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Abstract: Iterative learning control (ILC) is an adequate control approach to handle various
types of cyclic control tasks. However, when in each iteration the calculation of the control
trajectory requires the solution of a high dimensional constrained quadratic program, the
algorithm is bound to be infeasible for real-time applications with very small cycle lengths
in the order of milliseconds due to the prohibitively large computational cost.
In this contribution, an approach is presented to reduce the computational burden to solve an
optimization-based iterative learning control that is restricted to a binary domain by orders
of magnitude. The method is suitable for control trajectories that contain only few 1’s, but
a large number of 0’s in each iteration for a specific class of problems, e.g., for cyclic firing
synchronization of combustion tubes.
The presented setup is tested experimentally at an acoustic mock-up of an annular pulse
detonation combustor to determine an appropriate fire synchronization. More specifically, it
is used to adjust the firing pattern of multiple simulated combustion tubes in order to reduce
pressure fluctuations measured downstream in an annular plenum, which is a prerequisite to
apply such a new thermodynamically efficient combustion process in a real gas turbine.

Keywords: Learning control, optimal control, quadratic programming, binary control,
discrete-time systems, multi-input/multi-output systems

1. INTRODUCTION

Norm optimal iterative learning control (ILC), as de-
scribed by Amann et al. (1998), is a powerful variant of
ILC to handle cyclic control problems. An overview of the
wide range of different ILC approaches is given, e.g., by
Ahn et al. (2007) and Bristow et al. (2006). If a linear
model and unconstrained real-valued control inputs can
be assumed for the process considered, a very efficient
calculation of the control trajectory results. However, this
is not true when constraints have to be respected, and even
more so, when the actuation of the system is restricted to
a binary domain, see Kochenberger et al. (2014). Now,
the optimization problem can no longer be solved ana-
lytically, but a binary quadratic program (QP) has to
be solved numerically in each iteration, see Arnold et al.
(2019). For highly dynamic systems, with a high number
of sampling instants and a small cycle duration, this is
expensive from the computational point of view and often
rules out the real-time application. Similar problems have
been addressed in the context of model predictive control
by Axehill et al. (2010) and Bürger et al. (2019).

This contribution presents, for a specific class of problems,
an approach for handling such high dimensional binary
optimization problems efficiently within an ILC. In the
proposed method, the size of the optimization problem

is reduced significantly by partially dropping out model
information in each iteration. As it can be expected
that the initial guess of the control trajectory of the
ILC has a major impact on the performance of this
approach, different initial conditions are investigated. For
an application, an obvious choice would be to calculate the
open-loop optimal control trajectory as an initial condition
prior to the actual operation in an offline phase when
restrictions concerning the speed of calculation do not
exist. Additionally, this global optimal solution will be
exploited here to validate the performance of the controller
for varying initial control trajectories.

An experimental test of the presented method is performed
at a cold mockup of a new combustion system, namely at
an acoustic test rig. Here, loudspeakers mimic the effect
of combustion tubes operated in an unsteady fashion and
firing into a downstream plenum. For this, a pre-recorded
signal of a certain length, mimicking a detonation, is
send to the loudspeaker and played. The control input
is a binary signal representing the switching-on times of
the speakers. The control task for this multi-input/multi-
output system is to synchronize the switching-on times
so that the measured pressure signals at certain down-
stream positions in an annular gap are minimized. Such a
mitigation will be needed when constant-volume combus-
tion schemes, as a pulsed detonation combustion, will be
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implemented in future gas turbines to increase efficiency.
This example also exemplifies the class of applications the
presented approach might be suitable for.

The organization of this contribution is as follows: Section
2 starts from the descriptions of a general optimal control
problem and ILC to then discuss a formulation in the
binary domain. Next, a transformation is introduced that
will reduce the computational effort in each cycle of the
ILC. By this, real-time applicability can be achieved. The
acoustic test rig is then introduced in Section 3 together
with the mathematical model of the process. Results from
the test rig are shown in the ensuing section before a
conclusion is drawn in Section 5.

