
Actuation Strategy of a Virtual Skydiver
Derived by Reinforcement Learning

Anna Clarke ∗ Per-Olof Gutman ∗∗

∗ Technion Autonomous Systems Program, Technion - Israel Institute
of Technology, Haifa 32000, Israel (e-mail:

anna.clarke@campus.technion.ac.il)
∗∗ Faculty of Civil and Environmental Engineering, Technion - Israel

Institute of Technology, Haifa 32000, Israel (e-mail:
peo@technion.ac.il).

Abstract: An innovative approach of training motor skills involved in human body flight is
proposed. Body flight is the art of maneuvering during the free fall stage of skydiving. The
key idea is gradually constructing the movement patterns which are the combinations of body
degrees-of-freedom that are activated synchronously and proportionally as a single unit, and
turning this process into a coaching strategy. The proposed method is iterative: at each skill level
an optimal movement pattern is constructed from the basic elements of the current movement
repertoire. The free-fall maneuvers of each learning stage can be executed using any one of the
basic elements. The construction has two stages: 1. tracking the desired maneuver while the
body is actuated by each one of the basic patterns; 2. finding an optimal combination of these
patterns to form a new way of body actuation. This hierarchical design resolves stage 2 by
Reinforcement Learning with pure exploration and a minimal number of episodes. The method
was tested in a Skydiver Simulator and resulted in deriving a movement pattern that showed a
superior performance of the studied maneuver. The states and the reward of the Reinforcement
Learning algorithm were converted into motor learning aids.

Keywords: autonomous systems, simulators, multiple degrees-of-freedom, reinforcement
learning

1. INTRODUCTION

The human body has kinematic redundancy, enabling us to
perform a variety of motor activities. It is known that some
muscles, segments, and joints are activated in the body
synchronously and proportionally, as a single unit. Combi-
nations of such Degrees of Freedom (DOFs) are referred to
as movement patterns (MPs). Motor learning is the process
during which these MPs emerge (Schmidt and Wrisberg,
2008). First, the MPs are simple (coarse), providing just
the basic functionality. As the learning continues, the MPs
become more complex (fine), providing adaptation to per-
turbations and uncertainties, and improved performance
(Tani et al., 2014). The objective of this research is to
construct MPs involved in body flight - the free-fall stage
of skydiving, making it possible to actuate an autonomous
skydiver (Clarke and Gutman, 2017), and intended to aid
training of novices: a vital and unresolved problem of the
skydiving sport.

In sports biomechanics the research on MPs focuses on
comparing MPs between experts and amateurs (see e.g.
roller skiing in Gløersen et al. (2018), and ice hockey
in Robbins et al. (2018)). This identifies what technique
elements the amateurs need to change to improve their
performance. In some sports simulations of kinematics and
dynamics are used to find optimal values for the most
important technique elements. For example, for V-style
ski jumping the distance can be maximized by finding

the optimal angle between the two skis and between the
skis and the torso (Seo et al., 2004). Unfortunately, both
of these approaches are not applicable for skydiving. In
free-fall a great variety of maneuvers is executed by only
slight changes in body posture. The same maneuver can
be achieved utilizing completely different body DOFs;
the MPs highly depend on individual body parameters
and type of equipment. Consequently, every experienced
skydiver has an individual style not transferable to others,
involving multiple equally important DOFs.

Therefore, our method suggests to guide the trainees
through the process of developing their individual opti-
mal MPs. Initially, one trains several simple MPs, each
involving 1-2 DOFs. Each MP is trained by performing
a free-fall maneuver that is easily achievable by this set
of MPs. Next, the trainees practice the same maneuver
but free to use any combination of the learnt MPs. We
hypothesize that the trainee’s body will construct efficient
MPs from the previously practiced elements. To accelerate
this process, visual cues will be displayed in real time
via an augmented reality interface (Clarke and Gutman,
2018). A question is which variables are informative and
convertible to visual cues for improvement of the task
performance. In order to identify such variables the above
learning process is simulated in this work using the sky-
diving simulator developed in Clarke and Gutman (2017).
The text is organized as follows: In section 2 six basic

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 1595

MPs are defined and used to perform a given maneuver.
In section 3 the performance is improved by combining the
basic MPs using reinforcement learning tools. In section 4
an optimal MP for the maneuver under investigation is
constructed. Implications of the results on the intended
coaching strategy are given in section 5.

