
chaotic behavior). Therefore CRNs can be regarded as

”prototypes of nonlinear systems” (Érdi and Tóth, 1989).
The theory of chemical reaction networks has significant
results relating qualitative dynamical properties and net-
work structure (Horn and Jackson, 1972; Feinberg, 1987).

Considering a nonlinear ordinary differential equation
(ODE) state space model in CRN or any other time-
invariant form, to fit the model for experimental data, one
must perform parameter estimation, the quality of which
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is a key point regarding the subsequent performance of the
obtained model (Ljung, 1987).

Structural identifiability properties of a system describe
whether there is a theoretical possibility for the unique
determination of system parameters from theoretically
perfect input-output measurements or not. Identifiability
is a property related to the model structure itself, and its
analysis should ideally precede any experiment design or
parameter estimation process. Early references for study-
ing identifiability properties of dynamical systems are
(Walter, 1982, 1987). Davidescu and Jorgensen (Davidescu
and Jorgensen, 2008) discuss the problem of structural
parameter identifiability for CRNs. Meshkat et al. analyze
identifiable parameter combinations in nonlinear dynamic
systems biology models (Meshkat et al., 2014). Identifiable
parameter combinations in nonlinear ODE models and
the method of rational reparameterization is described in
(Meshkat et al., 2011). Structural identifiability analysis
via symmetries of differential equations is performed in
(Yates et al., 2009).

The articles (Chis et al., 2011; Raue et al., 2014) perform
critical comparison of methods regarding structural iden-
tifiability analysis for systems biology models.

In this paper our aim is to create models of the basic
mechanisms of vascular tumor growth in the CRN frame-
work, while also provide some basic results about their
identifiability with respect to realistic outputs.

2. METHODS

Probably the most cited article related to structural iden-
tifiability of nonlinear systems is (Ljung and Glad, 1994).
In section 6 of (Ljung and Glad, 1994) the importance of
the linear regression form is discussed. The parameters are
denoted with θ, while y and u stand for the output(s) and
input(s) of the system. The argument in (Ljung and Glad,
1994) states that if the model equations may be rearranged
to the form

Pi(u, y)θi −Qi(u, y) = 0 i = 1, ..., d , (1)

the model structure is globally identifiable (where d is the
number of parameters). P andQmay be arbitrary complex
functions of u and y and of their higher order derivatives.

In the following, we formulate simple reaction mass ac-
tion kinetic (Horn and Jackson, 1972) descriptions for
mechanisms playing important roles in vascular tumor
development, and analyze the identifiability of the implied
model structures via the simple method of searching for
rearrangements to obtain a regression form linear in pa-
rameters – described in eq. (1).

3. RESULTS

We formulate the pathophysiological mechanisms in ques-
tion as reactions. Reactions in the proposed framework are
interpreted as stoichiometric relations between a source
complex and a product complex. Complexes in this ter-
minology are considered as positive linear combination
of species. Species stand for the elementary components
present in the reaction. For example in the reaction

2H +O → H2O

H,O and H2O are the species while 2H +O and H2O are
the complexes.

The CRN framework was originally developed for chemical
reactors where the state variables were interpreted as con-
centrations, but assuming constant density the molecule
numbers can be also interpreted as volumes.

3.1 Simple proliferation

Let us start with the most simple reaction kinetic mecha-
nism which can be related to tumor growth, namely simple
proliferation. If T denotes the volume of tumor cells, the
proliferation process is simply described as

T
k1−→ 2T,

which implies the system equation

Ṫ = k1T, (2)

corresponding to the classic exponential growth model.

In this case, we neglect any other mechanism like necrosis
of the tumor cells or vasculature-dynamics. Considering
that modern medical imaging technologies like e.g. mag-
netic resonance imaging (MRI) and computed tomography
(CT) are available for the description of the spatial charac-
teristics of the tumor, we can assume that the measurable
output is the tumor size, which is in this case equal to the
volume of the tumor cells. As equation (3) shows, in this
case the only parameter k1 is clearly identifiable.

y = T, ẏ = k1T k1 =
ẏ

y
(3)

3.2 Proliferation and necrosis

It is known that due to multiple factors, tumor cells
(typically inside the tumor) tend to necrotize. From the
prospect of tumor growth modelling, it is important to
distinguish these necrotized cells, since they do not prolif-
erate. On the other hand, they also contribute to the total
tumor volume.

