
Global Sensitivity Analysis on the Bergman
Minimal Model ?

Souransu Nandi Tarunraj Singh

Control, Dynamics and Estimation Laboratory, University at Buffalo,
Buffalo, NY 14221 USA (e-mail: tsingh@buffalo.edu).

Abstract: In this paper, a novel Global Sensitivity Analysis method is developed and is
illustrated on the popular Bergman minimal model for Type 1 Diabetes (T1D). Four parameters
are assumed to be uncertain in the model to mimic patient variability. An algorithm is presented
to evaluate sensitivity metrics by which the uncertain parameters can be ranked. Results reveal
that for a single meal scenario, insulin sensitivity is one of the most important factors after the
consumption of meal that influences the blood glucose concentration in people with T1D.

Keywords: Sensitivity Analysis, Polynomial Chaos, Sobol Indices, Insulin Sensitivity

1. INTRODUCTION

Type 1 Diabetes (T1D) is a chronic ailment which without
careful regulation results in micro-vascular complications
such as retinopathy, neuropathy, nephropathy and macro-
vascular complications such as cardiovascular disease and
strokes. The American Diabetes Association estimates
that the cost associated with the treatment and produc-
tivity loss of patients (with diabetes) has risen from $245
billion in 2012 to $327 billion in 2017, a 34 % increase
(Association et al. (2018)). Therefore there is a clear
motivation from a quality of life and from a health care
economics point of view, to develop an Artificial Pancreas
(AP) which can emulate the human pancreas as closely
as possible. To that end, researchers have developed sev-
eral mathematical models for predicting the blood glucose
levels in T1D patients.

Over the past few decades, models for T1D have in-
creased their fidelity in terms of prediction and perfor-
mance Palumbo et al. (2013). However, this development
takes place at the price of model complexities. Inclusion
of systems of differential equations capturing more sub-
systems of the human physiology, although leads to better
model prediction, increases the number of states as well
as the parameters. Typically, measurements from real pa-
tients are used to estimate these parameters. Errors associ-
ated with the experimental process of measurement as well
as un-modeled physiological behavior, lead to parameters
being identified as random variables with finite support or
a probability distribution.

Even with the computational resources available today, the
increase in the number of parameters makes it difficult
to quantify the state uncertainty in the T1D models as
a function of parametric uncertainties. A comprehensive
Sensitivity Analysis (SA) would have a profound impact
on several avenues of research and development. It would
help us better understand and rank which parameters
contribute (jointly) to the variation of glucose concen-
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tration: thereby motivating researchers to further study
those parameters and their interactions. It would also
help us figure out the non-significant parameters. This
information could be used in a couple of ways. It would give
scientists working on understanding the human physiology
the added information that mathematically the influence
of a certain parameter seems to have little to no effect on
the glucose concentration: hence concluding that the par-
ticular parameter may not be significant in the biological
process. The insignificance of the parameters could also be
interpreted by the control and optimization community as
an opportunity to reduce the uncertain dimension of the
model when solving stochastic optimal control. Other ben-
efits of SA can be found in articles by Saltelli et al. (2004,
2000); Campolongo et al. (2007); Saltelli et al. (2010);
Borgonovo and Plischke (2016) and references there in.

This paper presents a novel sensitivity analysis method to
rank uncertain parameters of a T1D model. The method
presented is a Global Sensitivity Analysis (GSA) technique
that is dependent on the probability distribution function
(pdf) of the evolving blood glucose concentration. The
Bergman model for glucose – insulin dynamics Bergman
et al. (1981), is chosen to illustrate the proposed GSA
formulation. Parameters in the model are considered to
be random variables (including the initial blood glucose
level) to represent the inter- and intra-patient variability.

