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Abstract: In the paper an approach is proposed for calculating the “best” approximate
GCD of a set of coprime polynomials. The algorithm is motivated by the factorisation of the
Sylvester resultant matrix of polynomial sets with nontrivial GCD. In the (generic) case of
coprime polynomial sets considered here the aim is to minimise the norm of the residual error
matrix of the inexact factorisation in order to compute the “optimal” approximate GCD. A
least-squares alternating projection algorithm is proposed as an alternative to the solution of
the corresponding optimisation problem via nonlinear programming techniques. The special
structure of the problem in this case, however, means that the algorithm can be reduced to a
sequence of standard subspace projections and hence no need arises to compute gradient vectors,
Hessian matrices or optimal step-lengths. An estimate of the asymptotic convergence rate of
the algorithm is finally established via the inclination of two subspaces.

Keywords: nonlinear least squares, Sylvester resultant matrix, approximate GCD, alternating
projection algorithm, convergence analysis

1. INTRODUCTION

The notion of Greatest Common Divisors (GCD) of a
set of polynomials has a wide range of applications in
engineering disciplines. In Control Theory, for example,
they arise in determinantal assignment problems, algebraic
control methods, stability analysis problems, or distance
problems to uncontrollability or unobservability.

Various approaches have been developed for GCD calcula-
tions, e.g. Barnett (1971), Bitmead et al. (1978), Fatouros
and Karcanias (2003), Vardulakis and Stoyle (1978). Eu-
clid’s algorithm for two polynomials established the basis
for the development of several computational techniques
that have been extended to arbitrary number of polyno-
mials. Linear Algebraic methods for GCD calculation rely
on the properties of the corresponding Sylvester resultant
matrix. Certain of these techniques have been extensively
studied in Christou et al. (2010), Fatouros and Karca-
nias (2003), Karcanias and Mitrouli (2003), Karcanias
and Mitrouli (1994), Karcanias et al. (2006b), Karcanias
(2007), Karmarkar and Lakshman (1996), Mitrouli and
Karcanias (1993), Rupprecht (1999), and the references
therein.

The notion of “almost” or “approximate” coprimeness
addressed in Mitrouli and Karcanias (1993), Karcanias
and Mitrouli (1994), Fatouros et al. (2013), Halikias et al.
(2012), Karcanias (2007), is of particular interest because

the GCD computation is a non-generic problem. Algo-
rithms for the approximate GCD calculation typically
relax algorithms for solving the exact GCD problem and
have found application in a variety of contexts, e.g. Karca-
nias et al. (2006a), Karcanias and Halikias (2013). Mitrouli
and Karcanias (1993) propose an algorithm based on the
ERES methodology, while Karcanias and Giannakopoulos
(1989), consider matrix-pencil techniques for computa-
tion of the nearest GCD arbitrary degree. Bitmead et al.
(1978), Fatouros and Karcanias (2003), Halikias et al.
(2012), Karcanias et al. (2006a) characterise approximate
GCD’s based on the properties of Sylvester resultant ma-
trices. An alternative approach has been studied in Ha-
likias et al. (2012), Limantseva et al. (2020) based on the
concept of structured singular values.

In the present work we propose an approach based on a
factorisation result of the generalised Sylvester resultant
matrix defined by a set of polynomials having GCD of
degree k. It is well known that a set of polynomials P share
a common root if and only if the corresponding Sylvester
matrix, say SP , is rank deficient. If the GCD has degree k,
then it can be written as a product of an augmented resul-
tant matrix [0k | SP∗ ] corresponding to a set of polyno-
mials P∗ of reduced degree and a lower-triangular Toeplitz
matrix Φ̂λ defined from the coefficients of the GCD poly-
nomial, i.e. SP = [0k | SP∗ ]Φ̂λ. If P has a GCD with
degree less than k, then the factorisation is not exact and

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 5911



the residual error matrix E = SP − [0k | SP∗ ]Φ̂λ occurs.
The proposed algorithm aims to minimise the Frobenious
norm of this matrix with respect to the parameters of
the factorised matrices SP∗ and Φ̂λ. This minimisation is
equivalent to a nonlinear programming problem. Here we
propose a least-squares alternating projection algorithm to
minimise ‖E‖F involving a sequence of linear projections.
This has the advantage that it reduces the optimization to
a sequence of standard subspace projections and hence no
need arises to compute gradient vectors, Hessian matrices
or optimal step-lengths. Estimates of the asymptotic con-
vergence rate can also de derived in terms of the inclination
of two subspaces.