2. BASIC MOVEMENT REPERTOIRE

Six basic MPs for turning and side-sliding are proposed,
see Fig. 1. The first two MPs involve the internal rotation
DOF of the right and left shoulders, respectively. This
causes the forearms to press on the airflow and turn to
the opposite (of the engaged shoulder) direction. The third
and fourth MPs involve the horizontal adduction DOF of
the left and right shoulders. This movement causes the
upper-arms to press on the airflow and turn/slide in the
direction of the engaged shoulder. The fifth and sixth MPs
involve the bending DOF of the hip and knee of the right
and left legs. This movement will drop the knee down
causing the thighs and shins to press on the airflow and
turn in the opposite but slide in the same direction of the
engaged leg. The first four MPs involve only one single
DOF, and the last two leg MPs involve two DOFs each.
The eigenvectors for these six basic MPs are:

P1 P2 P3 P4 P5 P6

right forearm 1 0 0 0 0 0
left forearm 0 1 0 0 0 0

right upper arm 0 0 1 0 0 0
left upper arm 0 0 0 1 0 0

right hip 0 0 0 0 0.56 0
left hip 0 0 0 0 0 0.56
right leg 0 0 0 0 -0.83 0
left leg 0 0 0 0 0 -0.83

Fig. 1. Basic MPs: B,C,F cause right turn; A,D,E cause left
turn. The MPs are organized in three sets according to
the aerodynamic surface producing the turn: forearms
(A,B), upper arms (C,D), and thighs (E,F).

The trajectory in Fig. 2 can be tracked using each one
of these six MPs. However, the MPs in Fig. 1 suggest
utilizing MPs A,D,E (B,C,F) turning left (right) only. The
ergonomic reason is that the opposite action in the case
of each MP would require a less natural movement, e.g.
for the shoulder joint it is abduction instead of adduction,
external instead of internal rotation, that might be hard
for those who lack body flexibility. Thus, three sets of two
MPs can be used to track the desired trajectory, each set
including an MP for turning right and one for turning
left. Each set is using a particular aerodynamic surface
to produce turning: forearms (set A,B), upper arms (set
C,D), and thighs (set E,F).

For the tracking purpose three PD controllers were de-
signed:

u = KP · error +KD · ˙error

error = atan(
Xpath(tLA)−Xpred

Y path(tLA)− Ypred
)− atan(

Vx
Vy

)
(1)

where Vx, Vy is the current inertial horizontal velocity
of the skydiver, Xpath, Y path is the desired trajectory,
Xpred, Ypred is the predicted position of the skydiver while
the prediction time, and the look ahead time tLA, are
parameters conveying the delay and reaction times. The
physical meaning of error is the disparity between the cur-
rent direction of the skydiver and the required direction,
assuming that: 1. The same direction will be kept during
the ’prediction’ time; 2. It is needed to move towards a
point on the desired path located ahead of the skydiver.
The look-ahead time represents the time it will take to
converge to the desired direction. As found in simulations,
typical parameters for skydiving in a belly-to-earth stable
pose are: prediction time 1.5 s, and look-ahead time 4.5
s. Large delay and slow reaction time are the reason for
using the derivative part KD · ˙error.

The delay conveys the physics of skydiving: airflow around
the moved limb is rearranged in a new pattern, forming
new areas of high and low pressure. This changes the
aerodynamic forces and moments that induce linear and
angular accelerations, which sum up, if the limb retains its
new position, generating linear and angular velocities. In
turn, these velocities cause the desired change in position
and orientation.

