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Abstract: This paper describes preliminary results on a Proportional plus Adaptive Distur-
bance Observer (P+ADOB) controller applied to velocity regulation tasks in a servo system.
Adaptation law is obtained to estimate the servo system input gain, which is subsequently
employed in the design of a Disturbance Observer. Compared with previous approaches, this
feature relaxes the assumption on exact knowledge on the input gain, and only upper and lower
bounds on this term are assumed known. A stability proof assuming constant disturbances
allows concluding that the estimate of the input gain is bounded, and the velocity tracking error
converges to zero. Real-time experiments illustrate the performance of the proposed controller.
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1. INTRODUCTION

The principle of Active Disturbance Rejection Control
(ADRC) scheme was first proposed in 1829 by the
french engineer and mathematician Jean-Victor Poncelet
through the so-called Invariance Principle [Preminger
and Rootenberg (1964)]. The idea behind this approach is
to counteract the effects of both internal and external dis-
turbances, as well as the effects of parametric uncertainties
affecting the response of a plant. One of the most impor-
tant works on ADRC was carried out by C.D. Johnson
[Johnson (1971)], who develops what he calls Disturbance
Accommodation Control (DAC), which is based on the
Poncelet’s Invariance Principle. The goal of the DAC is to
estimate the external disturbances that affect a plant, and
the corresponding estimate is used to exactly or approx-
imately cancel out through the plant control inputs the
effects of the real disturbances.

It is worth mentioning that among the first regulators
aimed to cancel out the effect of constant disturbances
is the ubiquitous Proportional-Integral-Derivative (PID)
controller, where the Integral part is responsible for com-
pensating constant perturbations [Åström et al. (2006)]
and it can be considered as the most basic form of a Distur-
bance Observer [Johnson (2008)]. Certain PID topologies
such as the setpoint weighted PID Control [Hägglund and
Åström (1985)], [Visioli (2012)] compensate for constant
and time-varying perturbations depending on how the
setpoint weights are adjusted. These forms of PID control
are applied to first and second-order systems, as in the
case of servo systems for speed and position control [Luna
and Garrido (2018)],[Garrido and Luna (2018)].

The work of Han and Gao [Han (2009)], [Gao et al. (2001)]
analyzes how the ADRC shares some properties of the
? The support given by CONACyT-MEXICO to the first and second
author through a Ph.D. scholarship is also recognized.

PID controller, and also describes how ADRC incorporates
from Modern Control theory the use of an extended state
observer for estimating disturbances and for compensating
the effects of real disturbances on the response of a plant,
whose model may also contain parametric uncertainties.
The use of ADRC and nonlinear PID controllers are also
proposed in the reference, as mentioned above, to improve
the performance of the PID controller applied to perturbed
plants.

Another ADRC method that addresses the problem of
disturbance rejection is based on the Generalized Pro-
portional Integral (GPI) observer. The GPI observer es-
timates endogenous and exogenous disturbances, it may
resort to high gain, and it can estimate simultaneously the
phase variables related to the plant output and a distur-
bance term produced by lumping all the disturbances. The
GPI observer also provides estimates of the time deriva-
tives of the disturbance term and use a time polynomial
as a model of the disturbance term [Sira-Ramı́rez et al.
(2010)].

Using a Disturbance Observer (DOB) by Ohishi and
Ohnishi [Ohishi et al. (1987)], [Ohishi et al. (1988)] is an-
other philosophy pursuing ADRC, and it has been applied
mainly in motion control. In this scheme, input and output
measurements and a nominal model of an unperturbed
plant are used to reconstruct the disturbances. The dis-
turbance estimate is then injected into the plant input to
counteract the effects of the real disturbance [Ohishi et al.
(2000)].

It is worth remarking that in the ADRC schemes described
previously, the input gain of the plant under control is
assumed exactly known. On the other hand, in some
references [Yao et al. (2013)] and [Duan et al. (2019)], an
adaptive mechanism is added to the ADRC framework.
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However, none of them explicitly adapts the parameters
used in the ADRC design.