The notation used in the paper is standard and is sum-
marised in this paragraph for convenience. We denote by
Rn×m the set of n ×m real matrices and by R[s] the set
of polynomials with real coefficients. If d(s) ∈ R[s], then
∂d(s) defines the degree of d(s). The singular values of
A ∈ Rn×m are denoted by σi(A), i = 1, . . . ,min(n,m),
listed in non-increasing order σ1 ≥ σ2 ≥ · · · ≥ σmin(n,m) ≥
0. ‖A‖ = σ1(A) denotes the spectral norm of a matrix
A and ‖A‖F the Frobenius norm. The generalised Moore-
Penrose inverse of A is denoted by A+. If P is the pro-
jection operator onto a subspace S of Rm, then P⊥ is the
projection operator onto S⊥, the orthogonal complement
of S. Finally, the set of lower triangular Toepliz matrices
is denoted by T .

2. GENERALISED SYLVESTER RESULTANT AND
GCD FACTORISATION

Let Ph+1,n be a set of polynomials defined as follows:

Ph+1,n = {a(s), bi(s) ∈ R[s], i = 1, . . . , h} (1)

where n = ∂a(s) ≥ t = ∂bi(s), i = 1, 2, . . . , h. Let the
GCD of the set Ph+1,n be φ(s) (φ(s) = 1 if the polynomials
are coprime). The crucial concept of studying properties
of a polynomial set is the notion of Sylvester resultant
matrix that is studied in Barnett (1971), Bitmead et al.
(1978), Christou et al. (2010), Fatouros and Karcanias
(2003), Karcanias et al. (2006b), Vardulakis and Stoyle
(1978).

Definition 1. Let Ph+1,n as defined in (1) where a(s)
and bi(s), ∀i = 1, . . . , h, are considered without loss of
generality to be the monic polynomials:

a(s) = sn + αn−1s
n−1 + · · ·+ α0,

bi(s) = st + βt−1,is
t−1 + · · ·+ β0,i, i = 1, . . . , h (2)

(1) Let the Sylvester Resultant S0 ∈ Rt×(n+t) corre-
sponding to a(s) be structured as follows:

S0 =


1 αn−1 αn−2 . . . . . . α0 0 . . . 0
0 1 αn−1 . . . . . . α1 α0 . . . 0
...

. . .
. . .

...
. . .

...
0 . . . 0 1 . . . αt−1 . . . . . . α0


(3)

(2) For each polynomial bi(s), where i = 1, . . . , h, define
corresponding Resultant matrices by Si ∈ Rn×(n+t)

where:

Si =


1 βi,t−1 βi,t−2 . . . . . . βi,0 0 . . . 0
0 1 βi,t−1 . . . . . . βi,1 βi,0 . . . 0
...

. . .
. . .

...
. . .

...
0 . . . 0 1 . . . βi,n−1 . . . . . . βi,0


(4)

(3) Then, the Generalised Resultant of the polynomial
set Ph+1,n is structured:

SP =


S0

S1

...
Sh

 ∈ R(t+hn)×(n+t) (5)

The Generalised Resultant matrix holds important prop-
erties of the GCD of the given polynomial set. Moreover,
the k-th smallest singular value of this matrix can be
used as the approximate measure of the nearest GCD
of degree k. Such concept is widely used in the matrix
pencil methodologies, see Karcanias and Mitrouli (1994),
Karcanias et al. (2006b), where the number of singular
values within a given tolerance indicates the approximate
GCD degree.

