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Abstract: In this paper, a model-free adaptive control design for loop heat pipes (LHPs) based
on the reinforcement learning (RL) method of deep deterministic policy gradient (DDPG) is
presented. An LHP as a heat transport system combines complex, thermodynamic processes,
which are not yet fully described in a dynamic control model over the entire LHP operating range
for model-based control design. However, RL methods provide the controller with the ability to
improve its control performance without a model by analyzing and rewarding the performance
online. The aim of an LHP controller is to keep the LHP operating temperature as close as
possible to the fixed setpoint temperature by additional heating, while the amount of heat to
be transported and the temperature of the heat sink change over time. A validated numerical
simulation of the LHP provides a safe, dynamic environment for the training of the learning
controller. In comparison with the commonly used PI controller with a single temperature
feedback, the control performance of the learning controller observing the same temperature
achieves similar control results. Furthermore, multiple observations are easily incorporated
into a model-free learning controller, whereby the additional feedback of further temperature
measurements ensures an improved performance over the entire operating range.

Keywords: Reinforcement learning control, learning for control, model-free adaptive control,
loop heat pipe, aerospace

1. INTRODUCTION

An important aspect of optimal operation of electronic
components is their thermal control. In aerospace systems,
the thermal control of electronic components is a challenge,
since heat can only be released into space via radiation. For
this reason, heat transport systems are used to control the
temperatures of electronic components by transferring the
excess heat to a remote radiator. For a reliable and efficient
heat transport, loop heat pipes (LHPs) are widely used
for their passive, two-phase working principle (Ku (1999)).
The phase of the working fluid inside the LHP is changed
through evaporation and condensation to achieve a higher
heat transfer coefficient than with direct heat conduction.
Without the use of power-consuming mechanical pumps,
the mass flow in the pipes between the locally separated
evaporator and the condenser are established by capillary
forces in a fine-pored wick inside the evaporator (May-
danik (2005)). In order to keep the temperatures of the
electronic components in a desired temperature corridor,
the operating temperature of the LHP is controlled by
additional heating. While the LHP operating temperature
is adapted by the control heater, the heat transport of the
LHP as its natural behavior is maintained (Ku (2008)).
This natural behavior of the operating temperature de-
pends mainly on two influences. The temperature at the

radiator as the heat sink of the LHP changes due to
variable insolation in the orbit. The operating statuses
of the electronic components define the amount of excess
heat that forms the heat load at the evaporator. Various
control algorithms for the control heater were used in
experiments to control different LHP temperatures with
a single temperature feedback (heuristic PID controllers
(Ku et al. (2011b), Ku et al. (2011a)) and two-point
controllers (Khrustalev et al. (2014), Ku et al. (2011b))).
However, the complexity of the LHP’s working principle
demands for more sophisticated control algorithms for the
control heater to improve the performance of the operating
temperature control against the external influences (Ku
et al. (2011a)). The proportional time-delaying behavior
of the CC temperature motivated the identification of a
black-box model to study the LHP startup behavior in
Huang et al. (2009) and the calculation of the PI param-
eters of a two-degree-of-freedom controller for improved
disturbance response in Gellrich et al. (2018a). In Gellrich
et al. (2018b), a PI controller was designed based on a
nonlinear LHP model with only accurate dynamics for
constant disturbances. Although the accuracy of this ana-
lytical LHP model and the performance of the model-based
controller could be improved in Gellrich et al. (2019) by
a nonlinear online parameter estimation and temperature
prediction, the controller suffered from the same problem
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as the aforementioned controllers: an increased sensitivity
to heat load changes with decreasing sink temperature
while controlling only one locally bounded LHP tempera-
ture measurement.

