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Abstract: Most of the existing stochastic model predictive control (SMPC) algorithms for
systems subject to random disturbance are designed offline using the distribution information
of the uncertainties. In this paper, we propose an iterative learning based MPC for systems
subject to time varying stochastic constraints on states. Different from those existing offline
design approaches, except for the boundedness, this algorithm does not require to know the
distributions or statistics such as the covariances of the uncertainties and the parameters of
the controllers are adjusted online using the observations of past state trajectories. By making
use of the iterative nature of the process, pointwise in time stochastic constraints are enforced
so that it can handle time-varying constraints. Under some proper assumptions, this iterative
procedure is shown to be equivalent to a root-searching problem and stochastic approximation
theory is applied to show that the empirical average converges to the prescribed expectation
in probability. The proposed algorithm is applied to an HVAC control problem to show its
effectiveness.

Keywords: Model predictive control; Iterative learning control; Stochastic approximation;
Optimization.

1. INTRODUCTION

From the United Nations environment programme report
Lemmet (2009), buildings account for 40 percent of energy
consumption and resources and one third of greenhouse gas
emissions. In Singapore, 30 percent of energy is consumed
by buildings while air-conditioning systems are responsible
for more than half of the total energy consumed by
buildings Chua et al. (2013). Therefore, it is attractive
to reduce the energy cost of buildings and one of the most
promising directions is to optimize the energy efficiency of
heating, ventilation and air conditioning (HVAC) systems.

One of the main control objectives of HVAC control sys-
tems is to reject disturbances which mainly consist of
outdoor weather condition and indoor thermal load, and
maintain certain comfort level, e.g., keep indoor tempera-
ture in a prescribed range. Conventional robust approach
usually leads to a conservative control strategy since the
controller always prepares for those extreme cases which
only happen occasionally. On the other hand, one may
consider the uncertainty as a stochastic process and en-
force a chance constraint P(T (k) ∈ T) ≥ 1 − ε, where
P(·), T (k) and T denotes probability, indoor temperature
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at time instant k and comfort range, and ε is a small
positive constant, respectively. That is to say, we allow
the temperature to go outside of the comfort region with
probability less than ε.

Stochastic MPC has been developed extensively in recent
years to handle stochastic systems subject to stochastic
constraints. One of the key challenges of stochastic MPC
is how to reformulate the stochastic constraint, which in-
volves high dimensional convolution, into computable de-
terministic inequalities. Several approaches have been pro-
posed to reformulate the constraints, including equivalent
translation Lorenzen et al. (2017), Chebyshev’s inequality
Magni et al. (2009) and randomized sampling method
Schildbach et al. (2014). All these approaches either re-
quire the knowledge of the uncertainty or heavy computa-
tion. In Muñoz-Carpintero et al. (2018), the chance con-
straint is reformulated by reinterpreting it as an average
violation ratio. For instance, we define IT(T ) = 1, if T /∈ T
and IT(T ) = 0 otherwise. The chance constraint P(T (k) ∈

T) ≥ 1 − ε is reformulated as limN→∞

∑N−1

i=0
IT(T (i))

N ≤ ε
in some stochastic sense. Then the constraints are ad-
justed online according to the difference between ε and∑N−1

i=0
IT(T (i))

N . Although such a reformulation keeps the
spirit of allowing occasional violation of the constraint, it
changes the original pointwise-in-time meaning of the con-
straint. Due to such reformulation, this approach cannot
handle time-varying constraints either.
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For a typical office building, the indoor thermal load,
which is caused by occupancy and electronic devices, and
the outdoor weather condition vary with a highly period-
ical pattern. So, the control task of a HVAC system can
be considered as a repetitive task with some uncertainties.
This motivates us to adopt an iterative learning control
(ILC) scheme to improve system performance. In this pa-
per, we propose a combination of MPC and ILC schemes to
enforce the pointwise-in-time stochastic constraint. Com-
pared with most existing ILC works, the learning objective
here is to find some proper controller parameters so that
the stochastic constraint can be satisfied. The main con-
tribution of this paper is summarized as follows:

1) Compared with Muñoz-Carpintero et al. (2018), we
enforce more general stochastic constraints on the system,
which include the chance constraint as a special case. We
also allow the constraints to be time-varying, e.g., different
violation probability for different time instant.