Many studies has been devoted to the problem of “ap-
proximate co-primness” and “almost zeros” of a set of
polynomials, Christou et al. (2010), Fatouros et al. (2013),
Karcanias et al. (2006b), Karcanias (2007), Karcanias
et al. (2006a), Karcanias and Halikias (2013), Karmarkar
and Lakshman (1996). In the context of our work, an
almost rank-deficient Sylvester resultant matrix identifies
the existence of an almost common root in the polynomial
set, while the smallest singular value may be regarded as
a measure of distance to non-coprimeness, Christou et al.
(2010), Fatouros et al. (2013), Karcanias (2007).

Before introducing the main results some important prop-
erties of SP are summarised in the following Theorem.

Theorem 1. Fatouros and Karcanias (2003): Consider the
generalised Sylvester resultant SP of the polynomial set
Ph+1,n defined in equation (5).nLet φ(s) be the GCD of
the polynomials in Ph+1,n. Then:

(1) The polynomial set Ph+1,n is coprime if and only if
the corresponding Sylvester resultant has full rank,
i.e. rank(SP) = n+ t. In general,

rank(SP) = n+ t− ∂φ(s) (6)

where n, t are the maximal degrees of the polynomials
a(s) and bi(s) respectively, i = 1, . . . , h.

(2) φ(s) is invariant under elementary row transforma-
tions on SP . The last non-vanishing row of the re-
duced row-echelon form of SP defines the coefficients
of φ(s).

Karcanias et al. (2006a) introduced technique for calcu-
lating the “best” approximate GCD based on the factori-
sation of the generalised resultant matrix. This technique
forms the basis of the algorithm proposed in the paper.

Definition 2. Karcanias et al. (2006a): Let λ(s) = λks
k +

· · · + λ1s + λ0 be the GCD of the set Ph+1,n. Assume

that the Toeplitz matrix Φ̂λ ∈ T corresponding to λ(s) is
structured as:
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Φ̂λ =



λ0 0 0 . . . . . . . . . 0

λ1 λ0 0
...

...
. . .

. . .
. . .

...

λk
. . .

. . .
. . .

...

0 λk λ1 λ0
. . .

...
...

. . .
. . .

. . .
. . . 0

0 . . . 0 λk . . . λ1 λ0


∈ R(n+t)×(n+t). (7)

Φ̂λ is invertible if and only if λ0 6= 0. In that case
the inverse, denoted as Φλ, is also a Toeplitz matrix
representation, such that:

Φλ =



y0 0 0 . . . . . . 0

y1 y0 0
...

y2 y1 y0
. . .

...
...

...
...

. . .
. . .

...
yn+t−2 yn+t−3 . . . . . . y0 0
yn+t−1 yn+t−2 . . . . . . y1 y0


∈ R(n+t)×(n+t),

(8)
where the elements yi are

y0 =
1

λ0
, y1 =

λ1

λ0
y0, . . . , yi = − 1

λ0

min{j,k}∑
i=1

λiyj−i, (9)

and j = 2, . . . , n+ t− 1.

Theorem 2. Karcanias et al. (2006a): Let SP be the
Sylvester resultant matrix of the polynomial set Ph+1,n.
Set λ(s) = λks

k + · · ·+ λ1s+ λ0 be the greatest common
divisor of degree k of the set. thus, it is possible to factor
SP as

SP = S
(k)
P∗ Φ̂λ, S

(k)
P∗ =


0k S

(k)
0

0k S
(k)
1

...
...

0k S
(k)
h

 = [0k | Sp∗ ]

where S∗p is the reduced set of polynomials P∗h+1,n−k
obtained by dividing the polynomials of the set Ph+1,n

by λ(s),

S
(k)
0 =


α

(k)
n−k α

(k)
n−k−1 . . . α

(k)
0 0 . . . 0

0 α
(k)
n−k . . . . . . α

(k)
0 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 α
(k)
n−k . . . . . . a

(k)
0

 (10)

and

S
(k)
i =


β

(k)
i,t−k β

(k)
i,t−k−1 . . . β

(k)
i,0 0 . . . 0

0 β
(k)
i,t−k . . . . . . β

(k)
i,0 . . . 0

...
. . .

. . .
. . .

...

0 . . . 0 β
(k)
i,t−k . . . . . . β

(k)
i,0

 (11)

for each i = 1, . . . , h. Moreover, Φ̂λ is the lower-triangular
Toeplitz matrix defined in equation (7).