2. OPTIMAL CONTROL

For the following section, it is assumed that the input-
output behavior of one complete cycle j of the ILC can
approximately be described by a linear model

Y j = ΦU j , (1)

with model transition matrix Φ. Here, the supervector
Y j ∈ Rny contains the outputs of a complete cycle, and
U j ∈ Bnu represents the corresponding supervector of
inputs. The dimensions ny = p · ny and nu = p · nu
depend on the number of sampling instants p, as well as the
number of sensors ny and control inputs nu, respectively.
Here, vectors are underlined. Upper and lower case letters
distinguish between supervectors and ordinary vectors.
Bold style symbols indicate matrices.

An implementation of an ILC based on such a model
in real-time can be difficult when the cycle duration
is short, but a large number of sampling instants p is
needed to describe the dynamics well. To reduce the
cost in every ILC iteration, the following sections will
introduce a new method to decrease the dimension of
the underlying optimization task. Since this approach is
expected to require an initial control trajectory U0 close
to the optimal trajectory Uopt for satisfactory results, an
open-loop optimal control is calculated first, serving as
such an initial guess. The optimal solution will be used
as well as a benchmark to test the convergence of the
approach.

The subsequent sections start with a brief summary of
optimal binary control to set the scene before the general
ILC setup is introduced. Finally, a transformation of
the underlying quadratic program (QP) that reduces the
dimension in each ILC iteration is presented as the main
contribution of this paper.

2.1 Binary Optimal Control

An open-loop optimal control problem formulation is used
to calculate a feasible actuation U∗ that is optimal for one
cycle with respect to a cost function J(U). For an optimal
tracking of the reference, given by the supervector R, with
respect to the weighted ||·||2-norm, the cost function reads

J(U) = (R− Y (U))
T

WE (R− Y (U)) . (2)

The weighting matrix WE is assumed to be positive
definite and symmetric. If the system output Y (U) can be
calculated from a linear model like (1), the cost function

results in a quadratic expression with respect to the control
trajectory U :

J(U) = (R−ΦU)
T

WE (R−ΦU)

= UTΦTWEΦU − 2RTWEΦU +RTWER

= UTQU + qTU + c. (3)

The optimal control trajectory U∗ can then be calculated
with the binary QP

U∗ = arg minUTQU + qTU (4)

subject to

U ∈ S ∩ Bnu . (5)

Besides the binary constraint Bnu , more constraints are
included in S to allow for the addition of further require-
ments. As an example, for the experimental system con-
sidered below, the control trajectory is constrained by the
assumption that each loudspeaker can only be actuated
once within one cycle.

2.2 Binary Iterative Learning Control

As the model (1) is only an approximation of the actual
system and disturbances may occur during the operation,
an additional closed-loop control is required to guarantee a
sufficient control performance. For cyclic processes, norm
optimal iterative learning control can be exploited to
improve the control trajectory from cycle to cycle in an
optimized fashion.

In cycle j + 1, the control error Ej+1 = R − Y j+1 can
be calculated from the cycle-invariant reference R and the
measured system output over one cycle Y j+1. The cost for
cycle j + 1 then reads

Jj+1(U j+1) = ET
j+1 WE Ej+1 + ∆UT

j+1W∆U∆U j+1.

(6)

In the general norm optimal ILC formulation the change
of the control trajectory ∆U j+1 = U j+1 −U j is penalized
with the positive definite and symmetric weight W∆U

to avoid overshoots that might lead to oscillations. As
the error Ej+1 is unknown at the end of cycle j when
the control trajectory U j+1 needs to be calculated, the
process model (1) is used. Moreover, besides the reference
trajectory R, disturbances D are assumed to be cycle-
invariant as well in what follows.

The control error in cycle j is given by

Ej = R− Y j . (7)

It is now assumed that the measured system output Y j

can be approximated with the model Eq. (1) and a cycle-
invariant disturbance D:

Ej = R−
(
Y j +D

)
= R−

(
ΦU j +D

)
. (8)

Reusing this equation for cycle j + 1 likewise leads to the
prediction of the control error in cycle j + 1 as a function
of U j+1 and known quantities at the end of cycle j

R−D = Ej + ΦU j = Ej+1 + ΦU j+1

Ej+1 = Ej + ΦU j −ΦU j+1. (9)

Hence, the cost function in (6) can be written as a
quadratic expression depending only on U j+1:
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Jj+1 = UT
j+1QU j+1 + qTU j+1 + c, (10)

with

Q = ΦTWEΦ + W∆U (11)

qT = −2
(
UT

j

(
ΦTWEΦ + W∆U

)
+ ET

j WEΦ
)

(12)

c = ET
j WE

(
Ej + 2ΦU j

)
+ UT

j

(
ΦTWEΦ + W∆U

)
U j . (13)

For a real-valued, unconstrained control domain, the op-
timal control trajectory U∗j+1 could be easily calculated
by taking the derivative of Jj+1 with respect to U j+1 and
equating it to zero. However, as the control domain consid-
ered in this contribution is restricted to binary values, the
optimal control trajectory has to be solved numerically.