To the best of the authors’ knowledge, no nonlinear control
model of the LHP exists to design a model-based controller
with the feedback of multiple temperatures so far. That’s
why the authors strive for a model-free control design,
where multiple measurements can be easily included as
controller inputs. Model-free adaptive controls based on re-
inforcement learning (RL) have proven to be very effective
in learning optimal control policies for complex nonlinear
systems (Henze and Schoenmann (2003), Qi et al. (2019),
Mitchell and Petzold (2018)). RL belongs to the field of
machine learning that emphasizes how to act by following
a policy based on the current environment to maximize
the expected long-term benefit. Although there are many
differences, RL is inspired by behavioral theory in psychol-
ogy, where organisms gradually form expectations under
the stimulation of rewards or punishments given by the
environment, and produce habitual behaviors that can ob-
tain the maximum benefit (Kaelbling et al. (1996)). Since
the LHP temperatures react very sensitively to changes
of the control heater output, the authors focus on the
design of a deep deterministic policy gradient (DDPG)
agent with continuous action space (Lillicrap et al. (2015)).
Thus, the discretization problem arising from the curse of
dimensionality with RL methods like Q-learning (Watkins
and Dayan (1992)) or deep Q-network (DQN), introduced
by Mnih et al. (2015), can be circumvented. In addi-
tion, the number of environment observations of DDPG
agents can be easily increased with additional temperature
measurements to improve the monitoring of the LHP for
disturbance rejection.

In this work, two contributions are presented: First, the
model-free control design for control heaters of LHPs.
Second, the model-free control design with a multiple
temperature feedback.

This paper is structured as follows: In Section 2, the LHP
operating characteristics are presented. After the prob-
lem statement in Section 3, the implementations of the
learning environment and the DDPG agents are described
in Section 4. The performances of the learned controllers
are compared and evaluated in Section 5, followed by the
conclusions in Section 6.

2. LHP OPERATING CHARACTERISTICS

Before the problem statement is given, the LHP working
cycle is explained in detail for a better understanding of
the challenges in controlling the LHP. The working cycle
of the LHP consists of multiple heat exchange processes
between five LHP components. The visualization of these
LHP components is presented in Fig. 1.

The excess heat of the distributed electronic components
is transferred to the evaporator via two arterial heat pipes
and vaporizes the liquid working fluid in the primary
wick. Simultaneously, capillary forces arise at the liquid-
vapor interface forcing a flow of vapor through the vapor
line (VL) into the condenser. In the condenser, the vapor
condensates as its phase returns from vapor to liquid while
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Fig. 1. Schematic of the LHP with four temperature
sensors (TS) (cf. Ku (1999))

releasing its heat to the heat sink. The forming liquid
is subcooled and flows through the liquid line (LL) and
the compensation chamber (CC) into the evaporator core,
where it supplies the primary wick with liquid again. A
continuous heat transport depends on a permanently wet-
ted primary wick. That’s why a secondary wick between
the CC and the evaporator ensures a liquid exchange
between the CC and the primary wick. In transient states,
the positions of the liquid-vapor interfaces of the two-phase
CC and the two-phase condenser are counterbalanced by
the liquid and vapor mass flows for a balanced mass dis-
tribution in the hermetically sealed LHP.

The saturated CC temperature governs the operating tem-
perature (OT) of the LHP at the evaporator (Chernysheva
et al. (2007)) establishing a balance between the subcool-
ing of the entering liquid from the LL and the heat leakage
as part of the heat load from the evaporator (Ku (2008)).
Therefore, the OT of the LHP depends on both the heat
load and the sink temperature. The typical U-shaped curve
of the natural steady-state operating temperature (SSOT)
is depicted in Fig. 2 in case of a higher ambient temper-
ature Tamb at the LL than the sink temperature Tsink at
the condenser.

The evaporation of the working fluid in the primary
wick determines the mass flow rate proportionally. For
this reason, the residence time of the subcooled liquid in
the LL decreases with increasing heat load leading to a
decreasing total heat input from the ambient to the liquid,
when the ambient temperature is higher than the sink
temperature. At the same time, the liquid-vapor interface
in the condenser moves towards the condenser outlet and
thereby shortens the subcooling length in the condenser.
As a result, the minimum Tot,min of the SSOT is reached

at the heat load Q̇ot,min because of maximal subcooling
in the condenser and minimal heat gain in the LL. Higher
heat loads lead to an increasing SSOT due to a further
decreasing subcooling and an increasing temperature at
the condenser outlet correspondingly. Two LHP modes
are distinguished at the heat load Q̇trans: variable thermal
conductance mode and fixed thermal conductance mode.
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Fig. 2. Steady-state operating temperature (SSOT) of the
LHP (cf. Ku (2008) and Chuang (2003))