T
k1−→ 2T T

k2−→ N

Ṫ = k1T − k2T
Ṅ = k2T (4)

Let us still assume that the measurable output is the tumor
size, which is now the total volume of living and necrotic
tumor cells. In this case,

y = T +N

ẏ = Ṫ + Ṅ = k1T

ÿ = k1(k1T − k2T ) = ẏ(k1 − k2) (5)

from which it can be seen that (k1 − k2) is identifiable.
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3.3 Vasculature-independent growth

In this subsection we consider the mechanism describing
vasculature-independent growth (proliferation), consider-
ing also vasculature internalization. In this model, in addi-
tion to the volume of the tumor cells, we also consider the
volume of the vasculature, which is a potentially critical
factor for tumor growth, regarding the nutrient supply of
cells in the tumor core. Under the tumor core, we mean
the volume inside the tumor, which is not supported by
nutrients via diffusion from the environment. Modelling
of vasculature dynamics is especially important if one
aims to optimize the dosage of anti-angiogenic drugs like
bevacizumab (Sápi et al., 2015b), since these drugs have
a direct effect on angiogenesis, thus an indirect effect on
vasculature volumes.

In the initial phase of the growth when the tumor is small,
and its full volume is sufficiently supplied with nutrients
from the environment by diffusion, it can be assumed that
vasculature is not needed for the growth of the tumor.

Our aim in this case is to describe the phenomenon that
as the tumor grows, it internalizes vasculature from the
surrounding host tissue. This phenomenon is called blood
vessel incorporation or vessel co-option (Döme et al.,
2007), and its importance is more significant in densely
vascularized tissues, as the liver.

In the following the variable V denotes the volume of
vasculature in the tumor. The tumor growth and the
simultaneous vessel incorporation may be described by the
reaction

T
k1−→ 2T + αV,

where the parameter α ≥ 0 is proportional to vasculature
density in the host tissue of the tumor. The implied
differential equations describing the dynamics of the tumor
cell and vasculature volumes are as

Ṫ = k1T

V̇ = k1αT. (6)

The measurable output (the total tumor volume) in this
case is the sum of the tumorous cell volume and the volume
of the tumor vasculature, formally y = T + V . According
to this, we may write

ẏ = k1T + k1αT = (1 + α)k1T

ÿ = k1α(k1T ) = (1 + α)k21T = ẏk1

k1 =
ÿ

ẏ
, (7)

thus k1 is identifiable. On the other hand, α (or (1 + α))
could be expressed in this formalism only, if the single
trajectory of T (not the sum T + V ) would have been
known.

3.4 Vasculature-dependent growth without angiogenesis

After the initial phase of tumor growth, if we neglect
the cells on the periphery, which have sufficient access

of nutrients via diffusion, it is plausible to assume that
proliferation is dependent on nutrient supply thus on vas-
culature presence. In this case we may write the reaction
describing vasculature dependent proliferation as

T + V
k1−→ 2T + (1 + α)V,

where the term (1 + α)V describes the internalization of
vasculature from the environment as the tumor grows (α
still denotes the vasculature density in the environment of
the tumor).

Ṫ = k1TV

V̇ = k1αTV (8)

We still assume that the measurable output is the total
tumor volume, composed of tumor cells and vasculature.
The output derivatives in this case are as follows.

y = T + V

ẏ = k1TV + k1αTV = (1 + α)k1TV (9)

ÿ = (1 + α)k1(Ṫ V + T V̇ )

= (1 + α)k1(k1TV
2 + k1αT

2V )

= k21TV
2 + k21αT

2V + k21αTV
2 + k21α

2T 2V

= (1 + α)k1TV (k1V + k1αT ) = ẏ(k1V + k1αT )

...
y = ÿ(k1V + k1αT ) + ẏ(k1(k1αV T ) + k1α(k1TV ))

= ÿ(k1V + k1αT ) + ẏ(2k21αV T )

=
ÿ2

ẏ
+ ẏ2

2k1α

(1 + α)
(10)

which shows that the term 2k1α
(1+α) is identifiable.

In general, re-parametrization of models may affect their
identifiability properties (Meshkat and Sullivant, 2014). In
this case however, as we will see, the re-parametrization
p1 = k1, p2 = αk1 results in the same linear regression
form.

Ṫ = p1TV

V̇ = p2TV (11)

y = T + V

ẏ = p1TV + p2TV = (p1 + p2)TV (12)

ÿ = (p1 + p2)(p1TV
2 + p2T

2V ) (13)

from which with similar derivations as in the case of the
original parametrization we get
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=
ÿ2

ẏ
+ ẏ2

2p1p2
(p1 + p2)

, (14)

which is equivalent to eq. (10).

Up to this point our assumption was that the only mea-
surable input is the tumor size. Recently, however, sev-
eral novel imaging techniques have been developed, which
make the mapping of vascular micro-structures possible:
Functional photoacoustic microscopy (Zhang et al., 2006)
and doppler optical frequency domain imaging (Vakoc
et al., 2009) are used today already in in vivo setups
for the reconstruction of vascular networks, while dif-
fusible iodine-based contrast-enhanced computed tomog-
raphy (Gignac et al., 2016) may be used in terminal exper-
imental animals. Based on these methods, the tracking of
the development of tumorous vasculature may be possible.
In the following we assume that in addition to the total
tumor size, an other input, namely the total volume of the
vasculature is also available for measurement.