To propagate the uncertainties of the model through time,
the popular uncertainty quantification tool: Polynomial
Chaos (PC) is used. The time evolving pdfs are then used
to rank the parameters of the model. Using a quantitative
measure, it is determined which parameter has the most
influence on the pdf of the blood glucose level. After
comparing the measures, an evaluation is made on the
relative importance of the uncertain parameters. Compar-
isons are also made to the variance based GSA technique
using Sobol indices. Final results are seen to be extremely
interesting in the context of understanding T1D. It is
observed that a couple of parameters which are directly
linked to the insulin sensitivity of a patient have significant
impact on their blood glucose level.
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Table 1. Statistical Distances and their math-
ematical expressions

Statistical A Description
Distance (D)

Wasserstein W
∫

Ωy
|PY (y)−QY (y)|dy

Hellinger H

[
2

(
1−
∫

Ωy

√
pY (y)qY (y)dy

)] 1
2

Total Variation T 0.5
∫

Ωy
|pY (y)− qY (y)|dy

Kolmogorov K supy∈Ωy
|PY (y)−QY (y)|

Bhattacharya B −log(
∫

Ωy

√
pY (y)qY (y)dy)

Cramer-von Mises C

[∫
Ωy
|PY (y)−QY (y)|2dy

] 1
2

The paper has been structured in the following way. Sec-
tion 2 introduces the moment independent metrics that
have been proposed. Section 3 presents an efficient algo-
rithm to determine the afore-mentioned metrics. Section
4 presents the results from the implementation of the
GSA metrics on the Bergman model; before ending with
concluding remarks in section 5.

2. MOMENT INDEPENDENT METRICS

Similar to Sobol’ indices, several sets of metrics are pre-
sented (also referred to as classes) which capture the con-
tributions of uncertain variables varied individually (first
order effect) and when varied concurrently. The classes are
based on observing the disparity between the output pdf
of a function and the conditional output pdf evaluated at
certain specific locations over the input sub-space.

2.1 Statistical Distance measures

In probability theory, the disparity between two proba-
bility measures is often quantitatively determined using
metrics called statistical distances. Larger the value of
the distance, more distinct are the pdfs. Based on the
penalty levied on the disparity measures, there exists more
than one type of distance. The quantitative value (of
distance) changes with the choice of statistical distance
used. However, they retain certain basic properties such
as non-negativity, symmetry, positive definiteness among
others. A list of important or popular Statistical Distances
(D) have been presented in Table 1. The first and second
columns present the name and a convenient abbreviation
of different Ds respectively. The final column presents
the mathematical expression, where y is used to repre-
sent a realization of the random variable Y , pY (y) and
qY (y) are two distinct pdfs over Y , PY (y) and QY (y) are
the corresponding cdfs and ΩY is the support of Y (i.e.
y ∈ ΩY ). The descriptions for Wasserstein, Hellinger, Total
Variation, Kolmogorov distance can be found in Gibbs
and Su (2002), Bhattacharya distance in Bhattacharyya
(1943) and Cramer-von Mises distance in Baringhaus and
Henze (2017). Henceforth in this article, DA(p, q) is used
to represent the statistical distance with abbreviation A.
For example, DW would refer to the Wasserstein distance.

We present 6 different measures for GSA (refer to Table
1). The measures are different based on the nature of their
penalty with disparity and computational effort required
to compute them.

The Ds can be used to define certain global sensitivity
metrics by comparing disparities between output pdfs
and conditional output pdfs. Depending on the nature of
conditional pdfs, the metrics are divided into classes. For
functional relationships of the form

Y = g(X) (1)

where X ∈ Rn is a vector of n random inputs, Y ∈ R is
a scalar output and g : X → Y is a function which maps
the inputs to the output; class 1 considers the conditional
output pdf fY |Xi

(y, xi) which is the pdf of the output Y
for a given fixed input value of Xi. Class 2 considers the
conditional pdf fY |Xi,Xj

(y, xi, xj) which is the pdf of the
output Y given fixed values of Xi and Xj . Following a
similar pattern we get the higher class metrics. Finally,
a total effect metric for each individual input Xi is also
defined which sums up all the class order metrics which
are relevant to Xi. The total effect metric is analogous to
the total effect Sobol’ indices. Details about the metrics
have been elaborated in the following subsections.