At this point, the overall LHP heat transfer coefficient is
the highest, because the condenser is fully used (Chuang

(2003)). At higher heat loads than Q̇trans, the SSOT
increases accordingly. Although the heat load changes over
time, moving from one SSOT to another, the overall goal
is to fix the temperature of the electronic components at
a constant temperature, which requires a constant OT of
the LHP as heat transport system at a desired setpoint
temperature Tset. Thus, the output power Q̇CC of a control
heater on the CC influences the power balance in the CC
between the heat loads Q̇low and Q̇high. At lower heat
loads, the CC must be cooled. At higher heat loads, the
condenser length must be enlarged to increase the heat
exchange with the heat sink.

The control method with a control heater regulating the
CC temperature provides stable temperatures and less
temperature oscillations at low heat loads (Ku et al.
(2011a)). Due to the nonlinear behavior of the LHP, a
learning controller for the control heater must be supplied
with comprehensive information about the operating sta-
tus of the LHP with the aid of appropriate temperature
measurements, since only noninvasive surface measure-
ments are possible for hermetically sealed LHPs. In ad-
dition, the dynamic training environment must also cover
the whole operating range of the LHP in order to achieve
a functioning learning controller in all operating points.

3. PROBLEM STATEMENT

Common controls for the OT of the LHP are restricted to
the sole feedback of the CC temperature due to the sim-
plicity of the control structures and the available control
models. They focus only on the control error between the
setpoint temperature and the CC temperature as single
controller input in order to keep the OT inside a small
corridor around the desired setpoint temperature against
varying operating conditions. The major cause for varying
operating conditions are the sink temperature and the
heat load as time-variant disturbances, which have a direct

effect on LHP parameters (Gellrich et al. (2019)). To im-
prove the performance of the OT control, the controller’s
information about the LHP must be improved. Indeed,
further temperature measurements around the loop for
operation monitoring are available. These can be used
by the controller to determine the LHP operating status
closer to the disturbance impact points than with only
the CC temperature measurement (see Fig. 1). So far,
temperature sensors at the evaporator (closer to the heat
load), at the condenser inlet, and the condenser outlet
(closer to the heat sink) are unused by the controller,
but could provide the necessary information for increased
performance.

The first goal of this work is the design of a model-free RL
agent for the control heater that performs at least as well
as the commonly used PI controller. The agent learns an
optimal behavior in dependence on the CC temperature.
An appropriate dynamic training environment is designed
that covers the entire operating range. By maximizing
the reward for keeping the CC temperature as close as
possible to the setpoint temperature, the improved perfor-
mance of the controller against time-variant disturbances
is achieved. The second goal is to extend the state-of-the-
art single temperature feedback by the available tempera-
ture measurements to enhance the controller’s information
about the system for improved disturbance rejection.

4. IMPLEMENTATION

The challenge of finding the optimal policy with RL is
given by the trade-off between exploration for better ac-
tions in the future and exploitation of successful actions
in the past to maximize future rewards. While dynamic
programming algorithms in optimal control require prior
knowledge of the environment’s dynamics to learn the
optimal policy, temporal-difference (TD) methods do not
need a dynamic model of the environment (Richard S. Sut-
ton (2018)). In addition, on-policy TD methods cannot
separate exploration from learning, whereas off-policy TD
methods can (Singh et al. (2000)). Q-learning (Watkins
and Dayan (1992)) is such a model-free, off-policy TD
method that solves the Riccati equation online to learn the
optimal policy of the agent while controlling the environ-
ment (Lewis and Vrabie (2009)). As well as its extension
to deep neural networks (DNN) for function approxima-
tion, introduced by Mnih et al. (2015) as deep Q-network
(DQN), both algorithms train agents with discrete action
outputs. Since small changes of the control heater result
in strong temperature changes, the design of deep deter-
ministic policy gradient (DDPG) agents based on Lillicrap
et al. (2015) with a continuous action space is preferred.