Equivalently, if λ(s) does not have a zero root, then

S
(k)
P∗ = SPΦλ = [0k | SP∗ ]

where Φλ is the lower-triangular Toeplitz matrix defined
in equations (8) and (9).

Note that factorisation of the generalised resultant is exact
if and only if the polynomial set Ph+1,n has exact GCD.
Otherwise the GCD is approximate and leads to the non-
zero residual error matrix:

E = SP − S(k)
P∗ Φ̂λ = SP − [0k | SP∗ ]Φ̂λ (12)

which depends on the parameters:

{α(k)
j }j=0,1,...,n−k−1, {β(k)

i,j }
j=0,1,...,t−k−1
i=1,2,...,h and

{λj}j=0,1,...k−1

(13)

To make the parametrization unique it is assumed that

all polynomials are monic, i.e. λk = 1, α
(k)
n−k = 1 and

β
(k)
i,t−k = 1 for all i = 1, 2, . . . , h.

In the proposed algorithm, we seek to minimise the follow-
ing function:

f(θ) := ‖SP − [0k | SP∗ ]Φ̂λ‖2F (14)

with respect to parameter vector

(θ, λ) = (α
(k)
0 , . . . α

(k)
n−k−1, β

(k)
1,0 , . . . β

(k)
h,t−k−1, λ0, . . . λk−1)

(15)
whose elements are defined in equation (13). The optimal
parameters obtained by the algorithm define the “best”
approximate GCD and the corresponding coefficients of
the reduced-degree polynomials, along with the minimum
value of f which is related to the strength of the approxi-
mation.

Equation (14) is a nonlinear least squares-problem. Such
problems have been of particular interest for many
years, see Marquardt (1963), Powell and Macdonald
(1972), Wold (1973) Golub and Pereyra (1973), Ruhe and
Wedin (1980), O’leary and Rust (2013), Yamashita and
Fukushima (2001), Bergou et al. (2017), Argyros et al.
(2019). In the next section we analyse the convergence
properties of the special family of separable least-squares
problems which includes the specific problem under con-
sideration in this work.

3. SEPARABLE PROBLEMS

In Ruhe and Wedin (1980), Golub and Pereyra (1973),
Golub and Pereyra (2003) and Krogh (1974) the authors
consider a special class of separable problems of the form:

min{‖y −Ψ(θ)λ‖, θ ∈ Rn, λ ∈ Ω} (16)

where Ω is an open subset of Rm. This is a nested
optimization problem over parameter vectors θ and λ.
Since dependence on λ is linear, minimization over λ can
be solved explicitly by means of a subspace projection
(parametric in θ) resulting in:

min
θ∈Ω
‖P⊥Ψ(θ)y‖

which is a nonlinear programming problem. This approach
simplifies the computational procedure and appears to be
more robust in comparison with methodologies based on
the Taylor series expansion or gradient-based techniques
(see Golub and Pereyra (2003), Krogh (1974)). Local and
global optimality conditions in terms of the transformed
problem can be found in Golub and Pereyra (1973).

The present problem falls in the above class. Consider the
function:

f(θ, λ) = ‖SP − [0k | SP∗ ]Φ̂λ‖2F (17)
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where parameter vectors are λ = [λ0, . . . λk−1]′ and θ =

[α
(k)
0 , . . . α

(k)
n−k−1, β

(k)
1,0 , . . . β

(k)
h,t−k−1]′. Since the θi’s enter

SP∗ linearly (and the λi’s enter Φ̂λ linearly), the problem
is separable. In particular we can write:

f(θ, λ) = ‖SP − [0k | SP∗ ]Φ̂λ‖2F
= ‖vec(SP)− (I ⊗ [0k | SP∗ ])vec(Φ̂λ)‖2 (18)

Let Q be such that vec(Φ̂λ) = Qλ, then

f(θ, λ) = ‖vec(SP)− (I ⊗ [0k | SP∗ ])Qλ‖2.
Identifying y := vec(SP) and Ψ(θ) = (I ⊗ [0k | SP∗ ])Q
shows that f(θ, λ) is in the form of (16). Note further
that due to the bilinearity of the problem this can also be
achieved by interchanging the role of the two parameter
vectors. Writing:

f(θ, λ) = ‖SP − [0k | SP∗ ]Φ̂λ‖2F
= ‖vec(SP)− (Φ̂λ ⊗ I)vec([0k | SP∗ ])‖2

and introducing a matrix Q̂ so that

vec([0k | SP∗ ]) = Q̂θ

then f(θ, λ) can again be written in the general form of
(16).

