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Abstract: In this paper, we study the digital implementation of derivative-dependent control
for consensus of the nth-order stochastic multi-agent systems. The consensus controllers that
depend on the output and its derivatives up to the order n − 1 are approximated as delayed
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period. The efficiency of the presented approach is illustrated by numerical examples.
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1. INTRODUCTION

During the last decade, consensus of multi-agent systems
has received much attention due to its wide applications
(Olfati-Saber et al., 2007). Consensus requires all agents to
achieve a desired objective via neighbors’ information. For
example, the second-order consensus problem was studied
by the position and velocity information (Yu et al., 2010;
Gao and Wang, 2011). If the velocity (i.e. the derivative
of the position) is not available, it can be approximated
by finite differences leading to a delayed feedback (see e.g.
Niculescu and Michiels (2004); Kharitonov et al. (2005);
Fridman and Shaikhet (2016); Ramı́rez et al. (2016);
Fridman and Shaikhet (2017) and reference therein). This
idea has been employed for the second-order deterministic
multi-agent systems in Yu et al. (2013); Ma et al. (2014);
Cui et al. (2019).

In many areas of applications, e.g. aircraft engineering,
process control, population dynamics, multiplicative noises
that occur due to the parameter uncertainties and nonlin-
earities cannot be avoided (Mao, 2007; Shaikhet, 2013).
Consensus of stochastic multi-agent systems was studied
in Li and Zhang (2010); Ding et al. (2015); Ma et al.
(2017). In our recent paper (Zhang and Fridman, 2019),
the delayed implementation of derivative-dependent con-
trol for stochastic systems was considered. However, the
idea of using the delayed position information has not been
studied yet for the nth-order deterministic multi-agents
(n ≥ 3) or stochastic multi-agents (n ≥ 2).

In this paper, we study digital implementation of derivative-
dependent control by using delays for the nth-order
stochastic multi-agent systems. Following the improved
approximation method by using consecutive sampled out-
puts (Selivanov and Fridman, 2018), we approximate the
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consensus controllers that depend on the output and its
derivatives up to the order n − 1 as delayed sampled-
data controllers. Note that results of Zhang and Frid-
man (2019) cannot be directly applied to the multi-agent
case because of an additional term in the closed-loop
system. To compensate the additional term, we propose
novel Lyapunov-Krasovskii functionals that lead to LMIs.
Finally, we present numerical examples to illustrate the
efficiency of the presented approach.

Notations: Throughout this paper, 1n = [1, . . . , 1]T ∈ R
n,

0n = [0, . . . , 0]T ∈ R
n, In is the identity n × n matrix, ⊗

stands for the Kronecker product, the superscript T stands
for matrix transposition. Rn denotes the n dimensional
Euclidean space with Euclidean norm | · |, Rn×m denotes
the set of all n×m real matrices. Denote by diag{. . . } and
col{. . . } block-diagonal matrix and block-column vector,
respectively. X > 0 implies that X is a positive definite
symmetric matrix, |X |2S denotes the expression XTSX
with matrix S and vector X of appropriate dimensions,
EX denotes the mathematical expectation of stochastic
variable X .

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Graph theory

The communication topology among N agents is repre-
sented by a directed weighted graph G = (V , E ,A), where
V = {1, 2, . . . , N} is the node set, E ⊆ V × V is the edge
set, A = [aij ] ∈ R

N×N is the weighted adjacency matrix
with aij ≥ 0, ∀i, j ∈ V . It is assumed that aii = 0, ∀i ∈ V .
Notice that (i, j) ∈ E when aij > 0. An edge (i, j) ∈ E
implies that node i can receive information from node j.
Correspondingly, the Laplacian matrix L = [Lij ] ∈ R

N×N

of graph G is defined by Lii =
∑N

j=1 aij and Lij = −aij
when i 6= j. Graph G is said to have a spanning tree if
there exists node i ∈ V such that node i is reachable from
any other nodes.
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2.2 Derivative-dependent control of stochastic multi-agents

Consider the nth-order stochastic dynamic for each agent
i ∈ V governed by

y
(n)
i (t) =

n−1
∑

j=0

(

aj + cjẇ(t)
)

y
(j)
i (t) + bui(t), (1)

where yi(t) = y
(0)
i (t) ∈ R

k is the output, y
(j)
i (t) is the jth

derivative of yi(t), ui(t) ∈ R
m is the control input, w(t) is

the scalar standard Wiener process (Mao, 2007; Shaikhet,
2013), and ai, ci ∈ R

k×k, b ∈ R
k×m are constant matrices.