2.2 Class 1 metrics

Consider the equation

Di =

∫
ΩXi

D(fY (y), fY |Xi
(y, xi))fXi

(xi)dxi (2)

where Di is the averaged statistical distance over the
input subspace ΩXi

, ΩXi
represents the domain of Xi (i.e.

xi ∈ ΩXi
),

fY (y) =

∫
ΩX

fX,Y (x, y)dx, (3)

fY |Xi
(y, xi) =

∫
ΩX̃i

fY,X̃i|Xi
(x, y)dx̃i, (4)

fX,Y (x, y) is the joint input output pdf, x is a realization

of X, X̃i is the joint variable X̃i = [X1, ..., Xj , ...Xn]T for

j 6= i, x̃i is a realization of X̃i, ΩX̃i
is the domain of X̃i

and ΩX is the domain of X.

D(fY (y), fY |Xi
(y, xi)) in equation (2) quantifies the dis-

parity between the output pdf and the output pdf condi-
tioned on a single input parameter. If the particular input
Xi (on its own) is unimportant, it would contribute mini-
mally to the marginalized output pdf: which would mean
fY (y) and fY |Xi

(y, xi) are in close proximity: resulting
in low values of D. In contrast, if the input parameter
(Xi) is indeed influential, it would contribute significantly
to the output pdf. This means that the conditioned pdf
fY |Xi

(y, xi) would be far from the marginalized pdf fY (y)
leading to higher values ofD. Hence, on observing what the
values of D are on average, one can estimate the relative
importance of inputs (i.e. larger the value ofDi, more is the
significance of Xi). Note that the metrics Di only represent
the first order effects of the inputs: which means the metric
only captures the disparity between the output pdf and the
conditioned output pdf when only a single input variable
Xi is varied across its domain ΩXi . It does not account for
the effects of the uncertainties when the input variables
are varied simultaneously. The effects from varying inputs
simultaneously are quantified only via higher order effect
metrics (i.e. Class 2 and higher).
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2.3 Class 2 metrics

Similar to Class 1 metrics, consider the equation

Di,j =

∫
ΩXi,Xj

D(fY (y), fY |Xi,Xj
(y, xi, xj))×

fXi,Xj (xi, xj)dxidxj (5)

where Di,j is the averaged statistical distance over the
input subspace ΩXi,Xj and

fY |Xi,Xj
(y, xi, xj) =

∫
ΩX̃ij

fY,X̃ij |Xi,Xj
(x, y)dx̃ij . (6)

If the combination of Xi and Xj is an important contribu-
tor to the uncertainty in the output, then the conditioned
pdf, fY |Xi,Xj

(y, xi, xj) would be further apart from the
marginalized pdf fY (y) since Xi and Xj have been fixed
and are not being varied. This would yield higher values
of the statistical distance D in equation (5). Similar to the
class 1 metric, averaging this distance over the subspace
of ΩXi,Xj

would be indicative of the joint contribution of
Xi and Xj . Analogous arguments can be made about the
joint contribution of m input variables, quantified as class
m metic. If there are a total of n inputs, the final metric
would be a class n metric which would account for the
variation of the output due to the joint variation of all the
n inputs.

2.4 Class n Metric

The class n metric is defined as

Di1,i2,...,in =

∫
ΩX

D(fY (y), fY |X(y,x))fX(x)dx. (7)

Note that fY |X(y,x) is a Dirac delta function because
fixing all the inputs would make the output deterministic
with a definite value. Therefore we would get

fY |X(y,x) = δ(y − g(X)) (8)

and D would measure the statistical distance between the
output pdf and a delta function. Averaging that distance
over the entire ΩX would yield the final class n metric.