Without any precautions, such a numerical solution of the
binary problem can easily rule out any real-time applica-
bility. A worst case scenario for the solution, for example
with a branch-and-bound approach, would require the ex-
ploration of all nu possible solutions. Consequently, the
complexity would be exponential O(2nu) if the complexity
of each exploration is boundedO(1) with respect to nu. For
the experimental example considered below, the length of
the design variable U j+1 amounts to U j+1 ∈ B2500, while
a cycle length as short as 50 milliseconds is considered.
Solving the binary program directly on an actual personal
computer, takes several hours for a single iteration. Thus,
such an ILC setup is not suitable for real-time applications
as the one addressed here.

To reduce the computational complexity, the cost function
is modified first by translating the part of the cost account-
ing for the change of the control trajectory from cycle to
cycle into a modified additional constraint Sj+1, which will
be cycle-variant. Hence, W∆U is set to zero in (11) and
(12). The motivation for this reformulation comes from
the class of problems considered here. The large, binary
supervector of control inputs U j+1 will mainly consist of
0’s. A 1 will indicate that at a specific point in time a
specific control input is used to switch on the actuator
addressed by this entry. In the next time instant, this
entry will be 0 again as switching-on only occurs once in
a period. As a result, the supervector U j+1 will consist
of large related portions with identical entries 0. If it is
now assumed that the pattern of the control trajectory in
cycle j is not too far away from the optimal solution for
j + 1, the 1’s appearing in U j+1 will be in the vicinity
of the 1’s in U j . As mentioned above, in a general binary
optimization formulation, however, all possible changes of
entries have to be calculated for an exhaustive search, e.g.,
in a branch-and-bound approach, even for the portions
where it is unlikely to find a solution. For this reason, we
propose a new cycle-variant constraint Sj+1 that limits the
number of possible control trajectories U j+1 that have to
be considered. This finally leads to the following modified
QP

U∗j+1 = arg minUT
j+1QU j+1 + qTU j+1 (14)

subject to U j+1 ∈ Sj+1

with Q = ΦTWEΦ

qT = −2
(
UT

j

(
ΦTWEΦ

)
+ ET

j WEΦ
)
.

The construction of Sj+1, which includes the binary con-
straint as well, will be detailed in the next section.

2.3 QP Transformation

The binary control trajectory

U j = [uj,1, . . . , uj,l, . . . , uj,nu
]T (15)

of a cycle j consists of a certain number nu0(U j) of zeros
and nu1(U j) = nu − nu0(U j) ones. As the system output
Y j in (1) is a linear combination of the columns of the
transition matrix

Φ = [φ
1
, . . . , φ

l
, . . . , φ

nu
], (16)

a column φ
l

that corresponds to a vanishing entry uj,l = 0
in U j will not have any impact on the output Y j . Hence,
if nu0(U j)� nu1(U j) a lot of information hold in Φ is not
used for the model prediction in cycle j and accordingly
also for solving the QP (14). However, this might change
in the upcoming cycle j+1. So unused columns from cycle
j might become relevant again. The idea proposed in this
contribution to reduce the computational complexity is to
restrict the number of columns in Φ that might become
relevant for the next cycle j + 1. This can be done with a
vicinity argument, as for the experimental example, or by
more refined approaches.