The controllers parameters were tuned in simulation:

KP arms = 0.12 KDarms = 0.8

KP legs = 0.3 KDlegs = 1.7
(2)

which means that all MPs associated with the arms can be
controller by using KP arms,KDarms, and MPs associated
with the legs - by KP legs,KDlegs. Notice that when the
controller command is positive (corresponds to a left turn)
one of the left-turning MPs is enabled, and for negative
commands - one of the right turning MPs is enabled
(see Fig. 3). Also, it is assumed that each DOF has a
limit on the rate of change of its value: 15 [deg/sec] for
DOFs associated with the arms, and 45 [deg/sec] for DOFs
associated with the legs.

It is possible to track the trajectory shown in Fig. 2 by
the means of each one of the three options: using forearms,
upper-arms, or thighs as an aerodynamic surface. However,
in each case the position errors and control effort are
significant, see Fig. 2, 3. In the next section a learning
algorithm is applied in order to combine the basic MPs for
improving trajectory tracking accuracy and reducing the
control effort.

3. REINFORCEMENT LEARNING

It is desired to learn which combination of the primitive
MPs engaged at each instant of time will provide the most
accurate trajectory tracking. This problem includes two
hierarchical tasks, that we choose to solve separately. The
first, high level task is deciding which MPs to engage and
quantifying the desired relative effort corresponding to
each chosen MP. For example, do 90% of the work by the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1596

Fig. 2. Simulation of following the desired path by the
means of three choices of aerodynamic surfaces: fore-
arms, upper arms, and thighs.

Fig. 3. Control inputs during simulation of following the
desired path by the means of three choices of aerody-
namic surfaces.

means of hips and 10% of the work by the means of upper-
arms. Thus, the high level task is providing the solution
to the human kinematic redundancy.

The second, low level task, is tracking the desired trajec-
tory given a choice of MPs. This is a classical control task
that involves designing a set of controllers for each of the
MPs in the movement repertoire. At each instant of time
the overall controller command is a posture composed of
all available MPs:

posture = NeutralPosture+

N∑
i=1

wi · ui · Pi

ui =

u if u ≥ 0 and i = 1, 4, 5, or

if u < 0 and i = 2, 3, 6

0 otherwise

(3)

where N = 6 is the number of MPs, wi is the weight
of each MP computed by the high level algorithm, u is
the control command computed according to Eqs. (1),
(2), Pi is the eigenvector corresponding to each MP, and
NeutralPosture is the default posture when no turning
MPs are activated. The default posture, in our case,
includes extending the legs in order to generate forward
speed. Thus, applying the default posture will cause the
skydiver to fly forward in a straight line, and applying the
turning MPs will enable her to follow the curves of the
desired trajectory.

The hierarchical design of the overall system allows to
solve each task by the tools best suited and specifically
developed for these tasks. Choosing the way of actuating
the body is resolved by Reinforcement Learning, and
tracking the desired trajectory given the chosen actuators
is resolved by Control Theory. Given the plant model (see
Clarke and Gutman (2017)) it is possible to determine the
ranges of wi such that the weighted average of commands
computed by several linear controllers will provide a stable

system with desired specifications. The actions of the
Reinforcement Learning algorithm, i.e. options for wi
combinations, can thus be chosen form these ranges. This
way all actions will result in a stable and reasonably
accurate trajectory tracking. It remains to learn which
options work better than others depending on the situation
(state).