2) Furthermore, in Muñoz-Carpintero et al. (2018), it is
assumed that the state trajectory converges to a terminal
regime along time. However, in this paper, we do not
assume that the state converges either along time or along
iteration. Instead, we can prove that the state trajectory
converges along iteration in some stochastic sense.

The rest of the paper is organized as follows. In Section
2, the system model and control objective are presented
together with a controller parameterization. In Section 3,
an iterative learning based adaptive MPC is proposed.
In Section 4, the convergence of the empirical ratio is
analyzed. In Section 5, the proposed algorithm is applied
to an HVAC system to demonstrate its effectiveness. In
Section 6, conclusions are drawn.

Some remarks on notations are as follows. R represents the
set of real numbers and Rn the n-dimensional Euclidean
space. N denotes the set of natural numbers. For two sets
X, Y ⊂ Rn, the Minkowski sum is defined as X⊕Y , {x+
y : x ∈ X y ∈ Y } and the Pontryagin difference is defined

as X	Y , {z|z+y ∈ X, ∀ y ∈ Y }. The Cartesian product
of N identical sets X is denoted as XN . The transpose of
a vector x is denoted as x′. A probability space is defined
by the triple (Ω,F ,P), where Ω is the sample space, F is
a σ-algebra of Ω and P is a probability measure on (Ω,F).
For a random variable x, E(x) denotes its expectation. Let
{Fk, k ∈ T} be a filtration, where T is a countable time
set. The expectation of a random variable x conditioned on
the variables that are Fk-measurable is denoted by Ek(x).

2. PROBLEM FORMULATION

Consider a linear system

x(k+1) = Ax(k)+Bu(k)+w(k), k = 0, . . . , T − 1, (1)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control
input and w(k) ∈ Rn is the disturbance. Its initial
condition x(0) is a random variable with mean value
E(x(0)) = x0 and bounded error support x(0)− x0 ∈ ∆0.
We assume that the pair (A,B) is controllable. So there
exists a matrix K ∈ Rm×n such that (A + BK) is Schur
stable. The nominal model is given by

x̄(k + 1) = Ax̄(k) +Bū(k) + w̄(k), (2)

with a fixed initial condition x0 and w̄(k) = E(w(k)). The
control applied to (1) is

u(k) = ū(k) +K(x(k)− x̄(k)). (3)

The input is required to satisfy a hard constraint

u(k) ∈ U, k = 0, . . . , T − 1, (4)

where U is a convex polyhedron. Divide the time horizon
[1, . . . , T ] into several sub intervals H1, . . . ,Hs such that
∪i=1,...,sHi = {1, . . . , T} and Hi ∩ Hj = ∅, ∀i 6= j. For
each time instant k, let pk be the index of the time interval
which contains k, i.e., k ∈ Hpk . For the state, we impose
a time-varying stochastic constraint∑

k∈Hp
E(q(gTk x(k)− hk))

|Hp|
≤ vp, k = 1, . . . , s, (5)

where q(·) is the loss function, gk and hk are given bounded
vector and vp ∈ [v, v̄] is the average expected loss over time
interval Hp.

The loss function q(·) satisfies the following assumption:

Assumption 2.1. q(·) is non-decreasing and lower-semicon-
tinuous, and has only countable discontinuous points at
most.

The objective of this paper is to design a controller to
make system (1) satisfy constraints (4) and (5).

Assumption 2.2. w̄(k), k = 0, . . . , T − 1 is known. δ(k) ,
w(k)− w̄(k), k = 0, . . . , T − 1 is i.i.d. with finite support
∆.

Note that we do not assume that the distribution or
even the covariance of the uncertainty is known, which is
different from most existing stochastic MPC approaches.

Denote e(k) = x(k)− x̄(k). One has

e(k + 1) = (A+BK)e(k) + δ(k),

with e(0) = x(0)− x0. Constraint (4) can be rewritten as

ū(k) ∈ U	K∆(k), (6)

where ∆(k) = (A+BK)k∆0 ⊕
∑k−1
l=0 (A+BK)l∆.