As described above, the change of the control trajectory
∆U j+1 = U j+1 −U j from one cycle to the next is limited
by constraints that result in a solution space

Sj+1 =
{
Û

1

j+1, . . . , Û
h

j+1, . . . , Û
ns

j+1

}
. (17)

The set consists of a finite number ns = |S| of potential
control trajectories

Û
h

j+1 = [ûhj+1,1, . . . , u
h
j+1,l, . . . , u

h
j+1,nu

]T ∈ Bnu (18)

for the upcoming cycle j + 1 including U j ∈ Bnu . From
these potential control trajectories a vector

P j+1 = [pj+1,1, . . . , pj+1,l, . . . , pj+1,nu
]T (19)

is built with

pj+1,l =

{
1 if ∃ Ûh

j+1 ∈ Sj+1 | ûhj+1,l = 1

0 else
. (20)

Using this vector, a transformation matrix TT
j+1 can be

constructed starting from the diagonal matrix

Dj+1 = diag(P j+1) = [d1, . . . , dl, . . . , dnu
] (21)

and cutting out all columns with dl = 0, where 0 repre-
sents a vector of zeros. Using the transformation matrix
Tj+1, the original control trajectory U j+1 can then be
transformed into a surrogate control vector

Ũ j+1 = Tj+1 U j+1 ∈ Bm, (22)

which condenses all those entries into Ũ j+1 that are
allowed to change during optimization. If U j+1 ∈ Sj+1,
(22) can be rearranged to invert the transformation:

TT
j+1Ũ j+1 = TT

j+1Tj+1 U j+1

TT
j+1Ũ j+1 = Dj+1 U j+1

TT
j+1Ũ j+1 = U j+1. (23)

Dj+1 U j+1 = U j+1 is true, as by construction all vanishing
diagonal elements of Dj+1 relate to zero elements in
U j+1 ∈ Sj+1. Therefore, Dj+1 can be substituted for by
the identity matrix. Equation (23) can now be used to
adapt the QP (14) as follows:
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Microphone

Speaker

Fig. 1. Sketch of the acoustic test rig

Ũ
∗
j+1 = arg min

Ũ∈Bm

Ũ
T

j+1Q̃Ũ j+1 + q̃T Ũ j+1 (24)

with Q̃ = Tj+1QTT
j+1

q̃T = qTTT
j+1.

An additional constraint is not required as the informa-
tion about the solution space Sj+1 is contained in the

transformation, but Ũ ∈ Bm must hold. The optimal

surrogate control trajectory Ũ
∗

obtained, which can be
re-transformed into the real domain

U∗ = TT
j+1Ũ

∗
, (25)

can then be applied to the actual system.

If the number of zeros nu0(P j+1) is large and a small
set Sj+1 is chosen, this transformation will reduce the
dimension of the optimization problem significantly, and
consequently allows for more efficient computation. The
transformation increases the complexity in each iteration,
as a matrix multiplication with O(ns ·nu) is required. But
the more relevant complexity of binary QP-exploration is
decreased O(2ns) � O(2nu), since ns � nu. A too small
solution space Sj+1, however, can result in convergence
issues, especially if the initial control trajectory U0 is far
away from the optimal solution. Therefore, the presented
reduction should only be used if an educated initial guess
for U0, e.g., from an offline calculated optimal control is
available.

3. EXPERIMENTAL SETUP

To give an impression of the capability of the presented
approach, the control setup is tested on a real applica-
tion. The experimental setup comprises an acoustic system
consisting of five loudspeakers and an annular gap, see
Fig. 1. It is similar to the setup used by Wolff et al.
(2016) and Wolff and King (2019). This acoustic system is
a mock-up of a combustion system with five tubes running
a pulsed detonation combustion. The loudspeakers mimic
the combustion by introducing a pre-recorded pressure dis-
turbance into the annular gap. The pressure inside the gap
is measured by microphones. More detailed information on
the setup can be found in the aforementioned literature.

The goal of the presented controller is to synchronize the
firing events to manipulate the pressure field inside the
annular gap. A cyclic firing pattern of the loudspeakers is
desired that yields improved pressure signals at ny = 10
measurement positions with respect to a cost function. The

actuation of the system is done by binary values, where
inside a cycle a firing event in the i-th tube/loudspeaker
at discrete time k is marked by ui(k) = 1. An optimal
input synchronization is achieved by solving the binary
optimization program based on a model of the process.
An alternative way to synchronize such multi-input, linear,
discrete-time dynamical systems is a multi-agent approach
as used by Chen et al. (2015) or Heemels and Donkers
(2013).

3.1 Model Description

For the optimal control as well as for the iterative learning
control an appropriate model description of the acoustic
system, which is compliant to (1), is required. The pre-
sented model is similar to the one found in Wolff and King
(2019). The approach is based on the assumption that a
constant periodic pressure signature with a fixed frequency
is obtained after a number of cycles when a certain firing
pattern is applied repeatedly with the same frequency. For
the acoustic system considered here, it takes about five
cycles at a cycle-frequency of 20 Hz to get to a proper
cyclic operation.