3.1 Problem Formulation

The main challenge in solving realistic problems by rein-
forcement learning methods is formulating the problem in
terms of a set of actions and a set of states. In our case,
the variables defining the state will be the best candidates
for becoming the cues of the training system. The reason
is that a successful reinforcement learning process will
indicate that the chosen states contain all the information
required for describing the situation at each instant of
time. Variables used for calculation of the reward should
also be used as training cues as they contain information
required for choosing the best action in each situation. A

Fig. 4. States obtained during simulations of 30 explo-
ration episodes

conventional application of reinforcement learning assumes
simulating the task multiple times and processing hun-
dreds of episodes, while continuously updating the value
function. The most frequently adopted policy is choosing
the action that maximizes the current estimate of the value
function, and once in a while choosing a random action for
exploration purposes. In our case, however, it is desired
to complete the learning process after a small amount of
trials, as each trial means a new parachute jump. Current
training methods actually require hundreds of jumps in
order to acquire basic skills. The training program we
propose aims to reduce this amount by an order of magni-
tude. Thus, the learning scheme described below uses pure
(100%) exploration, meaning that the number of episodes
will be equal to the number of actions, while the policy is
choosing a new action for each new episode. An episode
is flying along the desired trajectory from its initial to
final point. The pure exploration is possible due to the
hierarchical structure of our solution: during the phase
of learning how to combine available MPs, the control
problem has already been resolved.

Actions are represented by a set of weights wi (Eq. 3).
Notice that the weights for six MPs defined in Fig. 1 are

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1597

defined by three parameters, since these MPs are engaged
in pairs: (A,B), (C,D), and (E,F). The following 30 actions
are chosen:

w1 1 0 0 1
3

1
3

2
3

2
3

1
3 0 0

w2 0 1 0 1
3

2
3

1
3 0 0 1

3
2
3

w3 0 0 1 1
3 0 0 1

3
2
3

2
3

1
3

w1 - 2
3 - 2

3 - 2
3 - 2

3 - 1
3 - 1

3 - 1
3 - 1

3 - 1
3 0

w2
1
3

2
3 1 4

3 0 1
3

2
3 1 4

3
4
3

w3
4
3 1 2

3
1
3

4
3 1 2

3
1
3 0 - 1

3

w1
1
3

1
3

2
3

2
3

2
3 1 1 1 4

3
4
3

w2 - 1
3 1 - 2

3 - 1
3

2
3 - 2

3 - 1
3

1
3 - 1

3 0

w3 1 - 1
3 1 2

3 - 1
3

2
3

1
3 - 1

3 0 - 1
3

Out of many variables that are related to the current
position, orientation, velocity, desired path and motion the
following three were found as most effective states:

(1) The mean local radius of the upcoming path segment.
The segment starts at the desired path point closest
to the current skydiver’s position, and it’s length
is 7.5 [m]. Given three consecutive segment points
(x1, y1), (x2, y2), and (x3, y3) spaced at 0.1 [m], the
local radius R is computed as follows:

m1 = (y2 − y1)/(x2− x1)

m2 = (y3 − y2)/(x3− x2)

φ = atan

(
m1−m2

1 +m1 ·m2

)
R =

∣∣∣∣ 0.1

sin(φ)

∣∣∣∣
(4)

(2) Disparity between the desired and actual skydiver’s
heading. The desired heading angle Ψdes is assigned
to each path point when the desired path is con-
structed. For the heading error calculation the desired
heading associated with the path point closest to
the current skydiver’s position is taken. The actual
skydiver’s heading Ψ is continuously updated by the
Skydiver Simulator. The disparity H is computed as:

H = Ψdesired −Ψ (5)

(3) Disparity between the desired and actual motion di-
rection. The motion direction is computed from two
consecutive desired and actual path points, respec-
tively. The first path point (Xdes, Ydes) is the one
closest to the current skydiver’s position (X,Y). The
second desired (Xpdes, Y pdes) and actual (Xp, Y p)
points are the preceding ones. The disparity D is
computed as:

D = atan

(
Ydes − Y pdes
Xdes −Xpdes

)
− atan

(
Y − Y p
X −Xp

)
(6)

Fig. 4 shows these three states during simulations of 30
exploration episodes. Notice, that all states are given in
their absolute values and are trimmed to certain maximal
values. This is preparation for states discretization, sum-
marized in the table below, and resulting in total of 120
states. The range of each of the continuous variables in
Fig. 4 is divided into a small number of tiles (n):

variable n tiles centers width
R [m] 4 [3.5, 10.5, 17.5, 24.5] 7
H [deg] 6 [2.5, 7.5, 12.5, 17.5, 22.5, 27.5] 5
D [deg] 5 [2.5, 7.5, 12.5, 17.5, 22.5] 5

The states discretization is a step towards developing a
simple user interface, as these states will be converted to
visual cues.