For constraint (5), we first consider its robust version,

i.e., x(k) ∈ Xk, where Xk , {x|q(gTk x − hk) ≤ v}. Then
according to the controller parameterization (3), it can be
rewritten as

x̄(k) ∈ Xk 	∆(k). (7)

If constraint (7) is satisfied, then x(k) ∈ Xk for all
possible realizations of δ(k). So, in this case constraint
(5) is satisfied conservatively in the sense that q(gTk x −
hk) ≤ v, k = 1, . . . , T and it implies we need to relax

constraint (7) so that

∑
k∈Hp

E(q(gTk x(k)−hk))

|Hp| can be closer

to vp. To this end, we introduce a relaxation coefficient
β(pk) ≤ 1 so that constraint (7) becomes

x̄(k) ∈ Xk 	 β(pk)∆(k). (8)

When β(pk) = 1, constraint (8) is (7) and x(k) ∈ Xk will
be satisfied almost surely and when β(pk) decreases, it
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means that we allow the state to evolve in a larger region
so that more violations may be expected.

3. ITERATIVE LEARNING CONTROLLER

Motived by the repetitive nature of HVAC systems, we
reformulate the original problem in the following sense:

Rewrite system (1) as

xj(k + 1) =Axj(k) +Buj(k) + wj(k),

k= 0, . . . , T − 1, j ∈ N, (9)

where j denotes the iteration index. For each iteration, the
system starts from k = 0 and xj(0) which follows the same
distribution of x(0).

Denote the accumulative violation ratio over the p-
th time interval and the l-th iteration as cl,M (p) =
∑

k∈Hp

∑l

j=0
q(gTk xj(k)−hk)

(l+1)|Hp| , l ≤M − 1∑
k∈Hp

∑l

j=l−M+1
q(gTk xj(k)−hk)

M |Hp| , l > M − 1

, where M

is the length of moving average window. The control ob-
jective becomes to make cl,M (p) converge to vp in some
sense as l, M →∞.

Assume that an initial feasible nominal trajectoriy x̄0(k)
and ū0(k), k = 0, . . . , T − 1, which satisfy (7) and (6), is
available. For the k-th time instant of the j-th iteration,
we propose the following MPC problem:

Problem 1

min
Ūj(k),ε(1:Nk)

J(Ūj(k)) +
1

Nk

Nk∑
i=1

φ(ε(i))

subject to

x̄j(l + 1|k) =Ax̄j(l|k) +Būj(l|k) + w̄(l),

x̄j(l + 1|k) + ε(l − k + 1) ∈ Xl+1 	 βj(pl+1)∆(l + 1),

ū(l|k) ∈ U	K∆(l),

l= k, . . . , Nk,

x̄j(k|k) = x̄j(k),

where Ūj(k) = (ūj(k|k), . . . , ūj(k + Nk|k)), ε(1 : Nk) =
(ε(1), . . . , ε(Nk)), ε(i) are slack variables to guarantee
feasibility with a penalty term φ(s) = γ‖s‖2 and weight γ,
Nk = N when N + k ≤ T and Nk = T − k otherwise
and J(Ūj(k)) is the energy consumption. Denote the
optimal control input of the above problem as Ū∗j (k) =
(ū∗j (k|k), . . . , ū∗j (k + Nk|k)). The control to be applied to
the plant is uj(k) = ū∗j (k|k) +K(xj(k)− x̄j(k)). And the
nominal state x̄j(k) is updated as:

x̄j(k + 1) = Ax̄j(k) +Bū∗j (k|k) + w̄(k), (10)

with initial condition x̄j(0) = x0. The relaxation coeffi-
cient βj(pl+1) will be defined later.

Assumption 3.1. 1) There is a bounded set X̄ ⊂ Rn such
that for any iteration index j ∈ N and time instant
k = 0, . . . , T , xj(k) ∈ X̄.

2) ū∗j (k|k) is a continuous function of βj(pi), i = k +
1, . . . , k +Nk and x̄j(k).

We use the following notations to collect variables over
time [0, T ]:

Xj , (xj(0), . . . , xj(T ))′,

X̄j , (x̄j(0), . . . , x̄j(T ))′,

Wj , (xj(0)− x0, wj(0), . . . , wj(T − 1)),

Uj , (uj(0), . . . , uj(T − 1))′,

Ūj , (ū∗j (0|0), . . . , ū∗j (T − 1|T − 1))′,

Cj,M , (cj,M (1), . . . , cj,M (s))′,

Qj , (

∑
k∈H1

q(gTk xj(k)− hk)

|H1|
,

. . . ,

∑
k∈Hs

q(gTk xj(k)− hk)

|Hs|
)′,

V, (v1, . . . , vs)
′,

Bj , (βj(1), . . . , βj(s))
′,

B, (β(1), . . . , β(s))′.