2.5 Normalized Metrics

Considering that the values of D can vary largely depend-
ing on the type of statistical distance chosen to be imple-
mented, a normalization of all the metrics are exercised to
facilitate comparisons. The normalized metrics are referred
to asNS and represent a shorthand for Non-moment based
Sensitivity indices. They are defined in the following way:
Class 1 NS:

NSi =
Di∑

Di +
∑
Di,j + · · ·+

∑
Di1,··· ,in−1

(9)

Class 2 NS:

NSij =
Di,j∑

Di +
∑
Di,j + · · ·+

∑
Di1,··· ,in−1

(10)

...

and eventually

Class n− 1 NS:

NSi1,··· ,in−1
=

Di1,··· ,in−1∑
Di +

∑
Di,j + · · ·+

∑
Di1,··· ,in−1

.

(11)

Note that class n metric is not used during normaliza-
tion since it is a constant that would get added to the
denominator of all the NS metrics. As only the relative
values of NS are significant, removing a constant from
the common denominator does not effect the ranking of
the magnitudes of the NS metrics. Evident from the
definitions, NS metrics vary between 0 and 1. Closer the
value of NS to 1, more is the significance of the joint
input uncertainty corresponding to the metric. It should
be noted that the Borgonovo metric δi is a specific Di

where the chosen D type is the Total Variation distance
and the Gamboa metric is analogous to the case where D
type is the Cramer-von Mises distance. However, they only
consider the first order effects and the effect of the joint
variation of the uncertain inputs are not investigated. To
the authors’ best knowledge, a metric based on statistical
distances to capture the first order as well as higher order
effects of contributing input random variables on the na-
ture of the output uncertainty is investigated for the first
time in this work. To quantify the total effect a single input
variable has on the uncertainty of the output, (similar to
the total effect Sobol’ indices), total effect NSTi

metrics
are also defined. The metrics are evaluated as

NSTi
=
∑
Pi

NSi1,··· ,in−1
(12)

where Pj = {(i1, · · · , in−1)∃k, 1 6 k 6 n, ik = j}. The
NSTi

are simply the sum of all the partial sensitivity
measuresNS where the influence ofXi has been accounted
for either in part or in whole.

3. EFFICIENT EVALUATION OF NS INDICES

We often encounter problems in engineering where even a
single function evaluation is computationally expensive.
For those functions, deriving the aforementioned GSA
measures can become impractical especially when output
pdfs and conditioned output pdfs need evaluation. Either
analytical expressions for these pdfs do not exist, cannot
be evaluated or can only be approximated from a large
number of sample realizations (eg. Monte Carlo methods):
making the calculation of the NS metrics through tradi-
tional techniques extremely difficult. Methods to reduce
the computational cost and provide tractable alternatives
to approximate the NS metrics are presented next.

3.1 Polynomial Chaos based Surrogate Model

Polynomial Chaos (PC) is a probabilistic modeling tool
to approximate a stochastic function with a polynomial
function of the random variables. First introduced by
Wiener (1938), to expand a Gaussian process with the help
of an infinite series using Hermite polynomials, PC has
been subsequently thoroughly investigated by a number
of researchers Ghanem and Spanos (1991); Cameron and
Martin (1947); Xiu and Karniadakis (2002). In this paper,

we determine a surrogate model Ŷ using PC for the true
system Y = g(X) such that instead of sampling Y (which

can be expensive), we can sample Ŷ (the surrogate model)
instead, relatively cheaply. From PC theory, it is well
known that a stochastic function Y can be written as an
infinite polynomial series expansion in the form

Y =

∞∑
i=1

YiΦi(X) (13)
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where Φi are certain specific orthogonal set of basis func-
tions in X and Yi ∈ R are their corresponding coefficients.
The nature of Φi is determined by probability measures of
X. The orthogonal bases required for some of the popular
random variable types can be found in the Wiener-Askey
scheme provided in Xiu and Karniadakis (2002). Equation
(13) is typically truncated to a finite number of terms as
an approximation to yield the surrogate model

Y ≈ Ŷ =

N∑
i=1

ŶiΦi(X). (14)

The objective is to determine the coefficients Ŷi of the
surrogate model Ŷ so that one can have a simple model of
the true stochastic system as a polynomial function of the
input stochastic variables.