The RL control problem with the LHP is visualized as
Markov Decision Process (MDP) (van Otterlo and Wiering
(2012)) in Fig. 3. The validated numerical simulation of an
LHP on a test bench in Matlab, based on Meinicke et al.
(2019) and extended for controller validation in Gellrich
et al. (2019), is taken as the safe environment in the MDP.
It uses the finite-difference method to solve the partial
differential equations of the condenser and an iterative
solution method to calculate the temperatures at the four
sensors. The agent is given by the control heater, which
applies the power Q̇cc,t as action to the CC of the LHP in
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Fig. 3. RL control problem with the LHP as MDP (cf.
Richard S. Sutton (2018))

the environment to control the OT of the LHP. The agent
observes the resulting state Tt+1 of the environment via
the measurable temperatures of the LHP and receives a
reward rt+1 for its action. The evaluation of the state and
the action is stored in a buffer and used to improve the
policy of the agent. Based on the modified policy, the agent
decides for his next action Q̇cc,t+1. This updating process
is repeated several times in an episode for several episodes
in a training until the agent determines a satisfactory
policy. After the training process, the control heater is
expected to be able to deliver the proper power at any state
of the environment to maintain the CC temperature at
the desired setpoint temperature Tset, although the LHP
is disturbed by the sink temperature Tsink and the heat
load Q̇load in the environment. Considering the real LHP,
the ranges of the input parameters are given by:

30 W ≤ Q̇load ≤ 75 W, (1)

−15 ◦C ≤ Tsink ≤ 15 ◦C, (2)

0 W ≤ Q̇cc ≤ 10 W, (3)

Tset = 27 ◦C. (4)

The agent is trained with the policy-based DDPG al-
gorithm of Lillicrap et al. (2015) provided by the Re-
inforcement Learning Toolbox in Matlab (MathWorks
(2019)). Because of its actor-critic structure, two DNNs
are designed. The actor network approximates the policy
function and the critic network approximates the Q-value
function, which measures the performance of the policy
function. The pictorial representation of both networks is
shown in Fig. 4.
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Fig. 4. DNN structures of the actor-critic DDPG agent

The actor network and the critic network consist of fully
connected layers with multiple neurons and rectified lin-
ear units (ReLU) as activation functions, both commonly
used in DNNs. The single output of the critic network
is calculated linearly by a fully connected layer with one
neuron. A hyperbolic tangent (tanh) layer and a scaling
layer form the final layers of the actor network to con-
sider a continuous action space within the limitation (3)
of the control heater. Since the actor network outputs
an action directly, a stochastic noise model is added to
ensure exploration. In Matlab, the Ornstein-Uhlenbeck
noise (Uhlenbeck and Ornstein (1930)) is used to influence
the exploration behavior of DDPG agents by tuning the
mean and the variance of the noise signal. For numerical
stability in the DDPG learning process, both the critic and
the actor network are copied, so that two target networks
track both learning networks smoothly. Furthermore, the
networks are updated by sampling minibatches randomly
from an experience replay buffer (Lillicrap et al. (2015)).
The chosen hyperparameters for the DDPG training pro-
cess are listed in Table 1.

Table 1. DDPG hyperparameter

Parameter Value

learning rate of actor/critic 10−4

sample time 1 s
target smooth factor 10−3

experience buffer length 106

minibatch size 64
noise variance 0.5
noise mean 0.0
noise variance decay rate 10−5

The reward function has a great impact on the learning
result. For the control design, a linear reward function of
the control error as difference between the CC temperature
Tcc,t and the setpoint temperature Tset is chosen as

rt = −10 · |Tcc,t − Tset| . (5)

For comparison, two agents of the control heater are
trained for OT control. The first agent, single DDPG
(sDDPG), observes the state of the environment through
the same signals as the commonly used PI controller,
which are the setpoint temperature, the current and the
last CC temperature. The second agent, multiple DDPG
(mDDPG), receives the same signals, but additionally the
three temperature measurements at the evaporator, the
condenser inlet, and the condenser outlet (see Fig. 1),
which are already available for operation monitoring. The
training profile, depicted in Fig. 5, is constructed in such
a way that the entire LHP operating range is covered
dynamically, as stipulated in Sec. 3.