Denoting

xi(t) = col{y(0)i (t), . . . , y
(n−1)
i (t)}

= col{xi,0(t), . . . , xi,n−1(t)} ∈ R
nk,

A =











0 Ik 0 · · · 0
0 0 Ik · · · 0
· · · · · · · · · · · · . . .
0 0 0 · · · Ik
a0 a1 a2 · · · an−1











∈ R
nk×nk,

B = col{0, b} ∈ R
nk×m,

C = col{0, C̄} ∈ R
nk×nk

with C̄ = [c0, . . . , cn−1], we present (1) as

dxi(t) =
(

Axi(t) +Bui(t)
)

dt+ Cxi(t)dw(t), (2)

where the initial condition is given by xi(0) = x0i .

For multi-agent system (2), it is common to look for a
consensus controller of the form (see e.g. Sun and Wang
(2009))

ui(t) = −K̄
N
∑

j=1

Lijxj(t) = −
N
∑

j=1

n−1
∑

l=0

LijK̄lxj,l(t) (3)

with K̄ = [K̄0, . . . , K̄n−1] ∈ R
m×nk such that for any

initial condition, the consensus of (2) can be exponentially
mean-square achieved, i.e.

E|xi(t)− xj(t)| ≤ ce−αtE|xi(0)− xj(0)|, ∀i, j ∈ V ,
where c > 0 is a constant and α > 0 is called the decay
rate.

Differently from the state-feedback case with the full
knowledge of the system state, we consider the output-
feedback control where the derivatives xj,l(t) (l =
1, . . . , n− 1) in (3) are not available. As in Selivanov and
Fridman (2018), we employ their finite-difference approx-
imations:

xj,0(t) = x̄j,0(t),

xj,l(t) ≈ x̄j,l(t) =
x̄j,l−1(t)− x̄j,l−1(t− h)

h

=
1

hl

l
∑

p=0

(

l
p

)

(−1)pxj,0(t− ph),

l = 1, ..., n− 1

(4)

with a constant delay h > 0 and the binomial coefficients
(

l
p

)

= l!
p!(l−p)! . By replacing xj,l(t) in (3) with their

approximations, we have the following delay-dependent
controller

ui(t) = −
N
∑

j=1

n−1
∑

l=0

LijK̄lx̄j,l(t)

= −
N
∑

j=1

n−1
∑

l=0

LijKlxj,0(t− lh),

(5)

where xj,0(t) = xj,0(0) for t < 0 and

Kl = (−1)l
n−1
∑

m=l

(

m
l

)

1

hm
K̄m. (6)

For practical application of the delayed feedback (5), we
suggest its sampled-data implementation. We suppose that
xj,0(t) is only available at the time instants tk = kh,
k ∈ N0, where h > 0 is the sampling period. Then we
have the following sampled-data controller

ui(t) = −
N
∑

j=1

n−1
∑

l=0

LijK̄lx̄j,l(tk)

= −
N
∑

j=1

n−1
∑

l=0

LijKlxj,0(tk−l),

t ∈ [tk, tk+1), k ∈ N0,

(7)

where x̄j,l(t) and Kl are given by (4) and (6), respectively.
For the sampled-data controller (7), we introduce the
errors due to sampling

x̄j,0(tk) = xj,0(t)−
∫ t

tk

ẋj,0(s)ds,

x̄j,i(tk) = x̄j,i(t)−
∫ t

tk

˙̄xj,i(s)ds, i = 1, . . . , n− 1.

(8)

Then we follow the idea of Selivanov and Fridman (2018)
to present the approximation errors xj,i(t) − x̄j,i(t) (i =
1, . . . , n− 1) as

x̄j,l(t) = xj,l(t)−
∫ t

t−lh

ϕl(t− s)ẋj,l(s)ds, (9)

where ϕ1(v) =
h−v
h

, v ∈ [0, h] and for i = 1, . . . , n− 2

ϕi+1(v) =































1

h

∫ v

0

ϕi(λ)dλ +
h− v

h
, v ∈ [0, h]

1

h

∫ v

v−h

ϕi(λ)dλ, v ∈ (h, ih).