As the experimental system can be described by linear
acoustics, superposition holds. As a result, the model is
constructed by superposition of responses obtained from
experiments with a cyclic impulse excitation for each
loudspeaker separately. It should be noted that an impulse
means here that a fixed, pre-recorded loudspeaker signal is
initiated. For this reason, the model obtained describes the
acoustic system combined with the specific real continuous
loudspeaker input applied.

The sampling rate is set to fs = 10 kHz for the measure-
ment as well as for the actuation. With a firing frequency
of 20 Hz, a single period is split up into 500 discrete
time steps. The binary actuation for the nu = 5 loud-
speakers of the system can be described by the vector
u(k) = [u1(k), u2(k), . . . u5(k)]T ∈ B5 for the k-th time
step of a period. As mentioned above, a value ui(k) = 1
indicates a firing event of the speaker i at time k. The
pressure measurements y(k) ∈ R10 for time k are obtained
at ny = 10 positions. For a complete cycle of p = 500
time steps, the measurements of all microphones, as well
as the actuation signals of all loudspeakers are expressed
as supervectors

Y =


y(1)
y(2)

...
y(500)

 and U =


u(1)
u(2)

...
u(500)

 . (26)

To identify the model, each loudspeaker signal i is switched
on for multiple cycles. This is represented in the model by
a unit impulse ui(1) = 1 as the physical actuation signal,
i.e., the real voltage applied, has been assumed to be part
of the system/model. After a transient phase, the cyclic
response Ii for a complete cycle is measured. With these
impulse responses, the input-output behavior for one cycle
can be approximated by

Y =
[
I0

1, . . . , I
0
5, I

1
1, . . . , I

1
5, . . . , I

499
1 , . . . , I499

5

]︸ ︷︷ ︸
Φ

U. (27)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1528



The vector Iqi is the measured impulse response Ii circu-
larly shifted by q steps. The linear model (27) describes the
influence of all 5 inputs on all 10 measurement positions
for one period and can be used for the optimal control as
well as for the ILC.

The model built from impulse responses gives a suffi-
cient fit. Nevertheless, it should be noted that the system
transition matrix Φ can also be obtained by other ap-
proaches, e.g., by a least squares fit, for systems for which
an impulse-like signal cannot be applied due to technical
reasons.

4. RESULTS

For the following results, the reference is set to R = 0,
resulting in a control that aims to reduce the combined
|| · ||2-norm of all measured microphone signals. To set
the solution space Sj+1, a vicinity argument is chosen for
simplicity. Of course, more refined approaches are possible.
The solution space Sj+1 for each cycle is constructed by
allowing a shift in the switching-on times by only a discrete
time steps for each input. For a = 2, and with respect
to the original number of time steps in one period, i.e.,
p = 500, the dimension of the binary QP that has to be
solved for each cycle of the ILC is reduced from nu = 2500
to nũ = 25. For a solution space with a = 5, the dimension
of the QP is increased and grows to nũ = 55. As the size
of the solution space |Sj+1| = ns = nũ = 5 · (2 · a + 1)
depends linearly on the parameter a, it directly impacts
the computational cost and the convergence behavior. A
small a ensures efficient computation but might hold the
risk of unpredictable convergence behavior. So for the
actual application the setting of a is a trade-off between
computational cost and predictability of the convergence
behavior.

To get a first impression of the performance of the de-
scribed control approach, experiments were run with vary-
ing initial control trajectories. The weight in (14) is set to
WE = I. Consequently, the cost J(U) amounts to the sum
of squared error. Figure 2 displays the mean square error
over the control cycles starting with two generic patterns
as well as a control trajectory close to the optimal solution.
The results confirmed that the approach is highly sensitive
to the initial control trajectory. Even though a significant
improvement could be achieved for all initial trajectories,
only the initial actuation close to the optimal solution
resulted in a converged control error that was very close
to the minimum error, which is given by the broken line.
This is the trade off caused by the strong reduction of the
original large scaled optimization problem. By dropping
out large parts of the model information the controller
might only converge to a local optimum. The reduced
model information prohibits a further change in the control
trajectory. However, other approaches to set the solution
space Sj+1 might yield better results.