Expression for the reward that produced best results con-
sists of two parts: a punishment proportional to position
error squared, and a constant reward for keeping position
error below the threshold of 5 [cm]:

Reward =

{
3 − (PosE)2 , |PosE| < 0.05

− (PosE)2 , otherwise
(7)

where PosE is position error, calculated as the shortest
Euclidean distance from the current skydiver’s position to
the desired path.

Out of many suitable reinforcement learning algorithms
(see Sutton and Barto (2018) for a review) State-
Action-Reward-State-Action (SARSA) was chosen. The
Q-function or action-value Q(s, a) is the long-term return
(as opposed to the short-term Reward) of the current state
s, taking action a under the current policy. The Q-function
at step k−1 is updated using the Reward and Q-function
at step k as follows:

Q(sk−1, ak−1) = Q(sk−1, ak−1) + αdk−1

dk−1 = Rewardk + γQ(sk, ak)−Q(sk−1, ak−1)
(8)

where α is a learning rate and γ is a discounting factor. The
objective is to learn the Q-function (let it converge) and
then at each step the action that maximizes the Q-function
given the current state can be chosen. It is possible to
implement the SARSA algorithm in many variations. In
our case, it is advantageous to use SARSA with Linear
Function Approximation (LFA), when the Q-function is
represented by a linear combination of numerical features
F1(s, a), .. Fn(s, a) of the state and the action:

Qη(s, a) =

n∑
i=1

ηiFi(s, a) (9)

where the weights ηi have to be learned. We define n =
NstatesNactions = 120 · 30 = 3600 feature functions,
while most of them are zero at any given moment. The
computation of F (si, aj) for state i = 1, ... I, ... Nstates and
action j = 1, ... J, ... Nactions, where I, J are the indexes
of the state and action at the current moment, is shown
in (10), (11).

F (si, aj) =

{
e−

1
2 (∆r+∆h+∆d) , if j = J

0 , otherwise
(10)

∆r =
(R−Rtiles(i1))2

dR2
r

∆h =
(H −Htiles(i2))2

dH2
h

∆d =
(D −Dtiles(i3))2

dD2
d

(11)

where i = (i3−1)∗NRtiles
∗NHtiles

+ (i2−1)∗NRtiles
+ i1

is the index of state s, and i1, i2, i3 are the indexes of its
three discrete components Rtiles, Htiles, Dtiles, while the
current continuous state is R,H,D; dR, dH, dD are the
tiles’ widths, and r, h, d are the tuning parameters defining

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1598

the width in each direction of the radial feature function.
We used more ’narrow’ distributions during exploration
r = 4, h = 4, d = 4 than during exploitation r =
0.7, h = 1, d = 1. This produced smoother control inputs
and less control effort. Radial as opposed to binary feature
functions allow a faster convergence of the Q-function, and
are similar to the fuzzification stage during fuzzy control
design.

Since in our case the number of learning episodes is small
and it is desired to increase the efficiency of learning, it
is advantageous to combine the SARSA algorithm with
an eligibility trace. Eligibility traces are a basic mecha-
nism for temporal credit assignment. When the Reward
is computed, only the eligible states-actions pairs are as-
signed credit or blame for the error, which is weighted
according to the eligibility trace. Normally, the state-
action pair of the previous simulation step sk−1, ak−1 is
considered eligible for the update with the weight of 1, as
stated by Eq. 8, and the state-action pairs visited during
earlier steps receive fading-out weights. In our case we
can utilize our knowledge of the system reaction time:
The eligible state-actions pairs will be the ones visited
te = [0.5833, 0.5667, 0.55, 0.5333] seconds ago with
weights We = [1, 0.7, 0.4, 0.1] accordingly.