1

h

∫ ih

v−h

ϕi(λ)dλ, v ∈ [ih, ih+ h].

For further proceeding, we present several properties of
the functions ϕi(s) (i = 1, . . . , n− 1).

Proposition 1. The functions ϕi(s) (i = 1, . . . , n − 1)
have the following properties (Zhang and Fridman, 2019;
Selivanov and Fridman, 2018):

(1) 0 ≤ ϕi(v) ≤ 1, v ∈ [0, ih],
(2) ϕi(0) = 1, ϕi(ih) = 0,

(3)
∫ ih

0 ϕi(v)dv = ih
2 ,

(4) d
dv
ϕi(v) ∈ [− 1

h
, 0], v ∈ [0, ih].

Based on these properties, it follows from (9) that

˙̄xj,i(t) =

∫ t

t−ih

ψi(t− s)ẋj,i(s)ds, i = 1, . . . , n− 1

(10)
where ψi(t− s) = d

ds
ϕi(t− s).

Denote
x(t) = col{x1(t), . . . , xN (t)}, χ(t) = col{χ2(t), . . . , χN(t)},
x̄(t) = col{x̄1(t), . . . , x̄N (t)}, χ̄(t) = col{χ̄2(t), . . . , χ̄N(t)}
with

χi(t) = x1(t)− xi(t) = col{χi,0(t), . . . , χi,n−1(t)},
χ̄i(t) = x̄1(t)− x̄i(t) = col{χ̄i,0(t), . . . , χ̄i,n−1(t)}.
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From Sun and Wang (2009), it follows that χ(t) = (E1 ⊗
Ink)x(t), x(t) = (E2 ⊗ Ink)χ(t) + (1N ⊗ Ink)x1(t) and
x̄(t) = (E2 ⊗ Ink)χ̄(t) + (1N ⊗ Ink)x̄1(t), where E1 =
[1N−1,−IN−1] and E2 = [0N−1,−IN−1]

T . Then the sys-
tem (2), (3) takes the form

dχ(t) = Dχ(t)dt+ g(t)dw(t), (11)

where
D = IN−1 ⊗A− L⊗BK̄, L = E1LE2,
g(t) = (IN−1 ⊗ C)χ(t).

(12)

Using (8) and (9), the system (2), (7) takes the form

dχ(t) = f(t)dt+ g(t)dw(t), (13)

where

f(t) = Dχ(t) +

n−1
∑

i=1

(L ⊗BK̄i)κi(t) + (L ⊗BK̄)δ(t),

κi(t) =

∫ t

t−ih

ϕi(t− s)Hiχ̇(s)ds, δ(t) =

∫ t

tk

˙̄χ(s)ds

(14)
with D, g(t) given by (12) and

Hi = IN−1 ⊗ εi, εi = [0k×ik, Ik, 0k×(n−i−1)k].

As in the determinstic case (see e.g. French et al. (2009)),
we will show in the next section that for small enough
stochastic perturbations (i.e. small enough |C|), if the
system (11) is exponentially mean-square stable with a
decay rate ᾱ > 0, then for any α ∈ (0, ᾱ) the system (13)
is exponentially mean-square stable with a decay rate α
and small enough h > 0.

Remark 1. Comparatively to the single-agent system in
Zhang and Fridman (2019), the multi-agent system (13)
contains additional term δ(t) due to the sampling. This
term will be further compensated by additional terms in
Lyapunov functionals (see e.g. (24), (26), (28), (30)).

3. CONSENSUS ANALYSIS

In this section, we will analyze the exponential stability of
system (13). First, we follow arguments of Sun and Wang
(2009) to present following result:

Proposition 2. Assume that directed graph G has a span-
ning tree. Consensus of multi-agent system (2) under
sampled-data controller (7) with controller gains (6) can be
exponentially mean-square achieved if and only if system
(13) is exponentially mean-square stable.

It is clear from Proposition 2 that consensus of multi-
agent system (2) under sampled-data controller (7) with
controller gains (6) is converted into stability of (13).

We now present the following LMI conditions:

Theorem 1. Given K̄ = [K̄0, . . . , K̄n−1], let system (11)
with C = 0 be exponentially mean-square stable with a
decay rate ᾱ > 0.