Next we exploit the bilinearity of the cost function to
introduce a least-squares alternating projection algorithm
for minimising the residual error function (14).

4. AN ALTERNATING PROJECTION
LEAST-SQUARES ALGORITHM FOR

CALCULATING THE APPROXIMATE GCD

Let Ph+1,n be a set of monic polynomials with dominant
degrees (n, t), t ≤ n, and let SP be the corresponding
generalised Sylvester resultant. Assume that there exists
an approximate GCD of degree k defined by the monic
polynomial λ(s) = sk + λk−1s

k−1 + · · ·+ λ1s+ λ0, k ≤ t.
Equation (7) defines the Toeplitz matrix of the GCD,
where λk is assumed to be equal to 1. In order to find
“best” set of GCD coefficients and optimise the strength
of approximation we define E = SP − [0k | SP∗ ]Φ̂λ and
seek to minimise f = ‖E‖2F . Then the problem can be
written as follows:

E = SP −

Ñ0 +

n−k−1∑
j=0

α
(k)
j Nj +

h∑
i=1

t−k−1∑
j=0

β
(k)
ij Nij

×
×

(
M̃0 +

k−1∑
i=0

λiMi

)
(19)

where Ñ0, Nj , Nij ∈ R(t+hn)×(n+t), M̃0,Mi ∈ R(n+t)×(n+t).
The algorithms considers two separate subproblems that
are solved iteratively in the following steps:

Step 1 :

Consider the parameters (λ0, λ1, . . . , λk−1) to be fixed at
the first step. Let

M = M̃0 +

k−1∑
i=0

λiMi = Φ̂λ

Then the problem is reduced to:

E = SP −

Ñ0 +

n−k−1∑
j=0

α
(k)
j Nj +

h∑
i=1

t−k−1∑
j=0

β
(k)
ij Nij

M

= Ỹ0 −
n−k−1∑
j=0

α
(k)
j Yj −

h∑
i=1

t−k−1∑
j=0

β
(k)
ij Yij

where Ỹ0 = SP − Ñ0M , Yj = NjM and Yij = NijM
for i = 1, 2, . . . , h and j = 0, 1, . . . , t − k − 1. We seek to
minimise:

f1(α
(k)
0 , . . . , β

(k)
h,t−k−1) = f1(θ), (20)

where θ is defined in equation (15). This is equivalent to
the minimisation of function:

f1 =

∥∥∥∥∥∥Ỹ0 −
n−k−1∑
j=0

α
(k)
j Yj −

h∑
i=1

t−k−1∑
j=0

β
(k)
ij Yij

∥∥∥∥∥∥
2

F

(21)

This can be written as c1 − 2y′θ + θ′Γθ with c1 = ‖Ỹ0‖2F ,

θ′ =
(
α

(k)
0 . . . α

(k)
n−k−1 β

(k)
1,0 . . . β

(k)
h,t−k−1

)
∈ Rn−k+h(t−k)

and
y′ =

(
y′0 y

′
1 . . . y

′
h

)
∈ Rn−k+h(t−k)

where

y′0 =
(

trace(Ỹ0Y
′
0) . . . trace(Ỹ0Y

′
n−k−1)

)
∈ Rn−k

and

y′i =
(

trace(Ỹ0Y
′
i,0) . . . trace(Ỹ0Y

′
i,t−k−1)

)
∈ Rt−k

for i = 1, 2, . . . , h. Moreover

Γ = Γ′ =


Γ0,0 Γ0,1 · · · Γ0,h

Γ1,0 Γ1,1 · · · Γ1,h

...
...

. . .
...