Traditionally there have been two broad category of meth-
ods to find those coefficients: namely Intrusive methods
and Non-Intrusive methods (Kim et al. (2013)). In this
paper, we briefly review a method from each of those
categories.

Intrusive PC In intrusive PC, we look for coefficients
which minimize the mean value of the square of the model
error, leading to the following closed form expression for
the coefficients

Ŷi =

∫
ΩX

gΦifX(x)dx∫
ΩX

Φ2
i fX(x)dx

. (15)

This method of evaluating the coefficients is also popularly
known as the Galerkin projection method.

Although calculating the denominator of equation (15)
is trivial, the numerator can be extremely difficult to
evaluate for generic non-linear functions and places where
g is merely a computer code. Hence in spite of obtaining
a clean expression for the coefficients in equation (15) the
need for the evaluation of a multivariate integral forms the
most profound limitation of this method.

Non-Intrusive PC In order to circumvent multidimen-
sional integrals, the coefficients can also be determined
using function evaluations and least squares. Consider the
expression: e =

Φ1(x(1)) Φ2(x(1)) · · · ΦN (x(1))

Φ1(x(2)) Φ2(x(2)) · · · ΦN (x(2))
...

... · · ·
...

Φ1(x(m)) Φ2(x(m)) · · · ΦN (x(m))


︸ ︷︷ ︸

A


Ŷ1

Ŷ2

...

ŶN


︸ ︷︷ ︸
YPC

−


y(x(1))

y(x(2))
...

y(x(m))


︸ ︷︷ ︸

y

(16)
where x(i) represents the ith sample point from a total ofm
samples in the input space, A ∈ Rm×N is a matrix whose
rows represent the bases evaluated at x(i), y is a vector
assimilated using the transformation g over x(i) samples
and e is a vector of the approximation errors at each
sample point. The coefficients YPC can be determined by
minimizing the 2-norm of e and is given by

YPC = (ATA)−1ATy. (17)

Equation (17) now provides a simple expression to de-
termine the coefficients of the PC surrogate model from
system realizations of the original function.

Since sampling the surrogate is much cheaper than sam-
pling the true system, we now have a tractable way
to determine the computationally expensive pdfs fY (y),
fY |Xi

(y, xi) and fY |X̃i
(y, x̃i) using MC methods.

3.2 Efficient Evaluation of the Expectation Integral

Expectation integrals of the form

I =

∫
ΩX

k(x)fX(x)dx (18)

turn up in numerous applications of basic and applied
sciences. As a result, many researchers over the years
have endeavoured to efficiently evaluate this integral. Some
of the most popular methods used have been Monte
Carlo (MC) sampling methods (Stroud (1971)), Gauss
quadrature (GQ) rules (Stroud and Secrest (1966)), Sparse
quadrature rules (Gerstner and Griebel (1998)) and Con-
jugate Unscented Transform (CUT) rules (Adurthi et al.
(2018)). In this paper, the methods are not highlighted (as
there is considerable existing literature). However, we do
provide commentary on which method to use for the NS
metrics.

In all of these methods, the integral I is approximated by
a weighted sum of function evaluations

I ≈ Î =

Nmethod∑
i=1

wik(x(i)) (19)

where x(i) are certain samples from the input space,
Nmethod denotes the number of such samples and wi are
specific weights. The aforementioned methods primarily
differ in the manner by which the location of the sample
points x(i) and their corresponding weights wi are deter-
mined. The benefit of representing an integral with func-
tion evaluations lies in the fact that sample realizations
are independent of each other and parallel computing tech-
niques can be adopted to evaluate the system realizations
simultaneously.

Remarks on the use of MC, GQ and CUT The objective
of discussing expectation integrals has been to highlight
the fact that in order to determine the values of NS, we
first need to evaluate equations (2), (5) and (7) which are
expectation integrals.