In this work, a Proportional plus Adaptive Disturbance
Observer (P+ADOB) controller is proposed for control-
ling the speed of a servo system. An adaptive algorithm
estimates the input gain of the nominal model of the servo
system used in the design of the DOB. Exact knowledge
of the input gain is dispensed, and it is assumed that only
an upper and a lower bound of this term are known. Fur-
thermore, it is shown that the proposed adaptive ADRC
scheme guarantees that all the signals of the closed-loop
system remain bounded, and the velocity error converges
to zero in the case of constant disturbances.

The outline of this exposition is as follows. After intro-
ducing the mathematical model of a servo system, a DOB
is designed when the servo system input gain is known.
Subsequently, an adaptation law is obtained for estimating
this term. A stability proof of the closed-loop system
is also provided. Real-time experiments on a laboratory
prototype allow assessing the performance of the proposed
P+ADOB controller.

2. MATHEMATICAL MODEL OF A SERVO SYSTEM

Consider a servo system composed of a DC motor driving
a brass disk inertia, a power amplifier working in current
mode and whose task is to keep the armature current
proportional to the control voltage u, and a velocity sensor.
A model of this system is

Jω̇ + Fω = ku+ φ (1)

where the variables ω and ω̇ are respectively the velocity
and acceleration of the servo system, u is the control input
voltage, J is the sum of the servomotor inertia, the brass
disk, and the sensor inertia, k is a parameter related to
the amplifier gain and the motor torque constant, and the
term φ is a constant external disturbance.

The model (1) has the next alternative writing if a := F/J ,
b := k/J and φ̄ := φ/J

ω̇ = −aω + bu+ φ̄ (2)

Furthermore, friction torques can be lumped if they are
unknown with the term φ̄ as a single disturbance d

ω̇ = bu+ d (3)

where
d := φ̄− aω (4)

3. DOB-BASED CONTROL: KNOWN INPUT GAIN
CASE

Consider the plant given in (3). Assume that the input
gain b is known and the Laplace transform for d exists.
Therefore, these assumptions allow obtaining the following
expression

sΩ(s) = D(s) + bU(s)

where D(s) = L {d}, U(s) = L {u} and Ω(s) = L {ω}.
The notation L {·} stands for the Laplace operator.

In a standard DOB [Ohishi et al. (1988)] the disturbance
estimation is performed as follows

D̂(s) = [sΩ(s)− bU(s)]F (s) (5)

The DOB filter F (s) used for disturbance estimation is
defined as

F (s) =
β

s+ β
(6)

with cutoff frequency β > 0.

Then, substituting (6) into (5) leads to

D̂(s) = Ω(s)
βs

s+ β
− U(s)

βb

s+ β
(7)

Therefore, a Proportional controller with a Disturbance
Observer (P+DOB) is employed to the servo system for
velocity control as is shown in Fig. 1, and the control law
is given by

U(s) =
1

b

{
KpE(s)− D̂(s)

}
(8)

where E(s) = R(s)−Ω(s) is the velocity error and Kp > 0.

It is worth noting that the disturbance estimate D̂(s) is
employed to compensate for the real disturbance effects.
Moreover, The reference R(s) is assumed constant.

4. DOB-BASED CONTROL: UNKNOWN INPUT
GAIN CASE

Consider again (7) and (8) written in the time domain

˙̂
d = −βd̂+ β [ω̇ − bu] (9)

u =
1

b

{
Kpe− d̂

}
(10)

with e = r − ω. Substituting (10) into (9) yields

˙̂
d− βω̇ = −βKpe (11)

Defining

x := d̂− βω (12)

produces the next equality by substituting the time deriva-
tive of x into (11)

ẋ = −βKpe (13)

Therefore, the disturbance d̂ is computed as

d̂ = βω + x (14)

ẋ = −βKpe (15)