Γh,0 Γh,1 · · · Γh,h

 ,

Γ0,0
i0,j0

= trace(Yi0−1Y
′
j0−1),Γ0,m

i0,j
= trace(Yi0−1Y

′
m,j−1),

Γρ,mi,j = trace(Yρ,i−1Y
′
m,j−1) and i0 = 1, 2, . . . , n − k,

j0 = 1, 2, . . . , n−k, i, j = 1, 2, . . . , t−k, m, ρ = 1, 2, . . . , h;
and Γ ∈ R(n−k−h(t−k))×(n−k−h(t−k)). Since Γ is positive
definite (see Lemma 1 below), the (unique) minimiser of

f1 is found as θ̂ = Γ−1y.

Step 2 :

Assume that {α(k)
j }j=0,1,...,n−k−1 and {β(k)

i,j }
j=0,1,...,t−k−1
i=1,2,...,h

are fixed. Define:

N = [0k | S∗P ] = Ñ0 +

n−k−1∑
j=0

α
(k)
j Nj +

h∑
i=1

t−k−1∑
j=0

β
(k)
ij Nij

Then the residual error matrix is:

E = SP − (NM̃0 +

k−1∑
i=0

λiNMi) = X̃0 −
k−1∑
i=0

λiXi

where X̃0 = SP−NM̃0 and Xi = NMi, i = 0, 1, . . . , k−1.
The second least-squares subproblem is to minimise the
function:

f2(λ0, . . . , λk−1) = f2(λ) (22)

where θ is defined in equation (15). This is equivalent to
the minimisation of:∥∥∥∥∥X̃0 −

k−1∑
i=0

λiXi

∥∥∥∥∥
2

F

= c−2

k−1∑
i=0

ηiλi+

k−1∑
i=0

k−1∑
j=0

σijλiλj (23)
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or equivalently the minimization of: f2 = c2−2η′λ+λ′Σλ,
where we have defined:

c2 = ‖X̃0‖2F , λ′ = ( λ0 λ1 · · · λk−1 ) ∈ Rk

and also

η′ = ( η0 η1 · · · ηk−1 ) ∈ Rk, ηi = trace(X̃0X
′
i)

for i = 0, 1, . . . , k − 1 and

Σ = Σ′ ∈ Rk×k where Σij = trace(XiX
′
j)

for i = 0, 1, . . . , k − 1 and j = 0, 1, . . . , k − 1. According
to Lemma 1 (below) Σ = Σ′ > 0 and hence the (unique)
minimiser of f2 is given by:

λ̂ =
(
λ̂0 λ̂1 · · · λ̂k−1

)′
= Σ−1η

Step 3 :

Starting from an initial vector:

λ̂′ =
(
λ̂0 λ̂1 · · · λ̂k−1

)
whose entries are the initial estimates of the approximate
GCD iterate between steps 2 and 3 of the algorithm
until numerical convergence is attained, i.e. the difference
between two consecutive values of f falls below a pre-
specified tolerance.

The positive definiteness of matrices Γ and Σ above is
established in the following Lemma.

Lemma 1. Γ = Γ′ > 0 and Σ = Σ′ > 0.

Proof: For A,B ∈ R(t+hn)×(n+t) define the inner product
(A,B) = trace(AB′) and note that (A,A) = ‖A‖2F . It can
be shown that Γ is the Gramian matrix of the set

{Y0, . . . , Yn−k−1, Y1,0, . . . Y1,t−k−1, . . . , Yh,0, . . . Yh,t−k−1}
and that this set is linearly independent which implies
Γ = Γ′ > 0. A similar argument shows that Σ = Σ′ > 0.
Details are omitted. �

5. RATE OF CONVERGENCE OF ALTERNATING
PROJECTION ALGORITHM

In this section the asymptotic rate of convergence of the
alternation projection algorithm is studied. To simplify
notation define:

Nn+(i−1)t−ik+j = Ni,j , 1 ≤ i ≤ h, 0 ≤ j ≤ t− k − 1

and θi = α
(k)
i−1 for i = 1, 2, . . . , n− k − 1, θn+(i−1)t−ik+j =

β
(k)
i,j , 1 ≤ i ≤ h, 0 ≤ j ≤ t− k − 1. Then

E = SP −

(
Ñ0 +

p∑
i=0

θiNi

)(
M̃0 +

q∑
i=0

λiMi

)
where p = n − k − 1 and q = k − 1. Suppose that the
alternating projection algorithm converges to the optimal
solution with parameters {θoi }

p
i=0, {λoj}

q
j=0 and consider

small perturbations {δθi}pi=0, {δλj}qj=0 around the optimal
set of parameters. Then,

E = SP−

(
Ñ0 +

r∑
i=0

(θoi + δθi)Ni

)(
M̃0 +

q∑
i=0

(λoi + δoi )Mi

)
This is equivalent to

E = Y −
p∑
i=0

δθiNi(M̃0 +

q∑
j=0

λ0
jMj)−

−
q∑
i=0

δλi(Ñ0 +

p∑
j=0

θ0
jNj)Mi −

p∑
i−0

q∑
j=0

δθiδλjNiMj

(24)

where

Y = SP − Ñ0M̃0 −
p∑
i=0

θoiNiM̃0 −
q∑
i=0

λoi Ñ0Mi−

−
p∑
i−0

q∑
j=0

δθoi δλ
o
jNiMj

Vectorising E it can be observed that as δθi → 0 and
δλi → 0, ‖E‖2F = ‖vec(E)‖2 gets arbitrarily close to

γ = ‖y − S1δθ − S2δλ‖2 (25)

where y = vec(Y ),

(δθ)′ = ( δθ1 δθ2 . . . δθp ) , (δλ)′ = ( δλ1 δλ2 . . . δλq )

and

S1 = ( ξ1 ξ2 . . . ξp ) , ξi = vec[Ni(M̃0 +

q∑
j=0

λ0
jMj)]

S2 = ( ψ1 ψ2 . . . ψq ) , ψi = vec[(Ñ0 +

p∑
j=0

θ0
jNj)Mi]

where i = 1, 2, . . . , q. Geometrically (25) corresponds to
the distance of y from the subspace R(S1) + R(S2),
where R(S) is the range of subspace S. The following
Theorem establishes the asymptotic convergence rate of
the algorithm:

Theorem 3. (von Neumann) Let X be a Hilbert space and
U, V, two closed subspaces of X. Let also W = U + V where
(·) denotes set closure. For x ∈ X define the sequence:

xn = [(I − Pv)(I − Pu)]nx, n ∈ N
where Pv and Pu are the orthogonal projection operators
onto V and U, respectively. Then the sequence {xn}, n ∈ N
converges to x − w where w is the best approximation
to x from W. Further convergence is geometric with a
convergence rate:

β = incl(U⊥,V⊥)

where incl(·, ·) denotes the inclination between two sub-
spaces, i.e.

incl(U⊥,V⊥) = sup{|(z, w)| : z ∈ U⊥, w ∈ V⊥,
‖z‖ = ‖w‖ = 1}

and where U⊥ and V⊥ denote the orthogonal complements
of U and V, respectively.

The asymptotic convergence rate of the algorithm is ob-
tained in the following Theorem (proof is omitted). This
is based on von Neumann’s algorithm. Note that since
R(S1) and R(S2) are finite-dimensional they are closed
(and similarly for R(S1) +R(S2)).

Theorem 4. Let U2 and Ũ2 be matrices whose columns
are orthonormal and span the range of S⊥1 and S⊥2 ,
respectively. Then the asymptotic convergence rate of the
algorithm is β = incl(R(S⊥1 ),R(S⊥2 )) = σ1(U ′2Ũ2).
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6. CONCLUSION

An alternative method for calculating the distance to
the nearest common root for a set of polynomials is
presented. The approximate factorisation of the Sylvester
matrix motivated the definition of an alternating least-
squares projection algorithm that minimises Frobenious
norm of the error matrix of the factorisation. It is shown
that a general nonlinear problem can be divided into
two linear sub-problems and be solved iteratively. Such
an approach avoids significant complexity in numerical
calculations of the “best” approximate GCD of a coprime
set of polynomials.
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