Due to the small number of episodes we introduce one
more modification to the conventional SARSA algorithm:
scaling the updates of the Q-function according to the total
number of visits to each state-action pair. Conventional
reinforcement learning algorithms assume that the total
number of visits to each state-action pair will be sufficient
for convergence (infinite for all engineering purposes). In
our case, however, it is known that the number of visits
to state-action pairs will be small and unequal, i.e. some
parts of the Q-function will be updated more often. Scaling
introduced below allows to exploit the Q-function that is
obtained from a small number of learning episodes before
it actually converges.

In summary, our modified version of the SARSA algorithm
can be formulated as follows:

Initialization:
η = zeros(NstatesNactions, 1)

vsa = zeros(NstatesNactions, 1)

γ = β = 1

(12)

where vsa is the number of visits to an (s, a) pair.
Simulation Step:

Compute the vector of features F for the current state and
action (Eq. 11), the immediate Reward (Eq. 7), and the
update of η for each of the 4 eligible vectors of features
F te(i), i = 1, 2, 3, 4:

δ = Reward + γFT η − FTte(i)η

vsaPrev = vsa

vsa = vsa + F te(i)We(i)

(13)

for each nonzero element k of vsa:

η(k) = η(k)
vsaPrev(k)

vsa(k)
+ βδ

F te(i)(k)We(i)

vsa(k)
(14)

The number of Simulation Steps is the number of episodes
(30) multiplied by the length of each episode (2820 steps =

47 sec). After this learning process the obtained w can be
used to choose at each instant of time the optimal action:

a = argmax
a

F (s, a)T η (15)

where the current state s is composed from its three com-
ponents R,H,D and the elements of F(s,a) are computed
according to (11).

3.2 Results

A linear combination of three controllers weighted accord-
ing to the policy stated in (15) produced fruitful results:
the trajectory was tracked with the mean position square
error below 0.03 [m], and the generated limbs movements
were smooth engaging at every instant of time several
joints, see Fig. 5, 6.

Fig. 5. Trajectory tracking during simulations of 30 explo-
ration episodes and one exploitation run

Fig. 6. Controller weights and limbs movements during the
simulation exploiting the learned Q-function

It appears that the learning process resulted in finding
an optimal combination of synchronously activated joints
in order to solve the desired task - accurately track a
particular trajectory. This, however, is the definition of
an MP. In other words, it seems that an MP efficient for
the given task was constructed in the two design steps
described above: 1. designing three controllers that involve
three different sets of joints; 2. learning the optimal linear
combination of the weights for these controllers.

If the above hypothesis is correct it will be possible to
extract this MP from simulations and replace the three
controllers and their weighting policy by one controller
using the obtained MP for body actuation. We also
expect that in the later case the tracking accuracy will be
better especially if the task is altered. The reason is that
the learned Q-function provides an optimal policy only
for the original task. However, if this knowledge is imple-
mented in one MP, a controller driving its input signal will
be able to deal with task variations and disturbances.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1599

In the next section we present a simulation of a slightly
modified task from which the learned MP is extracted and
the above hypothesis is non-falsified.