The convergence behavior can be improved with an in-
creased solution space. Figure 3 shows the error for a
solution space with a = 2 and a = 5 again starting with an
equidistantly distributed pattern as well as a simultaneous
one. For these generic firing patterns, an improvement
with a larger solution space is visible. In contrast, the
results for an initial control trajectory close to the optimal

5 10 15 20
0.2

0.4

0.6

Cycle j [−]

M
S
E

[−
]

Equidistant
Simultaneously
Close to optimum
Optimum

Fig. 2. Evolution of the mean squared error (MSE) over all
10 measurement positions starting with two generic
(equidistant, simultaneous) firing patterns and one
close to the optimal solution.

0 5 10 15 20

0.3

0.4

0.5

Cycle j [−]

M
S
E

[−
]

Equi. a = 2 a = 5

Simu. a = 2 a = 5

Fig. 3. Evolution of the mean squared error (MSE) over
all 10 measurement positions starting with an equidis-
tant respectively a simultaneous firing pattern using
varying cardinality of the solution space

solution could not be further improved and, therefore, is
not displayed again in Fig. 3. Obviously, the final step to
the optimal solution requires a step that is not contained
within the solution space S.

For the real setup with detonation tubes, pressure fluc-
tuations will be much higher, violating the assumption of
linear acoustics. As a preliminary robustness test of the
method for such kind of problems, a static output nonlin-
earity is added to the system. Each actual measurement
y(t) of the acoustic test rig is transformed into a new
output yn(t) by the static map

yn(t) = 5 · sgn(y(t)) · y2(t). (28)

The signum function sgn(y(t)) is added to preserve the
sign information of the original signal. This allows the
controller to compensate for positive pressure disturbances
with negative signals. Although superposition does not
hold for this output, the model transition matrix Φ was
constructed again using the impulse responses as above
as an approximation. Then, the optimal binary control
trajectory was calculated.

The results for this nonlinear setup are shown in Fig. 4.
For the equidistant initial pattern, the mean squared error
was considerably improved. The number of cycles to find
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0 5 10 15 20

1

2

3

·10−3

Cycle j [−]

M
S
E

[−
]

a = 2 a = 5
a = 2 a = 5

Fig. 4. Evolution of the mean squared error (MSE) over all
10 measurement positions with an applied static out-
put nonlinearity starting with a generic firing pattern
and one close to the calculated optimal solution

a local optimum was again smaller for a larger solution
space Sj+1. From a detailed inspection of the control
trajectories obtained, it became clear that even though
the reached mean squared errors were in a same range,
totally different trajectories were found by the algorithm.
Obviously, different local minima were present. This again
indicates the major impact of the solution space on the
convergence behavior and the overall performance of the
approach.

For the nonlinear experiment with an initial control trajec-
tory close to the optimal solution, only a small improve-
ment can be seen within the first three iterations. This
applies for both investigated cases of the solution space,
i.e., a = 2 and a = 5. Nevertheless, the overall level of
the mean squared error is smaller than for the equidistant
initial pattern.

5. CONCLUSION

The presented results indicate that for the class of systems
considered here the introduced approach offers a suitable
solution to reduce the computational cost of ILC applica-
tions with high dimensional binary control domains. Even
though the control performance is slightly impaired by
the used transformation, the controller still provides a
sufficient reduction of the control error. With an initial
control trajectory close to the real optimum the converged
control error is very close to the minimal achievable error
and is kept there due to the closed-loop action. Also for
a nonlinear system, the reduced ILC setup showed robust
results, which is promising with respect to experimental
applications where linearity cannot be assumed.

Nevertheless, the introduced approach still holds potential
for further improvements. Especially the selection of the
solution space S is expected to impact the performance
strongly. It might be possible to use information from
the original large QP like the orientation described by
the eigenvectors of the quadratic objective Q. An optimal
compilation of S will be part of future investigations.

Furthermore, the convergence behavior of binary and more
general integer valued ILC setups will be part of upcoming
research as it is directly linked to possible performance
improvements by means of reduced computational effort.

This is necessary as conventional convergence analysis for
ILC, like the one described by Ardakani et al. (2017) or
Meng and Moore (2017), are not directly applicable for
the systems with a discrete actuation.
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