According to the designed algorithm, it is clear that X̄j is
determined by Bj and Xj is determined by X̄j and Wj .
Therefore, Qj , which is a function of Xj , is essentially a
function of Bj and Wj . So, we assume that there exists
some function from B to Qj which satisfies the following
assumption:

Assumption 3.2. There exists a non-increasing continuous
function σp : B → R+, with B = {β : β ≤ β ≤ 1} and
β∗p ∈ B, for p = 1, . . . , s such that:

σp(β) > vp, if β < β∗p

σp(β) = vp, if β = β∗p

σp(β) < vp, if β > β∗p

and liml→∞

∑l−1

j=0
Qj(B)

l →h(B),(σ1(β(1)), . . . , σs(β(s)))′

in probability.

Note that we do not assume that X̄j converges along
the learning procedure while in Muñoz-Carpintero et al.
(2018), it is made as an assumption. In the next section,
the convergence of X̄j along the learning procedure will
be proved.

Consider the relaxation coefficient βj(p) updated as

βj(p) = ΠB[βj−1(p) + ηj−1yj−1(p)], (11)

where yj−1(p) = cj−1,M (p)− vp and ηj−1 is a sequence of
positive numbers satisfying limj→∞ ηj = 0,

∑∞
j=0 |ηj −

ηj+1| < ∞ and
∑∞
j=0 ηj = ∞ and ΠB[·] denotes the

projection to B.

The stochastic MPC with adaptive constraint tightening
is summarized as follows:

1) For j = 0, initialize the algorithm with β0(pk) = 1
and feasible trajectory x̄0(k), collect the value of loss
q(gTk x0(k)− hk), k = 1, . . . , T . Then set j = 1 and k = 0.
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2) At the beginning of iteration j ≥ 1, reset the nominal
initial state to x0, update βj(1), . . . , βj(s) according to
(11).

3) At each time instant 0 ≤ k < T of iteration j > 1, solve
Problem 1, apply uj(k) = ū∗j (k|k) + K(xj(k) − x̄j(k)) to
the plant, update x̄j(k + 1) according to (10) and collect
x̄j(k + 1) and Ik(xj(k + 1)). At k = T , reset k = 0 and
j = j + 1, go to 2).

4. CONVERGENCE ANALYSIS

In this section, we are going to show that under some
mild conditions, the accumulated violation ratio cl,M (p)
will converge to vp in some stochastic sense as l, M →∞.
The main idea is to treat the update law (11) as a root-
searching procedure of equation h(B) = V. The main
approach follows the similar line of Kushner and Yin
(2003) and Muñoz-Carpintero et al. (2018). The difference
between this work and Muñoz-Carpintero et al. (2018) is
that we apply the results in Kushner and Yin (2003) in a
multi-dimension case and interpret the system dynamics
along iteration instead of along time.

For completeness, we briefly introduce the Stochastic Ap-
proximation (SA) Kushner and Yin (2003) first. Consider
an equation h(β) = 0. A classical problem in SA that will
be shown to be closely related to this work is to find the
solution of h(β) = 0, which is denoted as β∗, when h(·) is
not known explicitly. Suppose that there is a sequence of
input β(k) and a Markov process ξ(k) and the measure-
ment of h(β(k)), which is denoted as y(k), satisfying that

Ek(y(k)) = h̃(β(k), ξ(k)), where h̃(β(k), ξ(k)) represents
the expectation of the noisy measurement depending on
current input β(k) and internal state ξ(k). To find the
root of this equation in a given bounded set B, consider
the following algorithm:

β(k + 1) = ΠB[β(k) + η(k)y(k)], (12)

where η(k) is the step size.

The convergence of (12) has been studied in Kushner
and Yin (2003) and Kushner and Vázquez-Abad (1996),
where weak convergence of β(k) to β∗ has been proved. In
Muñoz-Carpintero et al. (2018), a simplified result leading
to convergence in probability has been proposed. In what
follows, we will use this simplified result.