( )U s

( )D s

( )s

1

s
b

ˆ ( )D s SERVO SYSTEM

DISTURBANCE OBSERVER

( )R s
P+DOB

CONTROLLER

( )E s

1

b
pK

s

b s

Fig. 1. Proportional plus Disturbance Observer (P+DOB)
controller with known input gain applied to a servo
system for velocity control.
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Substituting (14) into (10) leads to

u =
1

b
[Kpe− βω − x] (16)

On the other hand, if b is unknown and an estimate b̂ is
available, then the latter allows writing (16) as

u =
1

b̂
[Kpe− βω − x] (17)

Adding and subtracting b̂u in the servo system model (3),

defining b̃ = b̂− b and substituting (17) into (3) yield

ω̇ = Kpe− βω − x+ d− b̃u (18)

Two modifications of equation (18) corresponding to the
closed-loop system are needed to perform a stability anal-
ysis. First, the term βr is added and subtracted in (18)
using the fact that e = r − ω thus yielding

ω̇ = (Kp + β) e− x+ d− βr − b̃u (19)

Second, regarding the disturbance d defined in (4), note
that it is time-varying because it depends on the servo
system speed ω. To overcome this problem note that d has
the next alternative writing by nothing that ω = r − e

d = φ̄− ar + ae (20)

The term φ̄−ar in the above equality is the constant part
of the disturbance.

Substituting (20) into (19) produces

ω̇ = (Kp + β + a) e− x+ φ̄− ar − βr − b̃u (21)

Defining α := Kp + β+ a, p := φ̄− ar− βr and z := x− p
permits writing (21) as follows

ω̇ = αe− z − b̃u (22)

5. STABILITY ANALYSIS

Consider the following Lyapunov function candidate

V =
1

2
e2 +

1

2βKp
z2 +

1

2γ
b̃2 (23)

The time derivative of (23) is

V̇ = e(−ω̇) +
1

βKp
zż +

1

γ
b̃
˙̃
b (24)

where ė = −ω̇. Substituting (22) into (24) and nothing
that ż = ẋ = −βKpe produces

V̇ = −αe2 + b̃

[
ue+

1

γ
˙̃
b

]
(25)

If the following update law

˙̃
b =

˙̂
b = −γue (26)

is used for estimating b, then (25) becomes

V̇ = −αe2 (27)

Therefore, V (0) ≥ V , and variables e, z and b̃ are bounded

so do x and ω. Consequently, if b̂ 6= 0, then the control
signal u and ė also remain bounded. Applying Barbalat’s
lemma allows showing that e converges to zero [Sastry and
Bodson (2011)]. To this end, integrating (27) with respect
to time yields

V − V (0) = −α
∫ t

0

e2(ρ)dρ

Since that V (0) ≥ V , it follows that:

α

∫ t

0

e2(ρ)dρ = V (0)− V ≤ 2V (0)

from which the following inequality holds∫ t

0

e2(ρ)dρ ≤ 2V (0)

α
<∞

From the above and the boundedness of e and ė, it follows
that e converges to zero.

The existence of a singularity in control law (17) is a

problem, it happens when b̂ = 0. This issue is solved
by means of a parameter projection procedure applied to
the gradient algorithm (26). To this end, let the set Ω̂
containing Ω and assume that b ∈ Ω ⊂ R where Ω is the
convex hypercube

Ω = {b | 0 < bmin ≤ b ≤ bmax} (28)

Define the set

Ωδ = {b | bmin − δ ≤ b ≤ bmax + δ} (29)

where δ > 0 is chosen such that Ωδ ⊂ Ω̂. Therefore, the
projection operator Pr (γξ) is defined as [Khalil (1996)]:

Pr (γξ) =



γξ, if bmin ≤ b̂ ≤ bmax or

if b̂ > bmax and ξ ≤ 0 or

if b̂ < bmin and ξ ≥ 0

γξ̄, if b̂ > bmax and ξ > 0

γξ̌, if b̂ < bmin and ξ < 0

(30)

where

ξ̄ =

[
1 +

bmax − b̂
δ

]
ξ, ξ̌ =

[
1 +

b̂− bmin
δ

]
ξ

The choice of δ such that Ωδ ⊂ Ω̂ make sure that b̂ 6=
0 ∀ b ∈ Ωδ.