Di results from a univariate integral while the other class
metrics are outcomes of multidimensional integrals. These
integrals are approximated as

Di ≈
nmethod∑

j=1

wjD(fŶ (ŷ), fŶ |Xi
(ŷ, x

(j)
i )) (20)

Di,j ≈
nmethod∑

k=1

wkD(fŶ (ŷ), fŶ |Xi,Xj
(ŷ, x

(k)
i , x

(k)
j )) (21)

...

Di1,i2,··· ,in ≈
nmethod∑

j=1

wjD(fŶ (ŷ), fŶ |X(ŷ,x(j))) (22)

where x
(j)
i is the jth sample point out of a total of nmethod

samples in the ΩXi . Note that y has been replaced by ŷ
in the equations to represent the surrogate model instead
of the true system. nmethod represents the total number
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of sample points in the used sampling algorithm. In the
following section, commentary on which sampling method
to use for the metrics is provided.

Since the convergence of MC is slow and requires an
enormous number of samples to evaluate equations (20)
through (22), it is never used to determine Di. GQ is
always used to evaluate class 1 metrics Di since it is an
univariate integral and GQ provides the minimal set of
points and weights to integrate a polynomial of any order
for univariate integrals. For input vectors X which have
a uniform distribution or a Gaussian distribution, CUT
is preferred to evaluate higher order classes of metrics
considering it requires fewer number of points than GQ.
However, if the input variables have distributions which
are not uniform or Gaussian, GQ should be adopted.
Although other sparse quadrature rules have not been
discussed, they can also be used instead of GQ to calculate
the higher order classes.

3.3 Summarized Review of NS evaluation

This subsection now elaborates the step by step process
needed from start to finish to yield the desired NS metrics
using results from all the previous sections.

Step 1: Develop the surrogate model Ŷ from the model
equation Y = g(X) using PC.

Step 2: Determine the output pdf: fŶ (ŷ). This is done
by sampling the input space ΩX , evaluating the surro-
gate function at each of those samples and plotting the
histogram of the outputs ŷ.

Di as well as Di1,··· ,in are approximated by a weighted
sum of Ds evaluated at strategic points as represented by
equations (20) through (22). The jth sample point for Di

is denoted by x
(j)
i . For each x

(j)
i we need

D(fŶ (ŷ), fŶ |Xi
(ŷ, x

(j)
i )) and for each

D(fŶ (ŷ), fŶ |Xi
(ŷ, x

(j)
i )) we need the pdf: fŶ |Xi

(ŷ, x
(j)
i ).

This pdf is approximated by sampling the ΩX̃i
space,

evaluating the surrogate model at the samples by holding

Xi = x
(j)
i and finally plotting the histogram of ŷ. Each

value of D obtained from fŶ |Xi
(ŷ, x

(j)
i ) is then stored for

assimilation later. In a similar way, for the higher order
class of metrics, the surrogate model is randomly sampled
while holding the joint input variables at specific values.
Subsequently plotting the histogram yields the conditional
pdfs.

Step 3: Obtain the weighted sum of all the stored Ds to
yield the nth class metrics.

Step 4: Determine the normalized metrics NS using equa-
tions (9) through (11).

4. GSA OF T1D MODEL

This section presents the global sensitivity analysis study
on the Bergman minimal model Bergman et al. (1981),
using the NS metrics. Comparisons are also made with
total effect Sobol’ indices. Finally, based on the relative
ranking of the input uncertain parameters, inferences are
drawn about the most influential factor that impacts the
blood glucose concentration.

Table 2. Type 1 Diabetes Model Parameter

Parameter Value Parameter Value

pnominal
1 0.0287 (±0.0086) Gb 119.1858

pnominal
2 0.0283 (±0.0085) Ib 15.3872

pnominal
3 5.035(±1.51)E − 5 d 0.05

p4 5/54 Gnominal
0 119.18 (±35.75)

4.1 Model and Simulation Environment

In this section, we look at the simple Bergman model
for our numerical analysis regarding T1D. The following
equations for the Bergman model are considered after
accounting for a basal insulin input rate:

Ġ(t) = −(Xb(t) + p1)G(t) + p1Gb +D(t) (23)

Ẋb(t) = −p2X(t) + p3(I(t)− Ib) (24)

İ(t) = −p4(I(t)− Ib) + U(t) (25)

where Xb is an intermediate state to capture the inter-
action between the blood glucose (G) and insulin (I)
concentration. The meal disturbance D(t) to the glucose
concentration term is determined using the Fisher model
(Fisher (1991)):

D(t) =

{
0 t < tm
Be−d(t−tm) t ≥ tm.