(i) Given tuning parameters h > 0 and α ∈ (0, ᾱ), let
there exist matrices P > 0, W0 > 0, Ri > 0, Wi > 0
(i = 1, . . . , n−1),Q > 0, F1 > 0 and F2 > 0 of appropriate
dimensions that satisfy

Φ < 0, Ω < 0, (15)

where Φ and Ω are, respectively, the symmetric matrices
composed from

Φ11 = PD +DTP + 2αP + |C|2P +

n−2
∑

i=1

(ih)2

4
|Hi+1|2Ri

+
n−2
∑

i=0

h2e2αih|Hi+1|2Wi
+

(n− 1)h

2
|Hn−1C|2F1+F2

,

Φ12 = P [(L⊗BK̄1), . . . , (L ⊗BK̄n−1)],
Φ14 = P (L⊗BK̄),
Φ15 = DTHT

n−1(Rn−1 +Q),

Φ22 = −diag{e−2αhR1, . . . , e
−2α(n−1)hRn−1},

Φ23 = [0k×(n−2)k, e
−2α(n−1)hRn−1]

T ,

Φ25 = [(L ⊗BK̄1), . . . , (L ⊗BK̄n−1)]
THT

n−1(Rn−1 +Q),

Φ33 = −e−2α(n−1)h(Rn−1 + F1),

Φ44 = −π
2

4
e−2αhIN−1 ⊗ diag{W0, . . . ,Wn−1},

Φ45 = (L ⊗ K̄TBT )HT
n−1(Rn−1 +Q),

Φ55 = − 4

(nh− h)2
(Rn−1 +Q),

Ω11 = Wn−1 −
(n− 1)2

4
e−2α(n−1)hQ,

Ω12 = Wn−1,

Ω22 = Wn−1 −
n− 1

2
e−2α(n−1)hF2

with C = IN−1 ⊗C and Wi = IN−1 ⊗Wi. Then consensus
of multi-agent system (2) under sampled-data controller
(7) with controller gains (6) is exponentially mean-square
achieved with a decay rate α > 0.

(ii) Given any α ∈ (0, ᾱ), the LMI Φ < 0 is always
feasible for small enough stochastic perturbations and
h > 0 (meaning that consensus of multi-agent system (2)
under sampled-data controller (7) with controller gains (6)
is exponentially mean-square achieved with a decay rate
α > 0).

Proof: (i) Let L be the generator of the system (13) (Mao,
2007; Fridman and Shaikhet, 2019). For the term

VP = |χ(t)|2P , P > 0, (16)

we have

LVP + 2αVP = χT (t)Pf(t) + 2α|χ(t)|2P + |g(t)|2P . (17)

To compensate the terms κi(t) (i = 1, . . . , n − 2), we
consider

VRi
=

∫ t

t−ih

∫ ih

t−s

e−2α(t−s)ϕi(v)|Hi+1χ(s)|2Ri
dvds,

Ri > 0, i = 1, . . . , n− 2.

(18)

Using Jensen’s inequality (Gu et al., 2003; Solomon and
Fridman, 2013) and Proposition 1 with Hiχ̇(t) = Hi+1χ(t)
(i = 1, . . . , n− 2), we have

LVRi
+ 2αVRi

=
ih

2
|Hi+1χ(t)|2Ri

−
∫ t

t−ih

e−2α(t−s)ϕi(t− s)|Hi+1χ(s)|2Ri
ds

≤ ih

2
|Hi+1χ(t)|2Ri

− 2

ih
e−2αih|κi(t)|2Ri

,

i = 1, . . . , n− 2.

(19)

For the term κn−1(t), we consider

VRn−1
=

∫ t

t−(n−1)h

∫ (n−1)h

t−s

e−2α(t−s)ϕn−1(v)

×|Hn−1f(s)|2Rn−1
dvds, Rn−1 > 0.

(20)

Then we have
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LVRn−1
+ 2αVRn−1

≤ (n− 1)h

2
|Hn−1f(t)|2Rn−1

− 2

(n− 1)h
e−2α(n−1)h|κn−1(t)− ρ1(t)|2Rn−1

,
(21)

where

ρ1(t) =

∫ t

t−(n−1)h

ϕn−1(t− s)Hn−1g(s)dw(s).