Fig. 5. DDPG training profile
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5. NUMERICAL VALIDATION

The validation of the trained agents is performed by
comparing the control performances of both agents when
controlling the environment with the benchmark profile of
the disturbances in Fig. 6.

Fig. 6. DDPG benchmark profile

To validate the advantage of model-free controllers and
the feedback of multiple temperatures, the performances
of both agents are compared to the commonly used PI
controller, which is model-based designed for the numerical
simulation in Gellrich et al. (2019). Fig. 7 shows the rele-
vant variables of the three controllers: the CC temperature
Tcc in the upper subplot, the control heater output Q̇cc

in the middle subplot, and the difference ∆Q̇cc of the
control heater output to the control heater output of the PI
controller in the lower subplot. The sDDPG in red and the
mDDPG in yellow achieve similar control performances as
the PI controller in blue. All three controllers keep the
CC temperature in a narrow corridor of ∆Q̇cc = ±0.5 K
around the setpoint temperature. The aforementioned sen-
sitivity of the LHP to control heater output changes in
Sec. 1 becomes obvious in Fig. 7. Since the control heater
outputs in the middle subplot are close to each other, small
differences in the control heater outputs result, as shown
in the lower subplot. Nevertheless, the controlled CC
temperatures clearly show different profiles. At the start,
both learning controllers react with a spike in the control
heater output to the initial conditions of the numerical
simulation, which results in a temperature offset compared
to the smoother start of the PI controller. Although the
heat load changes and the sink temperature decreases, the
maximal spikes of the mDDPG-controlled CC temperature
stay in the same corridor, whereas the CC temperatures
controlled by the sDDPG and the PI controller tend to
higher spikes with lower sink temperatures. To quantify
the control performance, the maximal absolute deviation
(MAD) and the root mean square error (RMSE) of the
three controllers over the entire time frame between the
CC temperatures and the setpoint temperature are both
listed in Table 2.

Table 2. Maximal absolute deviation (MAD)
and root mean square error (RMSE) of the

three controllers

controller MAD in K RMSE in K

PI 0.48 0.12
sDDPG 0.46 0.14
mDDPG 0.16 0.08

Fig. 7. Comparison of the three control heater controllers:
CC temperature Tcc, control heater output Q̇cc, and
control heater output difference ∆Q̇cc of the PI con-
troller in blue, the sDDPG in red, and the mDDPG
in yellow.

Table 2 indicates that the MAD of the CC temperature
from the setpoint temperature is decreased by the learning
controllers compared to the model-based PI controller.
Furthermore, the RMSE of the mDDPG is smaller than
the RMSE of the PI controller. The slightly higher RMSE
of the sDDPG results from the initial control heater output
spike. However, the benefit of additional temperature
measurements for the OT control of LHPs is verified in
Fig. 7 and in Table 2.

6. CONCLUSIONS

In this paper, two learning controllers for the control
heater of an LHP based on DDPG have been designed
and trained to control the LHP operating temperature
at a fixed setpoint temperature despite time-variant dis-
turbances. The control performances of the learning con-
trollers have proven to be as good as the control perfor-
mance of the commonly used, model-based PI controller.
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By extending the number of observations of one controller
agent with further available temperature measurements,
the disturbance rejection of the control heater to date has
been improved. The additional information about the state
of the LHP has lifted the sensitivity of the control heater
controller to heat load changes at lower sink temperatures.
For an overall guaranty of the functionality and stability of
the learning controllers in all operating points of the LHP,
large sets of training data are required, which leads to long
measurement times, since the temperature processes are
very slow. For this reason, the state-of-the-art analytical
models of the LHP have to be improved, especially at the
condenser, to model the dynamics of all measured LHP
temperatures. Then, the validated benefit of a multiple
temperature feedback, shown in this work, can be applied
in model-based controllers with proven stability to facili-
tate the adaption to different LHP designs.
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