Fig. 7. Comparison of tracking the desired trajectory by
different control and body actuation options

4. THE OPTIMAL MOVEMENT PATTERN

Fig. 7 shows the modified desired trajectory. The original
trajectory was tracked from the stopped position while
slowly accelerating, hence the tight curve in the beginning
was tracked at a slower speed than the rest of the path.
This time, the skydiver will arrive to the tight curve
segments at a higher speed. The Principal Component
Analysis (PCA) of following this trajectory exploiting the
learned policy reveals two MPs:
PC1 = [−0.11,−0.1, 0.07, 0.06,−0.4, 0.37, 0.6,−0.55]T

PC2 = [0.11,−0.11,−0.06, 0.07, 0.37, 0.4,−0.55,−0.6]T

where the order of DOFs is the same as in P1-P6. Ap-
parently, the second MP was formed due to the fact that
the three original controllers used different limbs for im-
plementing positive and negative input signals. The reason
was ergonomic: it is easier to drop the left hip to turn right
rather than trying to lift the right hip, which is less natural
for the human body, even though it allows the use of the
same limb for positive and negative inputs.

This way, we expect that it is possible to track the
given trajectory by actuating the body with just the first
Principle Component (PC1). In this case the limbs inputs
will include joint angles hard for execution. This can be
eliminated by introducing the second MP (PC2), which is
expected to be driven by the same control signal as the
first one (PC1), but taking into account its sign.

These assumptions were non-falsified by designing con-
trollers for both options (Eq. 16) and testing them in
simulation.

Fig. 8. Comparison of upper arms angles during tracking
the desired trajectory using different control options

pose1 = M + u · PC1

pose2 = M + u · PC1 − 0.7 · u · sign(u) · PC2
(16)

where u is computed as in Eq. (1) with [KP , KD] =
[0.37, 1.85] when only PC1 is used, and [0.27, 1.3] for PC1-
PC2 combination, and M is the mean of all recorded
postures computed by PCA.

The results confirm all the previously discussed hypothe-
sis. From the top view shown in Fig. 7 we can see that, as
expected, the tight curves are followed not so accurately
with an increased speed when the three controllers with
the optimal weights are used. However, the accuracy is
improved when using only one controller with PC1 or
with a combination PC1-PC2. The limbs movements are
smoother and the control effort is smaller when one con-
troller is used, see example in Fig. 8. It is also clearly
seen that at some moments utilizing PC2 provides a more
ergonomic actuation of the body.

5. CONCLUSION

The main result of this work is justification for the sug-
gested training method. The design process shown in
sections 2-4 resembles the natural learning of a motor
skill: First, we learn some body movements matching our
current skill level. Then, we perform the activity trying out
and combining these movements until a new MP emerges.
In the presented simulation a new MP, better suited for
tracking a given trajectory, has emerged from actuating
the body by a weighted combination of primitive MPs,
while the weights were found by a reinforecement learning
algorithm. Its states and reward can thus be used as visual
cues in the training system which we aim to develop next.

REFERENCES

Clarke, A. and Gutman, P.O. (2017). Modelling and
control of a virtual skydiver. IFAC-PapersOnLine,
50(1), 369–374.

Clarke, A. and Gutman, P.O. (2018). Computerized
methods and systems for motor skill training. US Patent
App. 15/658,548.

Gløersen, Ø., Myklebust, H., Hallén, J., and Federolf, P.
(2018). Technique analysis in elite athletes using prin-
cipal component analysis. Journal of sports sciences,
36(2), 229–237.

Robbins, S.M., Renaud, P.J., and Pearsall, D.J. (2018).
Principal component analysis identifies differences in
ice hockey skating stride between high-and low-calibre
players. Sports biomechanics, 1–19.

Schmidt, R.A. and Wrisberg, C.A. (2008). Motor learning
and performance: A situation-based learning approach.
Human Kinetics.

Seo, K., Murakami, M., and Yoshida, K. (2004). Optimal
flight technique for v-style ski jumping. Sports Engi-
neering, 7(2), 97–103.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement
learning: An introduction. MIT press.

Tani, G., Corrêa, U.C., Basso, L., Benda, R.N., Ugrinow-
itsch, H., and Choshi, K. (2014). An adaptive process
model of motor learning: Insights for the teaching of
motor skills. Nonlinear Dynamics Psychology and Life
Sciences, 18, 47–65.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1600