By using Itô integral properties (see e.g. Mao (2007);
Fridman and Shaikhet (2019)) and Proposition 1, we have
for any matrix F1 > 0

Ee−2α(n−1)h|ρ1(t)|2F1

= Ee−2α(n−1)h

∫ t

t−(n−1)h

ϕ2
n−1(t− s)|Hn−1g(s)|2F1

ds

≤ E

∫ t

t−(n−1)h

e−2α(t−s)ϕn−1(t− s)|Hn−1g(s)|2F1
ds.

For the term

VF1
=

∫ t

t−(n−1)h

∫ (n−1)h

t−s

e−2α(t−s)ϕn−1(v)

×|Hn−1g(s)|2F1
dvds, F1 > 0,

(22)

we have
ELVF1

+E2αVF1

≤ E
(n− 1)h

2
|Hn−1g(t)|2F1

−Ee−2α(n−1)h|ρ1(t)|2F1
.

(23)

Denote 0 < W = IN−1 ⊗ diag{W0, . . . ,Wn−1}. Let us
consider

VW = h2
∫ t

tk

e−2α(t−s)| ˙̄χ(s)|2W ds

−π
2

4
e−2αh

∫ t

tk

e−2α(t−s)|δ(s)|2W ds,

t ∈ [tk, tk+1), k ∈ N0

(24)

to compensate δ(t). The exponential Wirtinger’s inequal-
ity (Selivanov and Fridman, 2016) implies VW ≥ 0 since

δ̇(t) = ˙̄χ(t), δ(tk) = 0 and W > 0. Then one can easily
arrive at

LVW + 2αVW = h2| ˙̄χ(t)|2W − π2

4
e−2αh|δ(t)|2W .

From (4) and (10), it follows that
˙̄χj,0(t) = χ̇j,0(t)

˙̄χj,i(t) = ˙̄x1,i(t)− ˙̄xj,i(t) =

∫ t

t−ih

ψi(t− s)χ̇j,i(s)ds,

i = 1, . . . , n− 1.

which yields

| ˙̄χ(t)|2W = |H1χ(t)|2W0
+ |(ρ2(t) + ρ3(t))|2Wn−1

+

n−2
∑

i=1

|
∫ t

t−ih

ψi(t− s)Hi+1χ(s)ds|2Wi
,

where

ρ2(t) =

∫ t

t−(n−1)h

ψn−1(t− s)Hn−1f(s)ds,

ρ3(t) =

∫ t

t−(n−1)h

ψn−1(t− s)Hn−1g(s)dw(s).

Thus
LVW + 2αVW = h2[|H1χ(t)|2W0

+ |(ρ2(t) + ρ3(t))|2Wn−1

+

n−2
∑

i=1

|
∫ t

t−ih

ψi(t− s)Hi+1χ(s)ds|2Wi
]− π2

4
e−2αh|δ(t)|2W .

(25)

To compensate the term ρ2(t), we consider

VQ =

∫ t

t−(n−1)h

e−2α(t−s)ϕn−1(t− s)|Hn−1f(s)|2Qds

(26)
with Q > 0. Using Jensen’s inequality and Proposition 1
yields

LVQ + 2αVQ ≤ |Hn−1f(t)|2Q − e−2α(n−1)h|ρ2(t)|2Q. (27)

Similarly, for the term ρ3(t), we consider

VF2
=

∫ t

t−(n−1)h

e−2α(t−s)ϕn−1(t− s)|Hn−1g(s)|2F2
ds

(28)
with F2 > 0. Via

Ehe−2α(n−1)h|ρ3(t)|2F2

= Ee−2α(n−1)hh

∫ t

t−(n−1)h

ψ2
n−1(t− s)|Hn−1g(s)|2F2

ds

≤ E

∫ t

t−(n−1)h

e−2α(t−s)ψn−1(t− s)|Hn−1g(s)|2F2
ds,

we have
ELVF2

+E2αVF2

≤ E|Hn−1g(t)|2F2
−Ehe−2α(n−1)h|ρ3(t)|2F2

.
(29)

Finally, to cancel the third positive term on the right-hand
side of (25), we consider

VWi
=

∫ t

t−ih

e−2α(t−s)ϕi(t− s)|Hi+1χ(s)|2Wi
ds,

i = 1, . . . , n− 2.
(30)

Via Jensen’s inequality and Proposition 1, we have

LVWi
+ 2αVWi

≤ |Hi+1χ(t)|2Wi

−e−2αih|
∫ t

t−ih

ψi(t− s)Hi+1χ(s)ds|2Wi
.