Lemma 4.1. Muñoz-Carpintero et al. (2018) The stochas-
tic process β(k) defined in (12) converges to β∗ in proba-
bility if:

1) There is a memory process {ξ(k) ⊂ E : k ∈ T} for
some set E , a filtration {Fk : k ∈ T}, where Fk measures
all the information used to obtain {β(k), ξ(k), y(i) : i <
k, β(0)}, and a measurable continuous bounded function

h̃(·, ·) satisfying:

Ek(y(k)) = h̃(β(k), ξ(k)).

2) η(k) → 0, η(k) > 0,
∑∞
k=0 |η(k) − η(k + 1)| < ∞ and∑∞

k=0 η(k) =∞.

3) The sequence {(y(k), β(k), ξ(k)) : k ∈ T, k < ∞} is
bounded.

4) There is a transition function P (·, ·|β) such that
P (ξ, ·|β) is weakly continuous in (β, ξ) and satisfies

P(ξ(k + 1) ∈ ·|ξ(i), β(i), i ≤ k) = P (ξ(k), ·|β(k)). (13)

Note that P (·, ·|β), for a fixed β, defines a Markov chain
and the associated random variables are denoted as ξβ(k).

5) For a fixed β and any initial condition ξβ(0),

lim
k→∞

1

k

k−1∑
i=0

E(h̃(β, ξβ(i)) = h(β).

6) The differential equation

β̇ = h(β) + z, z(t) ∈ −CB(β(t)),

where z(t) is the minimum force needed to keep β in B,
has a unique stationary limit point β∗.

Based on the above lemma, now we are ready to show

that Bj and

∑k−1

l=0
Ql

k converge to B∗ and V in probability,
respectively. The key idea is to treat the iterative learning
process as a dynamic system along iteration index j
instead of along time index k.

Denote B∗ , (β∗1 , . . . , β
∗
s )′.

Proposition 4.1. Suppose that σp(·), p = 1, . . . , s satisfy
Assumption 3.2. Then the solution of the differential
equation Ḃ = g(B) + z, where g(B) = h(B) −V, z(t) ∈
−CBs(B(t)) is the minimum force needed to keep B in Bs,
converges to its unique stationary point B∗ if B(0) ∈ Bs.

Proof. By Assumption 3.2, for any p = 1, . . . , s, if βp(0) ∈
B, then βp(t) ∈ B, ∀t > 0. Therefore, the force term
z(t) = 0, ∀t > 0. Consider V (t) = 1

2 (B − B∗)′(B − B∗).
Some simple calculations lead to that

V̇ (t) = Ḃ′(B−B∗)

= (h(B)−V)′(B−B∗)

=

s∑
p=1

(σp(βp(t))− vp)(βp(t)− β∗p)

Assumption 3.2 implies that (σp(βp(t))−vp)(βp(t)−β∗p) <
0, ∀βp(t) 6= β∗p . Then by Lyapunov stability we have the
desired result.

The system dynamics along the iteration index j can be
rewritten as follows:

X̄j+1 = g(Bj+1), (14)

Xj+1 = f(Wj+1,Bj+1),

where Bj+1 = ΠBs [Bj +ηjYj ], where Yj = Cj,M −V. By
Assumption 3.1 we know that g(·) and f(·, ·) are bounded
and continuous.

Proposition 4.2. If Assumption 2.2, 3.1 and 3.2 are sat-

isfied, then Bj ,

∑k−1

l=0
Ql

k and X̄j converge to B∗, V and
g(B∗) in probability, respectively.

Proof. This proof is to check all conditions in Lemma 4.1
as in Muñoz-Carpintero et al. (2018). Consider j ≥M−1.
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1) According to the definition, for j ≥ 1, Qj is a function
of Xj and consequently, a function of Wj and Bj , so
we denote it as Qj(Wj ,Bj). On the other hand, we

know that Cj,M =

∑j

l=j−M+1
Ql(Wl,Bl)

M . Denote Q̄j(Bj) =
E(Qj(Wj ,Bj)|Bj) and ζj(Wj ,Bj) = Qj(Wj ,Bj) −
Q̄j(Bj). Clearly, E(ζj(Wj ,Bj)|Bj) = 0. Now we can
define the memory process ξj = [Qj−1, . . . ,Qj−M+1] and

the function h̃(·, ·) in Lemma 4.1 is given by

h̃(Bj , ξj) =
Q̄j(Bj) +

∑j−1
l=j−M+1 Ql

M
−V,

and

Yj = h̃(Bj , ξj) +
ζj(Wj ,Bj)

M
.