(26)

For this study, the meal time tm is considered to be
constant at tm = 15 minutes. B which characterizes the
meal quantity is also assumed to be constant with a value
of B = 28.98 corresponding to a 45gm CHO meal (the
value of B is derived identical to Nandi et al. (2017)).
To compensate for the meal at time tm, an insulin bolus
at the start of the simulation t = 0 is administered.
This action is simulated by making the insulin input term
(U(t)) an impulse function lasting for a minute (between
t = 0 to t = 1). The magnitude of the impulse function is
determined using the following formula.

U(t) =


1000× (CHO Amount in g)

CR× Vi
0 < t ≤ 1

0 1 < t
(27)

where CR is the insulin-to-carb ratio and Vi is the distri-
bution volume of insulin. For a meal comprising 45gm of
CHO, a patient CR = 18.477 and Vi = 12, the impulse
magnitude turns out to be 202.96mU

L .

We assume four sources of uncertainties in this sensitivity
analysis study. The uncertainties lie with the initial glucose
concentration (i.e. G(t = 0)) and parameters p1, p2 and p3.
Each uncertain parameter is assumed to have a uniform
distribution with a nominal mean and a support which
varies ±30% about its mean (as an illustrative variation.
A more realistic distribution derived from clinical trial
data would ideally be more appropriate). Table 2 lists
all the parameters used for the simulations. The mean
values of the uncertain parameters are marked by the word
nominal. In terms of the convention used in the paper, the
uncertainties are grouped as

X = [X1, X2, X3, X4]T = [p1, p2, p3, G0]T . (28)

The objective now is to observe the contribution of each
of these uncertainties (as well their joint contribution)
towards the uncertainty in the blood glucose concentration
over time.
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Fig. 1. Variation of NSTi
with time

4.2 Uncertainty Quantification of the Bergman Model

Since there are only four uncertain parameters in our
model of study, PC is sufficient in quantifying the prop-
agation of uncertainties through time. Consequently, a
PC surrogate model is developed with the idea that the
surrogate would be far cheaper to sample as compared to
the dynamic system. The basis functions chosen are that
of multivariate Legendre polynomials (as recommended
by the Wiener-Askey scheme for uniformly distributed
inputs) where the multivariate bases are derived from the
tensor product of univariate Legendre polynomials. The
PC order in each univariate direction is chosen to be
NXi

= 5. Since the final set of bases is derived from a
tensor product of the univariate bases set, the total num-
ber of bases become N = NX1

NX2
NX3

NX4
= 54 = 625.

For this problem, the PC coefficients Yi(t) of the surrogate
model

Ĝ(t) = Ŷ (t) =

625∑
i=1

Yi(t)Φi(X1, X2, X3, X4) (29)

are determined using the non-intrusive least squares ap-
proach (refer to equation 17). The number of samples
used for the method were m = 100000. To verify that
the surrogate model is of acceptable accuracy, the first
couple of moments determined from the PC coefficients
and 10000 MC samples of the original stochastic dynamic
system were compared and were found to be consistent.

4.3 Computation of NS metrics

Since there are four uncertain input variables, i.e. n = 4,
we have a total of 15 NS metrics, namely: the class 1 met-
rics (NS1, NS2, NS3 and NS4), class 2 metrics (NS1,2,
NS1,3, NS1,4, NS2,3, NS2,4 and NS3,4), class 3 metrics
(NS1,2,3, NS1,2,4, NS1,3,4 and NS2,3,4) and class 4 metric
(NS1,2,3,4). Each of these metrics are functions of time and

hence need evaluation at every instant. The objective is to
observe the evolution of the relative importance of each
uncertain input with time.