(31)

We now consider the functional

V = VP +
n−1
∑

i=1

ih

2
VRi

+ VW +
n−2
∑

i=1

h2e2αihVWi

+
(nh− h)2

4
VQ + VF1

+
(n− 1)h

2
VF2

.

(32)

Then in view of (17), (19), (21), (23), (25), (27), (29) and
(31), we have

ELV +E2αV ≤ EξT (t)Φ̄ξ(t) +Eh2ζT (t)Ωζ(t)

+E
(nh− h)2

4
|Hn−1f(t)|2Rn−1+Q,

(33)

where
ξ(t) = col{χ(t), ξ̄(t), ρ1(t), δ(t)},
ξ̄(t) = col{κ1(t), . . . , κn−1(t)},
ζ(t) = col{ρ2(t), ρ3(t)},

and Φ̄ is obtained from Φ by taking away the last block-
column and block-row. By substituting f(t) given by (14)
and applying Schur’s complement, it follows from Φ < 0
and Ω < 0 thatELV +E2αV ≤ 0 implying the exponential
mean-square stability of the system (13) with a decay
rate α > 0. Then following arguments of Proposition 2,
consensus of multi-agent system (2) under sampled-data
controller (7) with controller gains (6) is thus exponentially
mean-square achieved with a decay rate α > 0.

(ii) If the system (11) with C = 0 is exponentially mean-
square stable with a decay rate ᾱ > 0, then for any
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α ∈ (0, ᾱ) there exists matrix P > 0 of appropriate
dimension such that PD +DTP + 2αP < 0. Thus

PD +DTP + 2αP + |C|2P < 0 (34)

for small enough |C|. We choose Ri (i = 1, . . . , n), Q, F1,
F2, as

1√
h
I(N−1)k andWi (0 = 1, . . . , n) as 1√

h
Ik. By using

Schur’s complement, Φ̄ < 0 given by (33) is equivalent to

PD +DTP + 2αP + |C|2P +
√
h(G1 + hG2) < 0 (35)

where

G1 =
n− 1

2
|Hn−1C|2 +

4

π2
e2αh|P (L ⊗BK̄)|

+

n−2
∑

i=1

e2αih|P (L⊗BK̄i)|+ 2e2α(n−1)h|P (L ⊗BK̄n−1)|,

G2 =

n−2
∑

i=1

i2

4
|Hi+1|2 +

n−2
∑

i=0

e2αih|Hi+1|2.

It is clear that (34) implies (35) for small enough h > 0

since
√
h(G1+hG2) → 0 for h→ 0, implying the feasibility

of Φ̄ < 0 for small enough h > 0. Finally, applying Schur’s
complement to the last block-column and block-row of Φ
given by (15), we find that Φ < 0 for small enough h > 0
if Φ̄ < 0 is feasible. Therefore, the LMI Φ < 0 is always
feasible for small enough h > 0 and |C|.
From (33), it follows that for small enough h > 0, ELV +
E2αV ≤ 0 always holds provided (34) holds. This implies
that for small enough h > 0 and |C|, consensus of multi-
agent system (2) under sampled-data controller (7) with
controller gains (6) is exponentially mean-square achieved
with a decay rate α > 0.

�

Remark 2. As in Selivanov and Fridman (2018), we con-
sider the scenario that multi-agent system (2) is under
continuous-time control (i.e. delay-dependent controller
(5)). Based on Theorem 1, new LMIs are obtained by
setting Wi = 0 (i = 0, . . . , n − 1) and Q = F2 = 0.
Thus, consensus of multi-agent system (2) under delay-
dependent controller (5) with controller gains (6) is expo-
nentially mean-square achieved with a decay rate α > 0.

4. NUMERICAL EXAMPLE

We consider each agents described by (1) with

aj = 0, b = 1, cj = σ ∈ R, j = 0, . . . , n− 1. (36)

Two communication topologies are given as directed
graphs with a spanning tree in Fig. 1. Without loss of
generality, all the weights are assumed to be 1.