Consequently, the update law for estimating the input gain
b is taken as

˙̂
b = Pr (γξ); ξ = −ue (31)

It is worth noting that using the update law (31) for
estimating b does not affect the stability result previously
obtained without parameter projection. To prove this
statement the term γξ is decomposed into terms as follows

γξ = Pr (γξ) + (γξ)⊥ (32)

and the term (γξ)⊥ is defined as

(γξ)⊥ =



0 , if bmin ≤ b̂ ≤ bmax or

if b̂ > bmax and ξ ≤ 0 or

if b̂ < bmin and ξ ≥ 0[
b̂− bmax

δ

]
γξ, if b̂ > bmax and ξ > 0

[
bmin − b̂

δ

]
γξ, if b̂ < bmin and ξ < 0

(33)
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Fig. 2. Proportional plus Adaptive Disturbance Observer
(P+ADOB) controller with known input gain applied
to a servo system for velocity control.

From the above definition it is straighfoward to conclude
that

(b̂− b)(γξ)⊥ = b̃(γξ)⊥ ≥ 0 (34)

On the other hand, replacing (31) into the Lyapunov time

derivative (25) and remembering that
˙̃
b =

˙̂
b boils down to

V̇ = −αe2 +
1

γ
b̃ [−γξ + Pr (γξ)] (35)

Substituting γξ given in (32) into (35) leads to

V̇ = −αe2 − 1

γ
b̃(γξ)⊥ (36)

Finally, inequality (34) allows concluding that

V̇ = −αe2 ≤ 0 (37)

From the above, the control law applied to the servo
system (3) is

u =
1

b̂

{
Kpe− d̂

}
(38)

˙̂
d = −βd̂+ β

[
ω̇ − b̂u

]
(39)

˙̂
b = Pr (γξ); ξ = −ue (40)

The next proposition resumes the stability results de-
scribed in this section.

Proposition 1. Consider the servo system model (3) in
closed-loop with the control law (38), (39), (40), and
assume that only upper and lower bounds of the input
gain b are known. Then, all the closed-loop signals remain
bounded and the velocity error e converges asymptotically
to zero

6. EXPERIMENTS

6.1 Experimental setup

The Fig. 3 depicts the experimental setup which consists
of a brushed DC motor JDTH-2250-DQ-1C from Clifton
Precision with a brass disk acting as load, a SA-7388F-1
Servotek tachogenerator model is used to obtain velocity
measurements, a Copley Controls power amplifier model
413 working in current mode is employed to feed the
DC motor, and a box that galvanically isolates a data
acquisition card from the power amplifier. For performing

Control Computer

DC Motor Tachogenerator

Isolation

box

Control 

Signal  ± 10 V

Power 

amplifier

Connection 

panel for the 

data acquisition 

card

n 

Fig. 3. Experimental setup.

data acquisition a Servo To Go data card is mounted inside
a personal computer with an Intel Core 2 Quad proces-
sor. All the programming is done using the Mathworks
Matlab/Simulink software, together with the WINCON
real-time software from Quanser Consulting. The Simulink
diagrams use a sampling period of one millisecond and the
integration method corresponds to Euler-ode1 .

The servo motor angular velocity ω is filtered to attenuate
the noise in the measurements of the tachogenerator using
the next second-order filter.

L{ωf}
L {ω}

=

[
90

s+ 90

]2
6.2 Experimental results

In this section, the P+ADOB controller studied in Sections
4 and 5 is experimentally assessed. The input gain b of the
linear model (3) fulfills bmin =5 and bmax =120. The value

of δ = 0.01. Several initial conditions for b̂(0) are tested to
show the performance of the P+ADOB control scheme.