For the class 1 metrics, a 30 point Gauss-quadrature rule
is used to average all the statistical distance measures D.
As all the input variables are uniformly distributed, we
can adhere to CUT for evaluating the average integrals
during evaluation of the higher class metrics. There is no
need to resort to Gauss quadrature rules. To determine the
output pdf and the necessary conditional pdfs, a total of
10000 MC samples are drawn and the histograms of their
outputs are recorded.

After each NS metric from every class is derived, the total
effect NS metrics are calculated: and the results have
been shown (in Figure 1) for all the statistical distance
measures. The total time of simulation has been considered
to be 100 minutes. The order of ranking estimated from
all the statistical distances are seen to be largely con-
sistent. The minimal variations in switching times could
be attributed to the fact that the different measures ex-
ercise varying penalties on pdf disparities. We see from
the figures that initially the most significant parameter is
X4 which is G0 or the initial blood glucose concentration
level. Such an observation is quite intuitive since G(t) is
our output of choice and at t = 0, G0 should be most
influential. It is comforting to note that the NS metrics are
successful at capturing that. However, as time progresses,
the influence ofG0 declines as the effect of the insulin bolus
kicks in. This is evident from the fact that X3 and X2 start
dominating. X3 and X2 which are essentially parameters
p3 and p2 are associated with the insulin sensitivity of a
person with T1D; where formally, the insulin sensitivity
has been defined to be p3/p2 (refer to Bergman et al.
(1981)). It is interesting to note that for the most part
of the simulation (at least until steady state starts setting
in), it is the sensitivity to insulin which is most significant.
Eventually, for all the statistical measures, the ranking of
importance settles to p2, p3, p1 and G0.

4.4 Computation of Sobol’ Indices

To compare the performance of the NS metrics with stan-
dard practices of the GSA community, Sobol’ indices are
derived for the Bergman model under the same simulation
setup. It is rather trivial to approximate the Sobol’ indices
if a PC surrogate model for the system is available. Mere
algebraic and polynomial evaluations of the PC coefficients
yield the Sobol’ indices Sudret (2008). Since the considered
model is a dynamic system, we have Sobol’ indices which
are functions of time which estimate the fraction of the
output variance contributed by each input (or their con-
tributions). For a fair comparison with the total effect NS
metrics, the total effect Sobol’ indices STi

are presented in
Figure 2.

It is interesting to note that a similar pattern emerges
from the total effect Sobol’ indices when compared to the
NS metrics. We observe a decline in the influence of G0

from an initial position of dominance followed by the rising
influence of p3 and p2. The settling order of ranking is
also similar, given by: p2, p3, p1 and G0. As a result, we
can conclude that quantifying up to the second moment is
enough for the Begman model to make inferences on the
influence of parameters.
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Fig. 2. Variation of the total effect Sobol’ indices with time

5. CONCLUSION

This work presents a comprehensive global sensitivity
analysis of the Bergman model for type 1 diabetes. The
problem is setup for the more traditional mode of treat-
ment where an insulin bolus is administered prior to a meal
on top of a basal rate. Certain model parameters have been
assumed to be uncertain and the influence of these input
uncertainties on the output has been quantified.

As the model is a set of ordinary differential equations,
sampling the stochastic system is computationally expen-
sive. As an alternative, polynomial chaos is used to develop
a surrogate model to ease the burden of sampling and
performing multivariate integrals.

Variance based Sobol’ indices as well as non-moment based
NS metrics are presented to rank the input variables de-
pending on their contributions to the output uncertainty.
Since the model is a dynamic system which predicts the
blood glucose concentration of a person with type 1 dia-
betes over time under the effect of a meal and insulin, the
GSA measures are evaluated as functions of time. It is seen
that the influence each parameter has on the output keeps
changing and after a meal, parameters associated with the
insulin sensitivity of a person matter the most.
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