Case I: n = 2, σ = 0. First, we choose K0 = 1, K1 = −0.5,
and consider the communication topology Fig. 1(a). Via
the frequency-domain approach in Yu et al. (2013), the
maximum value of h is obtained as 1.8137. From (6),
one obtains K̄0 = 0.5, K̄1 = 0.9069. LMIs in Remark 2
with α = 0 lead to the maximum value of h as 1.1025.
Second, as in Ma et al. (2014), we choose K̄0 = 2.5,
K̄1 = 2. Under the communication topology Fig. 1(b),
the direct discretization approach in Ma et al. (2014)
leads to the maximum value of h as 0.2, whereas LMIs
in Theorem 1 with α = 0 give the maximum value of h as
0.13. It should be pointed out that the approaches in Yu
et al. (2013); Ma et al. (2014) are only applicable to the

Agent 

3

Agent 

2

Agent 

1

Agent 

4

(a)

Agent 

3

Agent 

2

Agent 

1

Agent 

4

(b)

Fig. 1. Directed graphs with a spanning tree.

Table 1. Maximum values of h for different σ
and α = 0.1

σ 0.02 0.1 0.2 0.5 1

Re. 2 0.145 0.141 0.135 0.085 0.012
Th. 1 0.079 0.076 0.070 0.037 0.004
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Fig. 2. State trajectories under delay-dependent controller
(5) with h = 0.145.

second-order deterministic multi-agent systems (i.e. n = 2,
σ = 0). Instead, our method allows to cope with high-order
stochastic multi-agent systems (i.e. n ≥ 3, σ 6= 0).

Case II: n = 3, σ 6= 0. We choose K̄0 = 1, K̄1 = 2,
K̄2 = 3, and consider the communication topology Fig.
1(b). For different values of σ and α = 0.1, Table 1
presents the maximum values of h via LMIs in Remark
2 and Theorem 1. For the further simulation, we choose
σ = 0.02 and the initial conditions of the four agents
as x1(0) = [3,−4, 2]T , x2(0) = [−2, 3,−3]T , x3(0) =
[4,−2, 2]T and x4(0) = [2, 3,−3]T . By using the Euler-
Maruyama method (Higham, 2001) with step size 0.001,
Figs. 2 and 3 depict the state trajectories under delay-
dependent controller (5) with h = 0.145 and sampled-
data controller (7) with h = 0.079, respectively, showing
that the consensus is achieved in the presence of stochastic
perturbations.

5. CONCLUSION

In this paper, the digital implementation of derivative-
dependent control by using delays has been investigated
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Fig. 3. State trajectories under sampled-data controller (7)
with h = 0.079.

for consensus of stochastic multi-agent systems. Simple
LMIs that allow to find admissible sampling period have
been presented by using appropriate Lyapunov-Krasovskii
functionals. The efficiency of the presented approach has
been illustrated by numerical example. The presented
method can be further applied to digital implementation
of PID control for the second-order stochastic multi-agent
systems. This may be a topic for future research.
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Higham, D.J. (2001). An algorithmic introduction to
numerical simulation of stochastic differential equations.
SIAM review, 43(3), 525–546.

Kharitonov, V.L., Niculescu, S.I., Moreno, J., and
Michiels, W. (2005). Static output feedback stabiliza-
tion: Necessary conditions for multiple delay controllers.
IEEE Transactions on Automatic Control, 50(1), 82–86.

Li, T. and Zhang, J.F. (2010). Consensus conditions of
multi-agent systems with time-varying topologies and
stochastic communication noises. IEEE Transactions
on Automatic Control, 55(9), 2043–2057.

Ma, L., Wang, Z., Han, Q.L., and Liu, Y. (2017). Consen-
sus control of stochastic multi-agent systems: a survey.
Science China Information Sciences, 60(12), 120201.

Ma, Q., Xu, S., and Lewis, F.L. (2014). Second-order
consensus for directed multi-agent systems with sampled
data. International Journal of Robust and Nonlinear
Control, 24(16), 2560–2573.

Mao, X. (2007). Stochastic differential equations and
applications. Horwood, Chichester.

Niculescu, S.I. and Michiels, W. (2004). Stabilizing a chain
of integrators using multiple delays. IEEE Transactions
on Automatic Control, 49(5), 802–807.

Olfati-Saber, R., Fax, J.A., and Murray, R.M. (2007).
Consensus and cooperation in networked multi-agent
systems. Proceedings of the IEEE, 95(1), 215–233.
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