Since the sub-σ-algebra Fj−1 collects all available informa-
tion after the (j − 1)-th iteration, which includes Bj , we

have Ej−1(
ζj(Wj ,Bj)

M ) = 0 and
ζj(Wj ,Bj)

M is a martingale
difference.

The boundedness of h̃(·, ·) directly follows the definition of
Qj . To show its continuity, we only need to show that

Q̄j(Bj) = (

∑
k∈H1

E(q(gTk xj(k)− hk)|Bj)

|H1|
,

. . . ,

∑
k∈Hs

E(q(gTk xj(k)− hk)|Bj)

|Hs|
)′

is continuous.

By the designed algorithm, xj(k + 1) = Axj(k) +
B(ū∗j (k|k) + K(xj(k) − x̄j(k))) + wj(k). Thus, given Bj ,
Xj can be expressed as

Xj =Lx0 + P Ūj + SX̄j +QWj .

=Lx0 + P Ūj + Sg(Bj) +QWj ,

where L, P , S and Q are matrices with proper dimension.
Note that Ūj is also a continuous function of Bj . So, every
xj(k) is a continuous function of Bj and q(gTk xj(k)− hk)
is a semicontinuous function of Bj with at most countable
discontinuous points. Therefore, E(q(gTk xj(k)−hk)|Bj) is
continuous with respect to Bj since this expectation is
essentially an integral of Wj depending on the parameter
Bj .

2) This condition is satisfied by design.

3) Yj is bounded since h̃(·, ·) and Qj are bounded. By
Assumption 3.1, X̄j is bounded so ξj is bounded as well.
Bj is bounded due to the projection operator.

4) Note that ξj+1 = [Qj , . . . ,Qj−M+2]. We have shown
that Qj is a function of Wj and Bj so the distribution
of Qj is determined by Bj and the distribution of Wj .
X̄j is also a function of Bj . Therefore, the distribution
of ξj+1 is completely determined by ξj and Bj since
[Qj−1, . . . ,Qj−M+2] are included in ξj . So we have shown
that (13) is satisfied.

Note that for arbitrary set X ∈ Rn(T+1), the set X ⊕
(−(Lx0+P Ūj+Sg(Bj))) varies continuously with respect
to Bj . As a consequence, P(QWj ∈ X ⊕ (−(Lx0 +P Ūj +

Sg(Bj)))|Bj) is a continuous function of Bj and P(Xj ∈
X |Bj) is also continuous.

For the continuity, one needs to note that for an arbitrary
set A, P(Qj ∈ A|Bj) can be rewritten as P(Xj ∈ X |Bj)
for some set X . Furthermore, [Qj−1, . . . ,Qj−M+2] are
included in ξj . Combining the above facts together leads
to that P (ξj , ·|Bj) is continuous.

5) This condition is satisfied by Assumption 3.2.

6) It has been shown in Proposition 4.1.

Therefore, by Lemma 4.1 and (14), Bj and X̄j converge
to B∗ and g(B∗) in probability.

Assumption 3.2 implies that liml→∞

∑l−1

j=0
Qj(B∗)

l → V
in probability. Note that Qj is continuous with respect

to Bj . Consider

∑l

j=0
Qj(Bj)−Qj(B∗)

l+1 . Since Bj converges
to B∗ in probability, for any given probability p and ε,
there exists a large enough integer l̄ such that |Ql(Bl) −
Ql(B

∗)| < ε with probability larger than p for all l ≥ l̄.

Therefore,

∑l

j=0
|Qj(Bj)−Qj(B∗)|

l+1 =

∑l̄

j=0
|Qj(Bj)−Qj(B∗)|

l+1 +∑l

j=l̄+1
|Qj(Bj)−Qj(B∗)|
l+1 where the first term can be arbi-

trarily small by choosing large enough l and the second
term is less than ε with probability higher than p, which

means that

∑l−1

j=0
Ql

l converges to liml→∞

∑l−1

j=0
Qj(B∗)

l in
probability and consequently converges to V in probabil-
ity.