According to our model

Ṫ = k1TV

V̇ = k1αTV, (15)

this implies

y1 = T + V y2 = V

T = y1 − y2

ẏ1 = (1 + α)k1TV

ẏ2 = k1αTV

k1 =
ẏ1 − ẏ2

y2(y1 − y2)

α =
ẏ1

ẏ1 − ẏ2
− 1, (16)

which clearly show the identifiability of k1 and α in this
case.

3.5 Vasculature-dependent growth with angiogenesis

Regarding our reaction kinetic formulation, we capture the
mechanism of angiogenesis in the simplest form as

T + V
k1−→ 2T + (1 + α)V V

k2−→ 2V,

where the first reaction describes the vasculature-dependent
proliferation and the vessel incorporation during tumor
growth, while the second reaction corresponds to angio-
genesis.

This implies the dynamic equations

Ṫ = k1TV

V̇ = k1αTV + k2V (17)

If we consider the previously introduced two outputs to
the system, we can write

y1 = T + V y2 = V T = y1 − y2

ẏ1 = (1 + α)k1TV

ẏ2 = k1αTV + k2V

ẏ1 = (ẏ1 − ẏ2)(1 + α) + k2y1, (18)

where the last equation is a linear regression form regard-
ing the parameters (1 + α) and k2. k1 may be derived as
in eq. (16).

3.6 Vasculature-dependent growth with angiogenesis and
necrosis

Finally, let us consider the scenario where all the previ-
ously detailed mechanisms are at work simultaneously. We
consider the reactions

T + V
k1−→ 2T + (1 + α)V T

k2−→ N V
k3−→ 2V,

which imply the dynamical equations

Ṫ = k1TV − k2T
V̇ = k1αTV + k3V

Ṅ = k2T. (19)

Let us still assume that the first output of the system is the
total volume, which now is the sum of living tumor cells,
necrotic tumor cells and the vasculature y1 = T +N + V .
The second output is still the vasculature volume y2 = V .

ẏ1 = (1 + α)k1TV + k3V

ẏ2 = k1αTV + k3V

ẏ1 = k1TV + ẏ2

ÿ1 = k1(Ṫ V + tV̇ ) + ÿ2

= k1 ((k1TV − k2T )V + (k1αTV + k3V )T ) + ÿ2

= k21TV
2 − k1k2TV + k21αT

2V + k1k3TV + ÿ2

= k1TV (k1V − k2 + k1αT + k3) + ÿ2 (20)

Using the equation k1αT +k3 = ẏ2
y2

, and by rearrangement
we get

ÿ1 − ÿ2 − (ẏ1 − ẏ2)
ẏ2
y2

= (ẏ1 − ẏ2)y2k1 − (ẏ1 − ẏ2)k2

(21)

which is a linear regression form regarding parameters k1
and k2.

On the other hand

ẏ2 = k1αTV + k3V = (ẏ1 − ẏ2)α+ y2k3. (22)
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which is a linear regression form regarding parameters k3
and α.

4. CONCLUSIONS AND FUTURE WORK

In the current paper we considered various simple reaction
kinetic models of pathophysiological mechanisms taking
place during tumor development. Assuming on the one
hand the tumor size as a measurable output and the
vasculature volume as a potential second output on the
other, we analyzed the structural identifiability properties
of the proposed models. The results clearly show that
the measurement of vasculature volume may be critical
regarding the experiment design and parameter estimation
related to such kinetic tumor growth models where the
description of vascular dynamics is also explicitly included
in the formulation. The importance of these models is
significant in the optimization of the dosage protocols
of anti-angiogenic drugs, regarding especially potential
feedback approaches.

The state space models discussed in this article were
autonomous. One possible future research task is to extend
the proposed models with inputs describing the dosage of
various drugs. In this case reactions describing the drug
effects must be taken into account as well. Such extensions
will increase the number of parameters to be estimated,
but also the number of known functions (the input and its
derivatives).

An other straightforward question is how the proposed
models perform regarding parameter estimation in exper-
iments, which provide enough measured signals accord-
ing to the results of the identifiability analysis. Recently
published models (Drexler et al., 2017a,b; Csercsik and
Kovács, 2019) use volume measurement data for model
calibration, originating from experiments, where anti-
angiogenic drugs were administered to animals, according
to various protocols (Sápi et al., 2015b). The results of the
current article show that the identification of models which
incorporate more complex mechanisms of angiogenesis and
vascular tumor growth, may require also measurement
data about vasculature volume and dynamics.

Experiments with simultaneous measurement of the tumor
and vasculature volumes are planned to be carried out
in the foreseeable future in the framework of the Tamed
Cancer ERC grant of the European Union’s Horizon 2020
research and innovation programme (grant agreement No
679681).
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