The performance of the closed-loop system is evaluated
through the Integral Squared Error (ISE), the Integral
of the Absolute value of the Error (IAE), the Integral of
the Absolute value of the Control (IAC) and the Integral
of the Absolute value of the Control Variation (IACV )
indexes that are defined as

ISE =

∫ τ2

τ1

100 [e]
2
dt IAE =

∫ τ2

τ1

100 |e| dt

IACV =

∫ τ2

τ1

∣∣∣∣dudt
∣∣∣∣ dt IAC =

∫ τ2

τ1

|u| dt

which are evaluated at τ1 = 15 and τ2 = 20 seconds.
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Table 1. Experimental results using Kp = 3,
γ = 10 and β=10 for the P+ADOB controller.

b̂(0) ISE IAE IACV IAC

80 1.7550 0.0244 0.5986 0.2657

60 1.5953 0.0231 0.9059 0.2640

40 2.1349 0.0263 1.8358 0.2622

20 58.0415 0.1423 26.6386 0.4212

Fig. 4. Velocity responses for 930 and 990 r/min.
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Fig. 5. Control signals for 900 and 1140 r/min.
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Fig. 6. Velocity errors for 900 and 1140 r/min.

The reference r is a filtered pulse train switching between
930 r/min and 990 r/min.

6.3 Performance of the P+ADOB controller

Table 1 resumes the outcomes of the experiments. The
closed-loop responses, the control signals, and velocity
error graphs are depicted in Fig. 4, Fig. 5 and Fig. 6

respectively. The estimated gains b̂ are shown in Fig. 7,
as well as the estimated disturbances in Fig. 8.

From Table 1, it is clear that good performance is obtained
using large values in the initial condition, that is, when

0 5 10 15 20 25 30 35 40
0

20

40

60

80

Fig. 7. Evolution of the estimated gains b̂ for different

initial conditions b̂(0).

Fig. 8. Estimated disturbance d̂ for different initial condi-

tions b̂(0).

using 80, 60 and 40. However, for lower values of b̂(0)

produce lower steady-state values of b̂ and performance

degrades. In this regard, note that a lower value of b̂ implies

a large value of 1/b̂ in the control law (38). Therefore, it
would produce large control signals, as is observed in Fig.

5 for b̂(0) = 20. The closed-loop responses, as well as the
velocity errors in Fig. 4 and Fig. 6 also reflect the effects
of this small initial condition as oscillating behavior.

Note also that the ISE and IAE indexes have their lowest
values when b̂(0) = 60. Hence, it suggests that this could
be the best input gain estimated because, for all other
conditions, those indexes have higher values.

7. CONCLUSION

This paper presents preliminary results on a Proportional
plus Adaptive Disturbance Observer (P+ADOB) con-
troller for velocity regulation tasks in a servo system. An
update law estimates its input gain, which is subsequently
employed in the design of a Disturbance Observer. It is
shown that all the closed-loop system signals are bounded,
and the velocity error converges to zero. Real-time exper-
iments carried out in a laboratory prototype illustrate the
performance of the proposed controller.
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Zavala and Jesús Meza Serrano in setting up the labora-
tory testebed. Special thanks to Miss Anallely Rosas for
her invaluable support, time and advice for the realization
of this work, with love for you.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1326



REFERENCES

Åström, K.J., Hägglund, T., and Astrom, K.J. (2006).
Advanced PID control, volume 461. ISA-The Instru-
mentation, Systems, and Automation Society Research
Triangle .

Duan, X., Dong, X., Liu, Z., Lv, M., and Zhang, W.
(2019). Adaptive tracking control for a class of disturbed
nonlinear systems with unbounded time derivative for
disturbance. In 2019 American Control Conference
(ACC), 429–434. IEEE.

Gao, Z., Huang, Y., and Han, J. (2001). An alternative
paradigm for control system design. In Proceedings of
the 40th IEEE conference on decision and control (Cat.
No. 01CH37228), volume 5, 4578–4585. IEEE.

Garrido, R. and Luna, J.L. (2018). On the equivalence
between pd+ dob and pid controllers applied to servo
drives. IFAC-PapersOnLine, 51(4), 95–100.
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