5. NUMERICAL EXAMPLE

In this section, we consider the following HVAC system
from Muñoz-Carpintero et al. (2018) and Ma et al. (2011):

x(k + 1) =Ax(k) +Bu(k) + V (w̄(k) + δ(k)),

where A =

[
0.762 0.231
0.013 0.988

]
, V =

[
0.0069 0.0004

0 0

]
and

B =

[
−3.181

0

]
, x = (x1, x2)T with x1 being the air

temperature of the room and x2 the temperature of a slow-
dynamics mass (floor, walls and furniture), the control
input is the cool air mass flow injected into the room,
w̄(k) is the deterministic part of the disturbance with w̄1

the ambient temperature and w̄2 indoor thermal load and
δ(k) is the stochastic part of the disturbance. δ1 follows a
truncated standard normal distribution over [−4, 4], and
δ2 is 100ν with ν following a truncated normal distribution
over [−4, 4]. The initial condition x1(0) and x2(0) are
random variables uniformly distributed in [24.3, 24.7] and
[23.8, 24.2], respectively. k = 0, . . . , 47 represents the
sampling time instants of one day where sampling interval
is 30 minutes.

In this example we consider two kinds of constraints. The
first one is the chance constraint which aims to regulate the
violation frequency and the second one is the integrated
chance constraint which aims to regulate the violation
magnitude and frequency.

Denote the set of time instants of working hours as Hwork

and that of non-working hours as Hoff. The chance con-
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Fig. 1. Evolution of empirical average loss

straint (Prob) is given by vwork ,

∑
k∈Hwork

P(x(k)≥24)

|Hwork| and

voff ,

∑
k∈Hoff

P(x(k)≥24)

|Hoff| . The integrated chance constraint

(Integ) is given by vwork ,

∑
k∈Hwork

E(max(x(k)−24,0))

|Hwork| and

voff ,

∑
k∈Hoff

E(max(x(k)−24,0))

|Hoff| .

We test the proposed algorithm for (voff, vwork) = (0.1, 0.1)
and (0.5, 0.1) for both types of constraint. In the following,
we use ’Integ’ and ’Prob’ as the abbreviation of the
integrated chance constraint and probabilistic constraint,
respectively. Then the four combinations of different kinds
of constraints and expected losses are denoted as Integ −
(0.1, 0.1), Integ − (0.5, 0.1), Prob − (0.1, 0.1) and Prob −
(0.5, 0.1), respectively.

In the 4 cases the constraint of the control input is 0 ≤ u ≤
1. The objective function is

∑k+Nk−1
i=k ū(i|k) with N = 7

as defined in Problem 1. The initialization of the tightened
constraints are calculated using the tube based approach
in Mayne et al. (2005). The step size ηj in (12) is given
by ηj = 20

j+20 and M = 50. In Fig. 1, the evolution of

the empirical average for working and non-working hours
along the iteration index is shown.

Finally, we directly apply the relaxation coefficients found
by the proposed algorithm with time-varying and uniform
stochastic constraints to the system for 400 iterations to
compare their mean costs. The performance improvement
compared with the robust approach in Mayne et al. (2005)
is shown in Table 1. Note that the approach in Muñoz-
Carpintero et al. (2018) leads to the result of Prob −
(0.1, 0.1).

Table 1. Average cost and performance im-
provement of different approaches

Constraint type-(voff, vwork) Mean Cost Improvement

Integ-(0.5, 0.1) 6.8131 21.02%

Integ-(0.1, 0.1) 7.6413 11.42%

Prob-(0.5, 0.1) 7.9691 7.62%

Prob-(0.1, 0.1) 8.0690 6.47%

Robust constraint 8.6268 0%

6. CONCLUSION

In this paper, an iterative learning based approach has
been proposed for MPC subject to time varying stochastic
constraints. Without assuming the knowledge of the distri-
bution function of the uncertainty, an adaptive updating
law has been designed to relax and tighten the constraints
according to past realizations of the state trajectories.
Under some proper assumptions, the learning procedure
has been shown to be equivalent to a root-searching prob-
lem and stochastic approximation theory has been applied
to ensure convergence. A numerical example on HVAC
system control has shown the effectiveness of the proposed
algorithm.
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